水源热泵对水源的要求
水源热泵系统设计

水源热泵系统设计一、水源热泵设备选型⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。
传统的系统——用较大的热负荷或冷负荷选择系统。
以出水温度35℃的制冷量或以出水温度18℃的制热量作为选择水源热泵机组的依据。
⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵消。
⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。
⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。
⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进行修正。
二、循环水系统设计水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。
水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。
三、系统水流量设计水源热泵系统夏季需冷量的计算方法与其它系统相同。
根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。
一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。
另水源热泵装置的数量越多,同时使用系数越小,反之则越大。
同时使用系数可按以下原则来确定:⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。
四、系统形式水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。
水源热泵对水质的要求

水源热泵对水质的要求
水源热泵是利用地球水所储藏的太阳能资源作为冷、热源,进行转换的技术,水源热泵对水质有五种要求:
1、水温在15℃左右,单台机组需水量为80m³/h,此时夏季制冷温差取5℃,冬季制热温差取8℃,单台机组需水量为90m³/h。
2、含沙量与浑浊度:水源含砂量高对机组会造成磨损,含砂量和浑浊度高的水用于地下水回灌会造成水层堵塞,用于水源热泵系统的水源,含砂量应<
1/20万,浑浊度<20毫克/升。
如果水源热泵系统中装有板式换热器,水源水中固体颗粒粒径<0.5毫米。
3、酸碱度:水源PH为6.5-8.5。
4、硬度:水中Ca²+、Mg² +总量为总硬度。
硬度大,易生锈。
水源中CaO含量应<200mg/L。
5、矿化度:单位容积水中所含各种离子、分子、化合物的总量为矿化度。
用于水源热泵的水源矿化度应<3g/L。
以上介绍的是水源热泵对水质的要求,水源热泵便于集中管理,可按区域的大小及分期建设设置一台或几台水源热泵,便于分期管理。
水源热泵施工方案

水源热泵施工方案1. 引言水源热泵是一种利用水体作为热源或冷源的热泵系统。
它利用环境中的水资源进行换热,实现室内的供暖、供冷和热水供应。
本文档将介绍水源热泵的施工方案,包括选址、系统设计、施工流程等内容。
2. 选址选址是水源热泵项目的第一步,合理的选址可以提高系统的效能和经济性。
以下是选择水源热泵选址的几个因素:2.1 水源质量选择水源时,应考虑水的来源、水质、水温等因素。
水质应符合相关标准要求,水温应满足系统运行的需求。
2.2 地质条件必须了解选址区域的地质条件,例如地下水位、地下水丰度、岩层情况等。
这些因素将决定地源换热器的施工方案。
2.3 环境保护选址应避免对环境造成不良影响,尽量选择不影响地表水和地下水质量的地点。
3. 系统设计水源热泵系统的设计是确保系统正常运行的基础。
以下是系统设计的关键要素:3.1 系统容量计算根据建筑物的热负荷和制冷负荷计算热泵的容量,以确保系统的供暖、供冷和热水供应的需求能够被满足。
3.2 水源换热器选择根据选址的水质、水温情况选择合适的水源换热器。
常见的水源换热器有管式、板式和盘管式等。
3.3 管路设计根据建筑物的结构和布局设计管路系统,确保水循环流畅,减少能量损失。
3.4 控制系统设计设计合理的控制系统,包括温度控制、压力控制、循环控制等,以确保系统的自动运行和高效运行。
4. 施工流程水源热泵的施工需要有经验丰富的施工队伍和合适的施工流程。
以下是一般的施工流程:4.1 地面工程包括选址的准备工作、基坑开挖、施工场地的平整等。
4.2 地源换热器安装根据设计要求进行地源换热器的安装,包括连接管路、焊接等。
确保地源换热器的密封性和可靠性。
4.3 主机安装主机是水源热泵系统的核心部件,需要按照设计要求进行安装、接线和调试。
主机安装完毕后,进行系统的真空抽气和冷媒充注。
4.4 管路安装根据管路设计进行管道的布置和安装,包括焊接、绝缘等工作。
4.5 控制系统安装安装控制系统的主控制器和传感器,进行布线和调试,确保系统可以正常运行和控制。
高温水源热泵机组技术参数设置

高温水源热泵机组技术参数设置高温水源热泵机组是一种能够利用高温水源进行能量转换的设备,可以广泛应用于工业、商业和住宅等领域。
它通过提供制冷和供暖功能,实现了能源的高效利用和减少对化石燃料的依赖。
本文将介绍高温水源热泵机组的技术参数设置。
一、制冷能力制冷能力是高温水源热泵机组的一个重要技术参数,它表明了该机组在制冷工况下能够提供的制冷量。
制冷能力一般以千瓦(kW)为单位进行表示。
在选择高温水源热泵机组时,需要根据所需制冷量来确定合适的制冷能力,以确保机组能够满足工况要求。
二、供暖能力供暖能力也是高温水源热泵机组的一个重要技术参数,它表明了该机组在供暖工况下能够提供的供暖量。
供暖能力一般以千瓦(kW)为单位进行表示。
在选择高温水源热泵机组时,需要根据所需供暖量来确定合适的供暖能力,以确保机组能够满足工况要求。
三、电源要求高温水源热泵机组的电源要求是指该机组需要的电压、频率和电流等参数。
这些参数需要根据机组的功率和运行特点进行设置,以确保机组能够正常工作和安全运行。
四、循环水流量循环水流量是高温水源热泵机组的一个重要技术参数,它表明了机组在正常工作条件下所需要的循环水流量。
循环水流量一般以立方米/小时(m³/h)为单位进行表示。
在选择高温水源热泵机组时,需要根据循环水系统的特点和所需供暖或制冷负荷来确定合适的循环水流量,以确保机组能够满足工况要求。
五、温度范围温度范围是高温水源热泵机组的一个重要技术参数,它表明了机组能够适应的供暖或制冷工况的温度范围。
温度范围一般以摄氏度(℃)为单位进行表示。
在选择高温水源热泵机组时,需要根据所需供暖或制冷工况的温度要求来确定合适的温度范围,以确保机组能够满足工况要求。
六、工作噪音工作噪音是高温水源热泵机组的一个重要技术参数,它表明了机组在正常工作条件下产生的噪音水平。
工作噪音一般以分贝(dB)为单位进行表示。
在选择高温水源热泵机组时,需要根据使用环境的要求和噪音控制的需求来确定合适的工作噪音,以确保机组能够满足使用要求。
水源热泵最高温度45度

水源热泵最高温度45度水源热泵最高温度45度引言:水源热泵技术是一种能够有效利用地下水或湖水等水源作为热源/热汇的空调供热系统。
它利用水温稳定、能量储存能力大的特点,通过压缩机以及膨胀阀等设备的循环作用,实现能源的高效利用,同时提供供暖、供冷甚至热水的功能。
然而,目前市场上常见的水源热泵最高温度一般为45度。
本文将对水源热泵的最高温度进行探讨,包括其原因、使用范围、优势和劣势等方面。
一、水源热泵最高温度45度的原因水源热泵的最高温度一般为45度,主要有以下原因:1. 系统结构限制:水源热泵的核心部件是压缩机,其工作温度范围通常在40-60度之间。
由于水源热泵是通过水进行热交换,其出水温度与压缩机的工作温度直接相关。
为了保证系统的正常运行,避免过高温度对设备造成损坏,制造商设置了最高温度限制。
2. 节能考虑:水源热泵系统主要用于供热和供冷,较高的温度可以满足大部分使用场景的需求。
然而,提高温度会导致能源消耗的增加,不利于系统的高效运行。
因此,适度降低水源热泵最高温度是为了实现系统的节能。
二、水源热泵最高温度的使用范围水源热泵最高温度为45度,并不适用于所有场景,主要适用于以下情况:1. 低温供热系统:水源热泵最高温度适合于采暖系统的供热,特别是地暖系统,对于需要较低温度的户型非常适用。
2. 空调制冷:水源热泵最高温度可以用于冷却空调系统中的冷却水或冷却剂,实现供冷功能。
3. 中低温热水供应:水源热泵最高温度适用于提供中低温热水,如洗浴、厨房热水等。
三、水源热泵最高温度的优势和劣势1. 优势:a. 节能环保:水源热泵利用水源进行热交换,不需要额外的能源消耗,具有较高的能源利用率,减少了对环境的污染。
b. 稳定可靠:水源热泵利用水温相对稳定的特点,系统温度波动较小,能够提供稳定的供热/供冷功能。
c. 多功能应用:水源热泵可以实现供热、供冷和热水等多种功能,满足不同使用场景的需求。
2. 劣势:a. 温度限制:水源热泵最高温度为45度,不适宜用于一些高温热水的供应,如洗澡、清洗等需求。
江、河、湖水源热泵系统技术要点

江、河、湖水源热泵系统技术要点文章来源:《中国地源热泵发展研究报告(2008)》水源地源热泵高效应用关键技术研究与示范课题组编写1.工程勘察地表水源热泵系统方案设计前,应对工程场区地表水源的水文状况进行勘察。
只要项目地点附近有大量地表水源,就应该把它作为系统可能的冷、热源进行调查研究。
地表水源热泵系统勘察应包括以下内容:(1)地表水水源性质、水面用途、深度、面积及其分布;(2)不同深度的地表水水温、水位;(3)地表水流速和流量;(4)地表水水质;(5)地表水利用现状;(6)地表水取水和回水的适宜地点及路线。
地表淡水的水温受气候影响较大,全年处于波动状态。
掌握地表水的水温变化规律是实验地表水热泵系统的前提。
地表水水温的勘察应包括今年的极端最高和最低水温,同时掌握全年水温变化曲线也很重要。
对于水位较深的水体,还应对冬季和夏季不同深度的水温进行现场测试。
根据勘察结果,可以初步判断地表水源长期的温度变化范围是否在系统允许的范围内。
另外,应根据吸热量和排热量计算水温降低或提高的数值,并确定是否在能够接受的范围内,是否对水源中的生态环境造成影响。
地表水水位就流量勘察应包括近年最高和最低水位及最大和最小水量。
对流入水体的水源温度也应进行勘查,不同的流入水源可能温度不同,应分别进行勘察,如地下泉水的流入、河水的流入、人工水源的流入等。
地表水水质勘察应包括,引起腐蚀与结垢的主要化学成分,地表水源中含有的水生物、细菌类、固体含量及盐碱量等。
地表水源热泵系统勘察结束后应提交地表水水文勘察报告,报告中应对地表水源热泵系统设计方案提供建议。
建议应包括以下内容:(1)取水方式和回水方式;(2)取水口和回水口位置;(3)供水管和回水管网分布及埋深;(4)水处理方式和处理设备。
2.水温变化特定及换热能力(1)换热过程地表淡水与外界的热交换主要通过太阳辐射、天空辐射、与空气的对流换热、蒸发、与大地的热传导,以及水源流入流出带走的热量。
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用水温差来进行能量转换的设备,它具有高效、环保、节能的特点。
其工作原理主要通过以下几个步骤完成:1.水源采暖系统:首先,水源热泵系统需要有一个水源采暖系统,用来提供供热的源头。
通常,水源可以是地下水、湖泊、河流等自然水源,也可以是人工水源,如蓄水池、水体等。
水温要求在5℃以上才能够有效地进行能量转换。
2.蒸发器:水源热泵系统中的蒸发器是整个系统的核心部分。
蒸发器内有一条称为换热管的管道,通过这条管道将水源中的低温水引入,与系统中循环的制冷剂进行热交换。
制冷剂在低温下吸收水源中的热量,使水源中的温度降低,同时制冷剂变成气体状态。
3.压缩机:蒸发器中的制冷剂经过热交换后,进入压缩机。
压缩机的作用是将制冷剂气体进行压缩,使其温度和压力都升高。
4.冷凝器:压缩机将制冷剂压缩后,将其送入冷凝器。
冷凝器中的制冷剂与水源采暖系统中需要加热的水进行热交换。
制冷剂释放热量,使水源采暖系统中的水温升高。
5.膨胀阀:经过冷凝器的制冷剂进入膨胀阀,膨胀阀起到限制制冷剂流量的作用。
由于膨胀阀的存在,制冷剂的压力和温度都会下降。
6.再次进入蒸发器:制冷剂经过膨胀阀后,再次进入蒸发器。
在蒸发器内,制冷剂吸收水源的热量,再次变成气体状态。
循环往复,不断吸收和释放热量。
通过上述循环的过程,水源热泵系统能够从水源中吸收较低温度的热量,通过热交换,将其传递到需要供热的水源采暖系统中。
同时,该系统实现了能源的高效利用,将制冷剂的制冷蒸发和热交换循环进行往复,不断进行能量转换。
总的来说,水源热泵通过利用水温差进行热量转移,达到供热的目的。
它是一种环保、高效、节能的供热设备,可以广泛应用于工业和民用领域,减少了对传统燃料的依赖,降低了能源消耗和对环境的影响。
水源热泵设计方案

水源热泵设计方案介绍水源热泵(Water Source Heat Pump,WSHP)是一种利用地下水或湖泊水体作为热源或热泵系统排热的热泵系统。
本文将介绍水源热泵的基本原理和设计方案,以实现高效、节能的供暖和制冷。
基本原理水源热泵利用热力循环的原理,通过不同温度工质之间的传热来实现能量转换。
其基本原理如下:1.蒸发换热器:地下水或湖泊水体通过蒸发换热器吸收热量,使水体温度降低。
2.压缩机:通过压缩机提高蒸发压力,使蒸发温度升高,进一步增加系统的热效率。
3.冷凝换热器:经过压缩后的蒸汽或气体通过冷凝器释放热量,使水体温度升高。
4.膨胀阀:膨胀阀控制系统的压力,使压力降低,从而降低蒸发温度,循环继续。
设计方案水源热泵设计方案需要考虑以下几个关键因素:1. 热负荷计算在确定水源热泵的型号和容量之前,需要进行热负荷计算。
热负荷计算包括室内外温度差、建筑外墙材料、建筑面积、建筑朝向等因素。
通过计算得到的热负荷可以帮助选用适当容量的水源热泵。
2. 地下水或湖泊水体的选择水源热泵需要从地下水或湖泊水体中吸收热量或排热。
选择合适的水源需要考虑水体的温度、流量和水质等因素。
水源温度越高,系统的热效率越高,但也需要注意水体的可持续性和环境保护。
3. 设备布局和管道设计水源热泵系统的设备布局和管道设计对系统性能和效率有重要影响。
设备应该放置在通风良好、易于维护的位置,同时要注意避免设备之间的相互干扰和噪音传递。
管道设计应合理布置,减少压力损失和能量损失。
4. 控制系统设计水源热泵的控制系统设计应考虑系统的自动化程度和能耗控制。
通过合理设置温度控制器、压力传感器和流量计等设备,可以实现系统的智能控制和优化调节,提高能源利用效率。
5. 维护与保养水源热泵系统需要定期检查和保养,以确保其良好的运行状态。
定期清洁和更换过滤器、检查管道是否漏水、清除水垢等工作可以保证系统的正常运行,并延长设备的使用寿命。
结论水源热泵是一种高效、节能的供暖和制冷系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水源系统的水量、水温、水质和供水稳定性是影响水源热泵系统运行效果的重要因素。
应用水源热泵时,对水源系统的原则要求是:水量充足,水温适度,水质适宜,供水稳定。
具体说,水源的水量,应当充足够用,能满足用户制热负荷或制冷负荷的需要。
如水量不足,机组的制热量和制冷量将随之减少,达不到用户要求。
水源的水温应适度,适合机组运行工况要求。
例如,清华同方GHP型水源中央空调系统在制热运行工况时,水源水温应为12—22℃;在制冷运行工况时,水源水温应为18—30℃。
水源的水质,应适宜于系统机组、管道和阀门的材质,不至于产生严重的腐蚀损坏。
水源系统供水保证率要高,供水功能具有长期可靠性,能保证水源热泵中央空调系统长期和稳定运行。
一、水源原则上讲,凡是水量、水温能够满足用户制热负荷或制冷复荷的需要,水质对机组设备不产生腐蚀损坏的任何水源都可作为水源热泵系统利用的水源,既可以是再生水源,也可以是自然水源。
1. 再生水源是指人工利用后排放但经过处理的城市生活污水、工业废水、矿山废水、油田废水和热电厂冷却水等水源,有条件利用再生水源的用户,变废为利,可减少初投资,节约水资源。
但对大多数用户来说,可供选择的是自然界中的水源。
2 .自然界中的水源自然界中的水分布于大气圈、地球表面和地壳岩石中,分别称之为大气水、地表水和地下水。
陆地上的地表水和地下水均来自于大气降水。
地表水中的海水约占自然界水总储量的96.5%。
滨海城市有条件利用海水,国外有应用海水作热泵水源的实例。
我国一些沿海城市利用海水作工业冷却水源已有多年历史。
近年,国内有用海水作热泵水源的研究,但海水水源热泵技术的实用化尚待时日。
陆地上的地表水,即江、河、湖、水库水比海水和地下水矿化度低,但含泥沙等固体颗粒物、胶质悬浮物及藻类等有机物较多,含砂量和浑浊度较高,须经必要处理方可作热泵水源。
地下水是指埋藏和运移在地表以下含水层中的的水体。
地下水分布广泛,水质比地表水好,水温随气候变化比地表水小,是水源中央空调可以利用的较为理想的水源。
3.水量与水源的选择水量是影响水源热泵系统工作效果的关键因素,一项工程所需水量多少由该工程负荷与机组性能确定,所选择的水源水量应满足负荷要求。
如果其他各种条件均具备,但水量略有不足,其缺口可采取一定辅助弥补措施解决。
如水量缺口较大,不能满足负荷要求,就应考虑其他方案。
就某项具体工程而言,应从实际情况出发,判断是否具备可利用的水源。
不同工程的场地环境和水文地质条件千差万别,可利用的水源各不相同,应因地制宜地选择适用水源。
当有不同水源可供选择时,应通过技术经济分析比较,择优确定。
二、水质自然界中的水处于无休止循环运动中,不断与大气、土壤和岩石等环境介质接触、互相作用,使其具有复杂的化学成分、化学性质和物理性质。
应用水源热泵时,除应关心水源水量外,还应关注水的温度、化学成分、浑浊度、硬度、矿化度和腐蚀性等因素。
但是,目前对水源热泵所用水源的水质尚无有关规定,本文所提数据参考了冷却水水质标准和某些地下水回灌水质的有关规定。
1. 温度地表水水温随季节、纬度和高程不同而变化。
长江以北和高原地区,冬季地表水结冰,无法利用于制热供暖。
夏季水温一般低于30℃,可用于制冷空调。
地下水水温随自然地理环境、地质条件及循环深度不同而变化。
近地表处为变温带,变温带之下的一定深度为恒温带,地下水温不受太阳辐射影响。
不同纬度地区的恒温带深度不同,水温范围10—22℃。
恒温带向下,地下水温随深度增加而升高,升高多少取决于不同地域和不同岩性的地热增温率。
地壳平均地热增温率为2.5℃/100m,大于这一数值为地热异常。
富含地下水的地热异常区可形成地热田。
据1997年统计数字,全国已发现地热点3200多处,开发利用130 处地热田,年开采地热水3.45亿m3。
目前,许多地热用户排放弃水温度较高(约40℃)。
应用水源热泵可使弃水中的30℃温差得到再利用,大大提高地热能利用率。
2. 含砂量与浑浊度有些水源含有泥沙、有机物与胶体悬浮物,使水变得浑浊。
水源含砂量高对机组和管阀会造成磨损。
含砂量和浑浊度高的水用于地下水回灌会造成含水层堵塞。
用于水源热泵系统的水源,含砂量应<1/20万,浑浊度<20毫克/升。
如果水源热泵系统中装有板式换热器,水源水中固体颗粒物的粒径应<0.5毫米。
3. 水的化学成分及其化学性质自然界水中溶有不同离子、分子、化合物和气体,使得水具有有酸碱度、硬度、矿化度和腐蚀性等化学性质,对机组材质有一定影响。
酸碱度水的pH值小于7时,呈酸性,反之呈碱性。
水源热泵的水源pH值应为6.5-8.5。
硬度水中Ca2+、Mg2+总量称为总硬度。
硬度大,易生垢。
水源热泵水源水中的CaO含量应<200 mg/L。
矿化度单位容积水中所含各种离子、分子、化合物的总量称为总矿化度,用于水源热泵系统的水源水矿化度应<3g/L。
腐蚀性水中Cl-、游离CO2等都具腐蚀性,溶解氧的存在加大了对金属管道的腐蚀破坏作用。
应用水源热泵系统时,对腐蚀性、硬度高的水源,应在系统中加装抗腐蚀的不锈钢换热器或鈦板换热器。
三、取水构筑物从水源地向水源热泵机房供水,需建取水构筑物。
依据水源不同,取水构筑物可分为地表水取水构筑物和地下水取水构筑物两类。
1. 地表水取水构筑物按结构形式地表水取水构筑物可分为活动式和固定式两种。
活动式地表水取水构筑物有浮船式和活动缆车式。
较常用的是固定式地表水取水构筑物,其种类较多,但一般都包括进水口、导水管(或水平集水管)和集水井,地表水取水构筑物受水源流量、流速、水位影响较大,施工较复杂,要针对具体情况选择施工方案。
2. 地下水取水构筑物地下水取水构筑物有管井、大口井、结合井、辐射井和渗渠等类型,表1列出了地下水取水构筑物的型式及适用范围[1]。
在实际工程中,应根据地下水埋深、含水层厚度、出水量大小、技术经济条件不同选取不同形式。
3. 管井地下水取水构筑物中最常见的型式是管井,一般由井孔、井壁管、滤水管、沉砂管组成。
井孔用钻机钻成,井壁管安装在非含水层处,用以支撑井孔孔壁,防止坍塌,井管与孔口周围用粘土或水泥等不透水材料封闭,防止地面污水渗入;滤水管安装在含水层处,除有井壁管作用外其主要作用是滤水挡砂;井管最底部为沉砂管,用以沉积水中泥沙,延长管井使用寿命。
四、水源系统设计和施工中应注意的问题1. 供水水源的可行性研究拟采用水源热泵系统时,应先调查工程场地的供水水源条件,向当地水管理部门咨询或请专业队伍进行必要的水文地质调查或水文地球物理勘查,了解是否有适合水源热泵利用的水源,通过可行性研究,确定利用地表水或是地下水的供水水源方案。
2. 地表水源工程设计与施工当选用地表水源时,设计取水量要考虑水温因素和需水量的保证率,取水构筑物标高与洪水季节水位的关系。
施工应同时考虑供水管和排水管的布置。
3. 管井工程设计和施工拟选择地下水源和管井取水方案时,对规模较大的工程,应根据所需水量和地下水回灌需要,结合场地环境和水文地质条件,按一定采灌比确定抽水井和回灌井井数、合理布置井位和井间距。
井深应大于变温带深度,以保证冬季水源水温度>10℃。
为防止回灌井堵塞,确保水源系统长期稳定供水,抽水井和回灌井应互相切换使用,因此各个井的井深和井身结构应相近。
井中滤水管和滤网应有一定强度,能承受抽灌往复水流的压力变换。
4 .管井施工质量必须十分重视管井质量问题。
应找专业队伍施工,做好每一工艺环节,建成优质井,才能获得较大出水量和优质水。
一口优质井可以使用二十多年。
成井质量不好,不仅影响井的寿命,还影响到取水和回灌效果,最终影响水源热泵正常工作和制热或制冷效果。
甲方应参与最后阶段的抽水试验工作,认定可信和准确的抽水试验结果数据。
管井竣工后,应由甲方、施工单位和行政主管部门或监理会同到现场,按合同规定的水量、水温和水质进行工程质量验收。
地下水取水构筑物的形式及适用范围形式尺寸深度(m) 适用范围出水量(m3/d)地下水类型地下水埋深含水层厚度水文地质特征管井井径50—1000mm150—600mm 井深20—1000m,常用300m以内潜水,承压水,裂隙水,溶洞水200m以内,常用在70m以内大于5m或有多层含水层适用于任何砂、卵石、砾石地层及构造裂隙、岩溶裂隙地带单井出水量500-6000m3/d,最大可达2-3万m3/d大口井井径2—10m,常用4—8m 井深在20m以内,常用6—15m 潜水,承压水一般在10m以内一般为5-15m 砂、卵石、砾石地层,渗透系数最好在20m/d以上单井出水量500-1万m3/d,最大为2-3万m3/d辐射井集水井直径4—6m,辐射管直径50-300mm,常用75—150mm 集水井井深3—12m 潜水,承压水埋深12m以内,辐射管距降水层应大于1m 一般大于2m 补给良好的中粗砂、砾石层,但不可含有飘砾单井为5000—5万m3/d,最大为3.1万m3/d 渗渠直径为450—1500mm,常用为600—1000mm 埋深10m以内,常用4—6m 潜水,河床渗透水一般埋深8m以内一般为4—6m 补给良好的中粗砂、砾石、卵石层一般为10—30m3/d.m,最大为50--100m3/d.m五、水质处理与节水技术1. 水处理技术如果水源的水质不适宜水源热泵机组使用时,可以采取相应的技术措施进行水质处理,使其符合机组要求。
在水源系统中经常采用的水处理技术有以下几种:除砂器与沉淀池:当水源水中含砂量较高时,可在水源水管路系统中加装旋流除砂器,降低水中含砂量,避免机组和管阀遭受磨损和堵塞。
国产旋流除砂器占地面积较小,有不同规格,可按标准处理流量选配除砂器型号和台数。
如果工程场地面积较大,也可修建沉淀池除砂。
沉淀池费用比除砂器低,但占地面积大。
净水过滤器:有些水源,浑浊度较大,用于回灌时容易造成管井滤水管和含水层堵塞,影响供水系统的稳定性和使用寿命。
对浑浊度大的水源,可以安装净水器进行过滤。
电子水处理仪:在水源中央空调系统运行过程中,冷凝器中的循环水温度较高,特别是在冬季制热工况下,水温常常在50℃以上,水中的钙、镁离子容易析出结垢,影响换热效果。
通常在冷凝器循环水管路中安装电子水处理仪,防止管路结垢。
板式换热器有些水源矿化度较高,对金属的腐蚀性较强,如直接进入机组会因腐蚀作用减少机组使用寿命。
如果通过水处理的办法减少矿化度,费用很大。
通常采用加装板式换热器中间换热的方式,把水源水与机组隔离开,使机组彻底避免了水源水可能产生的腐蚀作用。
当水源水的矿化度小于350mg/L时,水源系统可以不加换热器,采用直供连接。
当水源水矿化度为350-500mg/L时,可以安装不锈钢板式换热器。
当水源水矿化度>500mg/L时,应安装抗腐蚀性强的钛合金板式换热器。