2020高中数学 第八章 立体几何初步 8
新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt

③
×
如三棱锥的四个顶点相连的四边形不能确定
一个平面
④
√
平面是空间中点的集合,是无限集
答案:④
4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则
直线AB∩β=
.
解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.
答案:C
∴由基本事实3可知,点P在平面ABC与平面α的交线上,同理可
证Q,R也在平面ABC与平面α的交线上.
∴P,Q,R三点共线.
本例换为:如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C
与平面ABC1D1交于点Q,如何说明B,Q,D1三点共线?
证明:如图所示,连接A1B,CD1.
显然B∈平面A1BCD1,D1∈平面A1BCD1.
④两条平行线确定一个平面
A.①②
B.②③
C.②④
D.③④
(2)两个平面若有三个公共点,则这两个平面(
A.相交
B.重合
C.相交或重合
D.以上都不对
)
解析:(1)不在同一条直线上的三点确定一个平面.圆上三个点
不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.
当四点在一条直线上时不能确定一个平面,③不正确.根据平
且 P∈l
3.做一做:如图所示,在空间四边形各边AD,AB,BC,CD上分别
取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直线BD
上.
证明:∵EF∩GH=P,
∴P∈EF,且P∈GH.
又EF⊂平面ABD,GH⊂平面CBD,
∴P∈平面ABD,且P∈平面CBD,
即P∈平面ABD∩平面CBD,平面ABD∩平面CBD=BD,
高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案

则 AD⊥BC,SD⊥BC,∴∠ADS 为二面角 A-BC-S 的平面角.在 Rt△BSC
中,∵SB=SC=a,
∴SD=
22a,BD=B2C=
2 2 a.
在 Rt△ABD 中,AD= 22a.在△ADS 中, ∵SD2+AD2=SA2,∴∠ADS=90°,即二面角 A-BC-S 为直二面角,故平
面 ABC⊥平面 SBC.
(3)垂线法.过二面角的一个面内异于棱上的 A 点向另一个平面作垂线,垂 足为 B,由点 B 向二面角的棱作垂线,垂足为 O,连接 AO,则∠AOB 为二面 角的平面角或其补角.如图③,∠AOB 为二面角 α-l-β 的平面角.
【对点练清】
1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两
D.AO⊥l,BO⊥l,且 AO⊂α,BO⊂β 答案:D
3.如图,在正方体 ABCD-A1B1C1D1 中,二面角 A-BC-A1 的平面 角等于 ________. 答案:45°
知识点二 平面与平面垂直
(一)教材梳理填空 1.面面垂直的定义:
一般地,两个平面相交,如果它们所成的二面角是_直__二__面__角__,就说 定义
D.不存在
()
答案:C 3.若平面 α⊥平面 β,平面 β⊥平面 γ,则
()
A.α∥γ
B.α⊥γ
C.α 与 γ 相交但不垂直 答案:D
D.以上都有可能
题型一 二面角的概念及其大小的计算
【学透用活】 (1)一个二面角的平面角有无数个,它们的大小是相等的. (2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”,即二面角的 平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都 与棱垂直,这三个条件缺一不可. (3)当二面角的两个半平面重合时,规定二面角的大小是 0°;当二面角的两 个半平面合成一个平面时,规定二面角的大小是 180°,所以二面角的平面角 α 的取值范围是 0°≤α≤180°.
2020_2021学年新教材高中数学第八章立体几何初步8.1第1课时棱柱棱锥棱台的结构特征课件新人教A版必修第二册

探究一
探究二
素养形成
当堂检测
反思感悟 棱锥、棱台结构特征问题的判断方法
(1)举反例法
结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征
的某些说法不正确.
(2)直接法
棱锥
棱台
定底面
只有一个面是多边形, 两个互相平行的面,即
此面即为底面
为上、下底面
看侧棱
相交于一点
延长后相交于一点
探究一
探究二
素养形成
答案:③
探究一
探究二
素养形成
当堂检测
反思感悟 关于棱柱的辨析 (1)紧扣棱柱的结构特征进行有关概念辨析. ①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公 共边互相平行. (2)多注意观察一些实物模型和图片便于反例排除. 特别提醒:求解与棱柱相关的问题时,首先看是否有两个平行的面 作为底面,再看是否满足其他特征.
探究一
探究二
素养形成
当堂检测
方法点睛(1)绘制展开图:绘制多面体的平面展开图要结合多面体 的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解 题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出 来,然后依次画出各侧面,便可得到其平面展开图. (2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是 由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平 面展开图可能是不一样的,也就是说,一个多面体可有多个平面展 开图.
探究一
探究二
素养形成
当堂检测
几何体的平面展开图 典例(1)请画出如图所示的正方体的平面展开图;
(2)如图是两个几何体的平面展开图,请问各是什么几何体?
探究一
探究二
素养形成
高中数学第八章立体几何初步8.3.2圆柱、圆锥、圆台、球的表面积和体积

∴S 球=4πR2=2 500π cm2,故球的表面积为 2 500π cm2.
第二十八页,共四十八页。
当截面在球心的两侧时,如图②所示为球的轴截面,由球的 截面性质知,O1A∥O2B,且 O1,O2 分别为两截面圆的圆心,则 OO1⊥O1A,OO2⊥O2B.
设球的半径为 R, ∵π·O2B2=49π,∴O2B=7 cm, ∵π·O1A2=400π,∴O1A=20 cm, 设 O1O=x cm,则 OO2=(9-x) cm. 在 Rt△OO1A 中,R2=x2+400, 在 Rt△OO2B 中,R2=(9-x)2+49. ∴x2+400=(9-x)2+49,解得 x=-15,不合题意,舍去. 综上所述,球的表面积为 2 500π cm2.
[重点] 求圆柱、圆锥、圆台的侧面积和体积. [难点] 圆台的侧面积和体积.
第四页,共四十八页。
要点整合夯基础 课堂达标练经典
典例讲练破题型 课时作业
第五页,共四十八页。
要点整合夯基础
第六页,共四十八页。
知识点一 圆柱、圆锥、圆台、球的表面积
1.圆柱的表面积
[填一填]
(1)侧面展开图:圆柱的侧面展开图是
[解析] (1)两个球的体积之比为 8 27,根据体积比等于 相似比的立方,表面积之比等于相似比的平方,可知两球的半径 比为 2 3,从而这两个球的表面积之比为 4 9,故选 B.
(2)两个小铁球的体积为 2×43π×13=83π,设大铁球的半径为 R,则大铁球的体积43π×R3=83π,所以大铁球的半径为3 2.
第十四页,共四十八页。
典例讲练破题型
第十五页,共四十八页。
类型一 圆柱、圆锥、圆台的表面积和体积的计算
[例 1] (1)圆锥的轴截面是等腰直角三角形,侧面积是 16 2π,则圆锥的体积是( A )
高中数学 第八章 立体几何初步 8.3.1 棱柱、棱锥、棱台的表面积和体积习题(含解析)新人教A版必

8.3简单几何体的表面积与体积8.3.1棱柱、棱锥、棱台的表面积和体积课后篇巩固提升基础达标练1.(多选题)长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,则()A.长方体的表面积为20B.长方体的体积为6C.沿长方体的表面从A到C1的最短距离为3D.沿长方体的表面从A到C1的最短距离为22×(3×2+3×1+2×1)=22,A错误.长方体的体积为3×2×1=6,B正确.如图①所示,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.在表面上求最短距离可把几何体展开成平面图形,如图②所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=,即当经过侧面ABB1A1和侧面BCC1B1时的最短距离是;如图③所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1==3,即当经过侧面ABB1A1和底面A1B1C1D1时的最短距离是3;如图④所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1==2,即当经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2.因为3<2,所以沿长方体表面从A到C1的最短距离是3,C正确,D不正确.2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D-ACD1的体积是()A. B. C. D.1D-ACD1的体积等于三棱锥D1-ACD的体积,三棱锥D1-ACD的底面ACD是直角边长为1的等腰直角三角形,高D1D=1,∴三棱锥D-ACD1的体积为V=×1×1×1=.3.一个正四棱锥的底面边长为2,高为,则该正四棱锥的表面积为()A.8B.12C.16D.20=2,所以该四棱锥的表面积为22+4××2×2=12.4.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为()A.3πB.C.πD.1,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为,故底面积为()2=2;四棱锥的高为1,则四棱锥的体积为×2×1=.故几何体的体积为2×.5.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为()A. B. C. D.,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为,三条侧棱两两垂直,所以此三棱锥的体积为.6.(2020全国高一课时练习)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=AB·BC·CE=AB·BC·CC1=×120=10.7.正四棱柱的一条体对角线长为9,表面积为144,适合这些条件的正四棱柱有个.a,高为h,由题意得这个方程组有两个解,所以适合条件的正四棱柱有2个.8.已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是,表面积是.V=4×6×3+×4×3×3=90,表面积S=2(4×6+4×3+6×3)-3×3+×4×3×2+×3+3×4=138.9.在正四棱锥S-ABCD中,点O是底面中心,SO=2,侧棱SA=2,则该棱锥的体积为.侧棱SA=2,高SO=2,∴AO==2,因此,底面正方形的边长AB=AO=4,底面积为AB2=16.该棱锥的体积为V=AB2·SO=×16×2=.10.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,则它的深度为 cm.S',S.由V=(S++S')h,得h==75(cm).能力提升练1.(2020某某某某检测)我国古代名著《X丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭,令上方六尺,问亭方几何?”大致意思为“有一个正四棱锥下底面边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底面边长为六尺,问该正四棱台的体积是多少立方尺?”(注:1丈=10尺)()A.1 946立方尺B.3 892立方尺C.7 784立方尺D.11 676立方尺,正四棱锥的高为30,所截得正四棱台的下底面棱长为20,上底面棱长为6, 设棱台的高为OO1=h,由△PA1O1∽△PAO可得,解得h=21,可得正四棱台的体积为×21×(62+202+6×20)=3892(立方尺),故选B.2.(2020某某某某检测)如图所示,在上、下底面对应边的比为1∶2的三棱台中,过上底面的一边A1B1和AC,BC的中点F,E作一个平面A1B1EF,记平面分三棱台两部分的体积为V1(三棱柱A1B1C1-FEC),V2两部分,那么V1∶V2=.h,上底面的面积是S,则下底面的面积是4S,∴V棱台=h(S+4S+2S)=Sh,V1=Sh,∴.∶43.(2020全国高一课时练习)如图,AA1,BB1,CC1相交于点O,形成两个顶点相对、底面水平的三棱锥容器,AO=A1O,BO=B1O,CO=C1O.设三棱锥高均为1,若上面三棱锥中装有高度为0.5的液体,且液体能流入下面的三棱锥,则液体流下去后液面高度为.,流下去后,液体上方空出的三棱锥的体积为三棱锥体积的.设空出的三棱锥的高为x,则,所以x=,所以液面高度为1-.-4.已知一个三棱柱的三视图如图所示,求这个三棱柱的侧面积.,该三棱柱的底面为正三角形,各侧面为矩形,侧棱长为4cm,如图所示.因为正三角形ABC和正三角形A'B'C'的高为2cm,所以正三角形ABC的边长AB==4(cm).故三棱柱的侧面积为S侧=4×4×3=48(cm2).5.一个正三棱锥P-ABC的底面边长为a,高为h.一个正三棱柱A1B1C1-A0B0C0的顶点A1,B1,C1分别在三条棱上,A0,B0,C0分别在底面△ABC上,何时此三棱柱的侧面积取到最大值?O,连接PO,图略,则PO为三棱锥的高,设A1,B1,C1所在的底面与PO交于O1点,则,令A1B1=x,而PO=h,则PO1=x,于是OO1=h-PO1=h-x=h.所以所求三棱柱的侧面积为S=3x·h(a-x)x=.当x=时,S有最大值为ah,此时O1为PO的中点,即A1,B1,C1分别是三条棱的中点.素养培优练在正三棱台ABC-A1B1C1中,已知AB=10,棱台一个侧面梯形的面积为,O1,O分别为上、下底面正三角形的中心,连接A1O1,AO并延长,分别交B1C1,BC于点D1,D,∠D1DA=60°,求上底面的边长.AB=10,∴AD=AB=5,OD=AD=.设上底面的边长为x(x>0),则O1D1=x.如图所示,连接O1O,过D1作D1H⊥AD于点H,则四边形OHD1O1为矩形,且OH=O1D1=x.∴DH=OD-OH=x,在Rt△D1DH中,D1D==2x.∵四边形B1C1CB的面积为(B1C1+BC)·D1D,∴(x+10)×2x,即40=(x+10)(10-x),∴x=2,故上底面的边长为2.。
高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。
2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。
(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。
圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。
圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。
8 C。
8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。
∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。
3。
(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。
12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。
∴Rt△OMB中,有OM==2。
∴DM=OD+OM=4+2=6。
∴(V D—ABC)max=×9×6=18。
故选B。
4。
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。
2020高中数学 第八章 立体几何初步 8.5.1 直线与直线平行学案 第二册

8.5.1 直线与直线平行考点学习目标核心素养基本事实4理解基本事实4,并会用它解决两直线平行问题直观想象、逻辑推理定理理解定理的内容,套用定理解决角相等或互补问题直观想象、逻辑推理问题导学预习教材P133-P135的内容,思考以下问题:1.基本事实4的内容是什么?2.定理的内容是什么?1.基本事实4(1)平行于同一条直线的两条直线平行.这一性质通常叫做平行线的传递性.(2)符号表示:错误!⇒a∥c。
2.定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.■名师点拨定理实质上是由如下两个结论组合成的:①若一个角的两边与另一个角的两边分别平行且方向都相同(或方向都相反),则这两个角相等;②若一个角的两边与另一个角的两边分别平行,有一组对应边方向相同,另一组对应边方向相反,则这两个角互补.判断(正确的打“√”,错误的打“×")(1)如果一个角的两边与另一个角的两边平行,那么这两个角相等.( )(2)如果两个角相等,则它们的边互相平行.( )答案:(1)×(2)×已知AB∥PQ,BC∥QR,若∠ABC=30°,则∠PQR等于() A.30°B.30°或150°C.150°D.以上结论都不对答案:B在长方体ABCD。
A′B′C′D′中,与AD平行的棱有____________(填写所有符合条件的棱)答案:A′D′,B′C′,BC基本事实4的应用如图,E,F分别是长方体ABCD。
A1B1C1D1的棱A1A,C1C 的中点.求证:四边形B1EDF为平行四边形.【证明】如图所示,取DD1的中点Q,连接EQ,QC1.因为E是AA1的中点,所以EQ错误!A1D1。
因为在矩形A1B1C1D1中,A1D1错误!B1C1,所以EQ错误!B1C1,所以四边形EQC1B1为平行四边形,所以B1E错误!C1Q。
又Q,F分别是D1D,C1C的中点,所以QD错误!C1F,所以四边形DQC1F为平行四边形,所以C1Q错误!FD.又B1E错误!C1Q,所以B1E错误!FD,故四边形B1EDF为平行四边形.证明空间中两条直线平行的方法(1)利用平面几何的知识(三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等)来证明.(2)利用基本事实4即找到一条直线c,使得a∥c,同时b∥c,由基本事实4得到a∥b。
2020_2021学年新教材高中数学第八章立体几何初步8.5.2直线与平面平行同步课件新人教A版必修

D.直线m与平面α内的一条直线平行
【解析】选C.选项A不符合题意,因为直线m在平面α外也包括直线与平面相交;
选项B与D不符合题意,因为缺少条件m⊄α;选项C中,由直线与平面平行的判定
定理,知直线m与平面α平行,故选项C符合题意.
2.若直线l∥平面α,则过l作一组平面与α相交,记所得的交线分别为a,b,c,…, 那么这些交线的位置关系为( ) A.都平行 B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或交于同一点 【解析】选A.因为直线l∥平面α,所以根据直线与平面平行的性质定理 知,l∥a,l∥b,l∥c,…,所以a∥b∥c∥….
【思考】 一条直线与一个平面平行,该直线与此平面内任意直线平行吗?
提示:不是,可能是异面直线.
【基础小测】 1.辨析记忆(对的打“√”,错的打“×”) (1)若直线l上有无数个点不在平面α内,则l∥α.( ) (2)若l与平面α平行,则l与α内任何一条直线都没有公共点. ( ) (3)平行于同一平面的两条直线平行. ( ) 提示:(1)×.直线也可能与平面相交. (2)√.若有公共点,则平行不成立. (3)×.两条直线可能平行,也可能相交或异面.
【解题策略】 关于线面平行性质定理的应用 (1)如果题目中存在线面平行的条件,寻找或作出交线是前提,也是关键. (2)对应画线问题,要根据线面平行,确定出平行的直线后画出.
【跟踪训练】
已知正方体ABCD -A1B1C1D1的棱长为2,点P是平面AA1D1D的中心,点Q是B1D1上一
点,且PQ∥平面AA1B1B,则线段PQ长为
【补偿训练】 如图,四棱锥P-ABCD的底面是平行四边形,点E,F分别为棱AB,PD的中点. 求证:AF∥平面PCE.
类型二 直线与平面平行的性质(直观想象、逻辑推理) 【典例】如图,三棱柱ABC -A1B1C1中,P,Q分别为棱AA1,AC的中点.在平面ABC内过 点A作AM∥平面PQB1交BC于点M,并写出作图步骤,但不要求证明.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体■名师点拨(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概轴:圆锥的轴底面:圆锥的底面和截面念侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=错误!.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×")(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.( )(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.( )答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是( )A.直角三角形 B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A。
【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm。
过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm。
所以错误!=错误!,所以错误!=错误!=错误!。
解得l=9,即圆台O′O的母线长为9 cm.错误!解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.1.已知一个圆台的上、下底面半径分别是1 cm,2 cm,截得圆台的圆锥的母线长为12 cm,则圆台的母线长为________.解析:如图是圆台的轴截面,由题意知AO=2 cm,A′O′=1 cm,SA=12 cm.由错误!=错误!,得SA′=错误!·SA=错误!×12=6(cm).所以AA′=SA-SA′=12-6=6(cm).所以圆台的母线长为6 cm.答案:6 cm2.轴截面是直角三角形的圆锥的底面半径为r,则其轴截面面积为________.解析:由圆锥的结构特征可知,轴截面为等腰直角三角形,其高为r,所以S=错误!×2r2=r2。
答案:r21.如图所示的图形中有()A.圆柱、圆锥、圆台和球 B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B。
根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B。
2.用一个平面去截一个几何体,得到的截面是圆面,则这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱答案:D3.下列说法中正确的是________.①连接圆柱上、下底面圆周上两点的线段是圆柱的母线;②圆锥截去一个小圆锥后剩余部分是圆台;③通过圆台侧面上一点,有无数条母线.解析:①错误,连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,所以①不正确.③错误,通过圆台侧面上一点,只有一条母线.答案:②4.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高h为________cm.解析:h=20cos 30°=20×错误!=10错误!(cm).答案:10错误!5.如图所示,将等腰梯形ABCD绕其底边所在直线旋转一周,可得到怎样的空间几何体?该几何体有什么特点?解:若将等腰梯形ABCD绕其下底BC所在的直线旋转一周,所得几何体可以看作是以AD为母线,BC所在的直线为轴的圆柱和两个分别以AB,CD为母线的圆锥组成的几何体,如图(1)所示.若将等腰梯形ABCD绕其上底AD所在的直线旋转一周,所得几何体可以看作是以BC为母线,AD所在的直线为轴的圆柱中两底分别挖去以AB,CD为母线的两个圆锥得到的几何体,如图(2)所示.[A 基础达标]1.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周,如图,钝角△ABC中,AB边最小,以AB 为轴,其他两边旋转一周,得到的几何体是一个圆锥挖去一个同底的小圆锥.故选D.2.如图所示的组合体的结构特征是( )A.一个棱柱中截去一个棱柱B.一个棱柱中截去一个圆柱C.一个棱柱中截去一个棱锥D.一个棱柱中截去一个棱台解析:选C.如题图,可看成是四棱柱截去一个角,即截去一个三棱锥后得到的简单组合体,故为一个棱柱中截去一个棱锥所得.3.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由2个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形解析:选D.该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故D说法不正确.4.如图,将阴影部分图形绕图示直线l旋转一周所得的几何体是()A.圆锥B.圆锥和球组成的简单组合体C.球D.一个圆锥内部挖去一个球后组成的简单组合体答案:D5。