物理光学知识点
物理光学知识点总结

电磁波模型
• 1.空间周期性、时间周期性 • 2.定态光波 • 3.相位、振幅、相速度、电矢矢量量(光矢矢量量)、波矢矢、波
面面、波前、波前函数(波函数)、光程差与相位差、 复振幅、光通量量、光强 • 4.波前函数的表达式:余弦式、复振幅式 • 不不同表达式对于相位超前或滞后的描述不不同 • 5.平面面波、球面面波 • 6.傍轴条件、远场条件 • 7.光的偏振态:5种
• 1.根据波列列传播的路路径求出光程,可得到波前(即接收屏 幕)上的波前函数的相位
• 2.根据光程差确定干干涉相⻓长或干干涉相消的条件,这一一方方法 适用用于光源位置确定的情况
• 3.根据相位差确定干干涉相⻓长或干干涉相消的条件,这一一方方法 适用用于平面面波的情况
• 4.对于有反射的情形,要考虑是否存在半波损失 • 5.针对具体的干干涉装置,有不不同的相位差或光程差表达式
叠加原理理的基本物理理结果
• 1.两列列定态相干干光波的叠加
∫ •
I=1 τ
τ 0
A2dt
=
A12
2.相干干叠加的干干涉项
+
A22 + 2 A1A2 cos Δϕ
2A1 A2 cos Δϕ
• 3.非非相干干叠加
• 正交电矢矢量量的叠加
• 两列列不不同频率单色色光的叠加:光学拍
• 非非单色色光的叠加:波包,群速度
近轴条件下成像的基本关系
• 1.符号约定 • 2.物距、像距、焦距、焦平面面、光焦度 • 3.单个ns折ʹʹ +射ns =球nʹ面r−面n的= Φ物象关sfʹʹ 系+ sf(= 1高高斯公式) • 4.薄透镜的sf物ʹʹ + 象sf =关1 系(xx高ʹ 高=斯ffyʹ公ʹ 式ns、ʹ 牛牛顿公式yʹ) sʹ • 5.横向放大大率 折射面面、透镜 y = − nʹs 反射镜 y = − s • 6.共轭光线:同一一条物方方像方方光线
物理高中光学知识点总结

物理高中光学知识点总结一、光的性质1. 光的波动性光既具有波动性,也具有粒子性。
光的波动性体现在光的传播过程中,如光的干涉和衍射现象。
而光的粒子性体现在光的能量是以光子的形式传播的,光的粒子性主要与光的光电效应和康普顿效应等现象有关。
2. 光的传播速度光在真空中传播的速度为299792458m/s,通常用c表示。
而在介质中,光的传播速度会减小,不同介质中的光速不同。
3. 光的颜色白光是由各种不同波长的光波混合而成的,而不同波长的光波对应不同的颜色。
当光通过三棱镜或光栅时,会发生色散现象,将白光分解成不同颜色的光谱。
4. 光的偏振光是一种横波,具有振动的方向。
光振动方向的平面称为偏振面,垂直于偏振面的方向称为偏振光。
在光的偏振现象中,我们主要关注线偏振光和圆偏振光。
二、光的传播1. 光的直线传播在介质中,光具有直线传播的特性,光线可以通过凸透镜、凹透镜的机理可以解释光线的传播和成像。
2. 光的衍射当光通过一个大小与波长相当的孔或障碍物时,会发生衍射现象。
衍射现象可用多缝干涉或单缝衍射公式进行计算。
3. 光的干涉当两道光波相遇时,会发生干涉现象。
光的干涉一般分为相干干涉和非相干干涉,其中激光干涉是一种重要的相干干涉。
三、光的反射与折射1. 光的反射定律光线在与物体表面相遇时,会发生反射现象。
光的反射定律规定了入射角、反射角和法线之间的关系。
2. 光的折射定律当光线从一种介质传播到另一种介质中时,会发生折射现象。
光的折射定律规定了入射角、折射角和介质折射率之间的关系。
3. 透镜的成像规律凸透镜和凹透镜分别具有不同的成像规律。
通过透镜成像公式可以计算物体和像的位置关系。
四、光的使用与应用1. 显微镜显微镜是一种使用透镜放大微小物体的仪器,通过显微镜可以观察到微生物、细胞等微小物体。
2. 望远镜望远镜是一种用透镜或反射镜放大远处物体的仪器,通过望远镜可以观察到远处的星星、行星等天体。
3. 激光技术激光技术是一种利用激光放大器产生激光束的技术,激光技术广泛应用于通信、医疗、制造等领域。
初中物理知识点总结光学

初中物理知识点总结光学一、光的产生和传播1. 光的产生:光是由光源产生的,常见的光源有太阳、火把、电灯等。
2. 光的传播:光在空气、水和玻璃等介质中传播。
光在真空中的传播速度是最快的,为30万公里/秒。
3. 光的直线传播:光在同一介质中是直线传播的。
这就是我们常说的“光直线传播”。
4. 光的反射:光线与平面镜、凹面镜、凸面镜相交时,光线受到镜面的反弹现象。
5. 光的折射:光从一种介质传播到另一种介质时,光线的传播方向发生改变的现象叫做折射。
二、光的成像1. 平面镜成像:当物体放在平面镜前时,在镜中产生一个与物体相似的像,这种现象叫做平面镜成像。
2. 凹面镜成像:凹面镜使光线聚焦,物体产生倒立、缩小的实像。
3. 凸面镜成像:凸面镜使光线发散,物体产生直立、放大的虚像。
4. 成像规律:物体与像的位置关系可以用成像规律来描述。
对于平面镜来说,物距等于像距;对于曲面镜来说,焦距等于物距与像距之比。
三、光的色散1. 光的颜色:光是由七种颜色的光波长组成的,它们依次是红橙黄绿蓝靛紫。
2. 物体的颜色:物体的颜色是由它所吸收的光的颜色决定的。
比如,苹果看起来是红色的,是因为它吸收了其他颜色的光,只反射红色光。
3. 色散:当光经过三棱镜等介质时,不同波长的光会发生不同程度的偏折现象,这种现象叫做色散。
四、光的干涉和衍射1. 光的干涉:当两束光波相遇时,它们互相叠加形成交替的亮暗条纹的现象叫做光的干涉。
2. 光的衍射:光波遇到障碍物或边缘时,会发生弯曲和扩散现象,这种现象叫做光的衍射。
五、光的偏振1. 光的偏振:通常,自然光是沿着各个方向振动的,我们把振动方向固定的光叫做偏振光。
2. 偏振片:偏振片是一种能够选择光振动方向的装置。
可以用来产生偏振光和实现光的解偏振。
以上就是初中物理中常见的一些光学知识点。
通过学习这些知识,我们能够更好地理解光的特性和光学现象,为我们认识世界、改造世界提供了基础。
同时,也为我们日常生活中的一些现象提供了合理的解释。
物理光学知识点

物理光学知识点物理光学是光学的一个重要分支,主要研究光的本性、光的传播以及光与物质的相互作用等方面。
下面我们来详细了解一些关键的物理光学知识点。
一、光的波动性1、光的干涉光的干涉是指两列或多列光波在空间相遇时,相互叠加,在某些区域始终加强,在另一些区域始终减弱,从而形成稳定的强弱分布的现象。
杨氏双缝干涉实验是证明光具有波动性的经典实验。
在杨氏双缝干涉中,相邻明条纹或暗条纹的间距与光的波长、双缝间距以及双缝到光屏的距离有关。
2、光的衍射光在传播过程中遇到障碍物或小孔时,偏离直线传播路径而绕到障碍物后面传播的现象称为光的衍射。
衍射现象表明光具有波动性。
单缝衍射、圆孔衍射等都是常见的衍射现象。
衍射条纹的宽度与障碍物或小孔的尺寸以及光的波长有关。
3、光的偏振光的偏振现象表明光是一种横波。
自然光通过偏振片后会变成偏振光。
偏振光在很多领域都有重要应用,如立体电影、偏振光显微镜等。
二、光的粒子性1、光电效应当光照射到金属表面时,金属中的电子吸收光子的能量,从而逸出金属表面的现象称为光电效应。
光电效应的实验规律无法用经典物理学来解释,爱因斯坦提出了光子说,成功解释了光电效应。
光电效应方程为:$h\nu =W +\frac{1}{2}mv^2$,其中$h$为普朗克常量,$\nu$为光的频率,$W$为金属的逸出功,$m$为电子质量,$v$为电子逸出后的速度。
2、康普顿效应康普顿效应进一步证实了光的粒子性。
当 X 射线光子与物质中的电子碰撞时,光子的能量和动量发生改变,散射后的 X 射线波长变长。
三、光的传播1、光速真空中的光速是一个常量,约为$3\times 10^8$米/秒。
光在不同介质中的传播速度不同,且满足$v =\frac{c}{n}$,其中$v$为光在介质中的速度,$c$为真空中的光速,$n$为介质的折射率。
2、折射与反射当光从一种介质进入另一种介质时,会发生折射和反射现象。
折射定律为:$n_1\sin\theta_1 = n_2\sin\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为入射角和折射角。
物理光学知识点总结

物理光学知识点总结1. 光的基本概念- 光是一种电磁波,具有波动性和粒子性(光子)。
- 可见光谱是人眼能够感知的光的范围,大约在380纳米至750纳米之间。
2. 光的传播- 光在均匀介质中沿直线传播。
- 光速在不同介质中不同,真空中的光速约为299,792,458米/秒。
- 光的传播遵循光的折射定律和反射定律。
3. 反射定律- 入射光线、反射光线和法线都在同一平面内。
- 入射角等于反射角,即θi = θr。
4. 折射定律(Snell定律)- n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。
5. 光的干涉- 干涉是两个或多个光波相遇时,光强增强或减弱的现象。
- 干涉条件是两束光的频率相同,且相位差恒定。
- 常见的干涉现象有双缝干涉和薄膜干涉。
6. 光的衍射- 衍射是光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。
- 单缝衍射、圆孔衍射和光栅衍射是常见的衍射现象。
7. 光的偏振- 偏振光是电磁波振动方向受到限制的光。
- 线性偏振、圆偏振和椭圆偏振是偏振光的三种类型。
- 偏振片可以用来控制光的偏振状态。
8. 光的散射- 散射是光在传播过程中遇到粒子时发生方向改变的现象。
- 散射的强度与粒子大小、光波长和入射光强度有关。
- 常见的散射现象有大气散射,导致天空呈现蓝色。
9. 光的颜色和色散- 颜色是光的另一种表现形式,与光的波长有关。
- 色散是光通过介质时不同波长的光因折射率不同而分离的现象。
- 棱镜可以将白光分解成不同颜色的光谱。
10. 光的量子性- 光电效应表明光具有粒子性,光子的能量与其频率成正比。
- 波恩提出的波函数描述了光子的概率分布。
- 量子光学是研究光的量子性质的学科。
11. 光的相干性和光源- 相干光具有固定的相位关系,激光是一种高度相干的光源。
- 光源可以是自然的,如太阳,也可以是人造的,如激光器和灯泡。
12. 光学仪器- 望远镜、显微镜、光纤和光学传感器都是利用光学原理工作的仪器。
物理光学知识点

物理光学知识点物理光学是物理学的一个分支,研究光的传播、反射、折射、干涉、衍射、偏振等现象以及与物质的相互作用。
在本文中,我们将介绍物理光学的一些重要知识点。
1. 光的传播速度光在真空中的传播速度是一个常数,即光速。
根据现行国际单位制的定义,光速的数值约为每秒299,792,458米。
这是一个非常快的速度,足以让光在一秒内绕地球走7.5圈。
2. 光的波动性和粒子性光既可以表现出波动性,也可以表现出粒子性。
这种“波粒二象性”是量子力学的基本原理之一,也被称为光的量子论。
根据光的具体实验条件,我们可以采用波动或粒子模型来解释和预测光的行为。
3. 光的反射和折射光在与界面接触时会发生反射和折射。
反射是指光从界面上的垂直方向弹回,形成镜面反射。
折射是指光从一种介质传播到另一种介质时发生方向改变。
根据斯涅尔定律,光的入射角和折射角之间存在特定的关系。
4. 光的干涉和衍射当两束或多束光波相遇时,会发生干涉现象。
干涉分为构造干涉和破坏干涉。
构造干涉是指光的相位叠加导致明暗相间的干涉条纹,例如杨氏双缝干涉实验。
破坏干涉是指光的相位差引起的干涉现象,例如红外夜视摄像机。
光通过狭缝或物体边缘时,会发生衍射现象。
衍射是光波的波前在遇到障碍物时发生弯曲并扩散的现象。
衍射过程中光波的相位和强度分布规律与观察距离和衍射孔径的大小有关。
5. 光的偏振光波在传播过程中,振动方向不随时间变化的现象称为偏振。
光可以是线偏振、圆偏振或者椭圆偏振的。
线偏振光的振动方向只在一个平面上,圆偏振光的振动方向沿着一个圆周,而椭圆偏振光的振动方向沿着一个椭圆。
6. 光的色散色散是指光在透明介质中传播时,不同波长的光的折射率不同而导致的色彩分离现象。
著名的实验是牛顿的光的色散实验,他将一束白光通过一个三棱镜,观察到光被分成了七种颜色的光谱。
7. 光的吸收和透射物质对光的吸收和透射是光与物质相互作用的重要现象。
当光通过物质时,会与物质中的原子或分子相互作用,一部分光被吸收,一部分光通过物质并被透射出来。
光学知识点总结物理

光学知识点总结物理引言光学是研究光的产生、传播、检测、操控、调制、放大等现象的科学。
光学的研究范围包括光的物理特性、光的传播规律、光学器件的设计、制造和应用等方面。
光学在日常生活中有着广泛的应用,例如光学仪器、光学通信、激光技术、光学工程等领域。
一、光的物理特性光的物理特性包括光的波动性和光的粒子性。
1. 光的波动性光的波动性表现在光波的传播和干涉、衍射现象上。
光波的传播是通过电磁场的振荡而产生的,光波具有波长、波速、频率等特性。
光波的干涉现象是指两个或多个光波相互叠加而形成的明暗条纹,根据光波的波长和相位差可区分出构成干涉现象的各个光波的性质。
光波的衍射现象是指光波通过孔隙或物体边缘时发生的弯曲和散射现象,衍射现象使得光波在传播过程中出现了很多特殊的现象,例如光在经过狭缝后形成的衍射条纹等。
2. 光的粒子性光的粒子性表现在光的能量量子化和光的光子现象上。
光的能量量子化是指光的能量是以光子为单位的,每个光子的能量与其频率成正比,这一特性解释了光的光电效应、光的散射等现象。
光的光子现象是指光的粒子性在光与物质相互作用时的表现,例如在光的散射过程中,光子与物质之间的相互作用会使得光子的能量和动量发生变化。
二、光的传播规律光的传播规律包括光的折射、反射和透射规律等。
1. 光的折射规律光的折射是指光波由一种介质传播到另一种介质时,光的传播方向发生改变的现象。
光的折射规律由斯涅尔定律和折射定律两部分构成。
斯涅尔定律描述了光线在两种介质边界上的传播特性,即入射角、折射角和介质折射率之间的关系;折射定律描述了光线在介质内部的传播特性,即光线在介质内传播时保持一定的折射角不变。
2. 光的反射规律光的反射是指光线与物体表面相遇时,部分光线返回原来的介质,而另一部分光线被吸收或折射出去的现象。
光的反射规律由菲涅尔反射定律和镜面反射定律构成。
菲涅尔反射定律描述了入射光线在介质边界上的反射特性,即反射光线与入射光线、反射光线与法线之间的关系;镜面反射定律描述了光线在光滑表面上的反射特性,即反射光线、入射光线和法线在同一平面内。
物理光学知识点

物理光学知识点第一章1. 可见光波长范围(380nm~760nm)。
2.折射率n =c = v3. 能流密度的坡印廷矢量s 的物理意义:表示单位时间内,通过垂直于传播方向上的单位面积的能量;光强I =S =1n 2E 0 2μ0c4. 已知E =eE 0cos ⎢2π ⎡⎣⎛t z ⎫⎤ -⎪⎥或E =E 0e -i (ωt -kz ),求光的相关参量,参见作业1-1,1-2;⎝T λ⎭⎦5. 简谐球面波E =E 0-i (ωt -kz )E e 或E =0cos (ωt -kz ),求光的相关参量。
r r1。
T 6. 无限长时间等幅震荡光场对应的频谱只含有一个频率成分,称为理想单色振动,持续有限长时间等幅震荡的光场对应的频谱宽度∆ν=7. 等相位面的传播速度称为相速度,平面单色波的相速度v p =ωk =c ,等振幅面的传播n (k )速度称为群速度,复色波的相速度v p =(公式来源t -kz =常数,然后求导),复色波的群速度v g =d ω⎛λdn ⎫结合第六章讨论在正常/反常色散中相速度和群速度哪=v p 1+⎪,dk n d λ⎝⎭个大?8. 理解线偏振光、圆偏振光和椭圆偏振光的概念及相互转化的条件,结合第四章波片讨论。
9. 讨论光波在界面上的反射和折射,如s 分量和p 分量的概念,菲涅尔公式的理解,图1-21的理解与应用,熟悉公式R s +T s =1,R p +T p =1,R n =射时R s =R p = 1R s +R p ),在正入射和掠入(2⎛n 2-n 1⎫n 2n 2,布儒斯特角的计算,全反射角,半波tan θ=sin θ=B C ⎪n n n +n 11⎝21⎭损失产生的两种情形:光从光疏介质入射到光密介质时,在正入射和掠入射时反射光相对入射光将产生“半波损失”;图1-29薄膜上下表面的反射的四种情形的作图法;偏振度的计算(1.2-39,1.2-42,43),注意p35偏振度计算的例子和p49例题1-5,利用片堆产生线偏振光的原理(反s 不反p ,输出p )和作业1-10,外腔式激光器的布儒斯特窗口的原理(反s 不反p ,输出s ),衰逝波的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理光学知识点
光学作为物理学的一个重要分支,一直是中学物理的重难点内容之一。
下面是店铺为你整理的物理光学知识点,一起来看看吧。
物理光学知识点:常用光学器件及其光学特性
(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.
(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
隔着棱镜看到物体的像向项角偏移。
棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。
(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。
成像规律1/u+1/v=1/f。
线放大率m=像长/物长=|v|/u。
说明
①成像公式的符号法则——凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。
②线放大率与焦距和物距有关.
(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。
物理光学知识点:光的基本规律
1)光的直线传播规律先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之
比是一个常数.介质的折射串n=sini/sinr=c/v。
全反射条件
①光从光密介质射向光疏介质;
②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.
物理光学知识点:光的折射
1、光的折射光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。
注意:在两种介质的交界处,既发生折射,同时也发生反射
2、光的折射规律光从空气斜射入水或其他介抽中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。
理解:折射规律分三点:
(1)三线一面
(2)两线分居
(3)两角关系分三种情况:
①入射光线垂直界面入射时,折射角等于入射角等于0°;
②光从空气斜射入水等介质中时,折射角小于入射角;
③光从水等介质斜射入空气中时,折射角大于入射角
3、在光的折射中光路是可逆的
4、透镜及分类透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多。
分类:凸透镜:边缘薄,中央厚凹透镜:边缘厚,中央薄
5、主光轴,光心、焦点、焦距
主光轴:通过两个球心的直线
光心:主光轴上有个特殊的点,通过它的光线传播方向不变。
(透
镜中心可认为是光心)
焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示
虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。
焦距:焦点到光心的距离叫焦距,用“f”表示。
每个透镜都有两个焦点、焦距和一个光心。
6、透镜对光的作用凸透镜:对光起会聚作用(如图)凹透镜:对光起发散作用
7、凸透镜成像规律物距(u)成像大小像的虚实像物位置像距(v)应用
u>2f缩小实像透镜两侧f<v<2f照相机
u=2f等大实像透镜两侧v=2f
f<u<2f放大实像透镜两侧v>2f幻灯机
u=f不成像
u<f放大虚像透镜同侧v>u放大镜
凸透镜成像规律口决记忆法
口决一:“一焦分虚实,二焦分大小;虚像同侧正;实像异侧倒,物运像变小”
口决二:三物距、三界限,成像随着物距变;物远实像小而近,物近实像大而远。
如果物放焦点内,正立放大虚像现;幻灯放像像好大,物处一焦二焦间;相机缩你小不点,物处二倍焦距远。
口决三:凸透镜,本领大,照相、幻灯和放大;二倍焦外倒实小,二倍焦内倒实大;若是物放焦点内,像物同侧虚像大;一条规律记在心,物近像远像变大。
8、为了使幕上的像“正立”(朝上),幻灯片要倒着插。
9、照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。
这是凸透镜U>2F时,在光屏上可得到倒立,缩小的实像U=2F 时,在光屏上可得到倒立,等大的实像
F<u<2F时,在光屏上可得到倒立,放大的实像
U<F时,可透过凸透镜看到正立,放大的虚像u是物距v是像距f是焦距物距像距像的大小像的正倒和虚实应用例子
u>2ff<v<2f缩小倒立的实像照相机
u2fv=2f等大倒立的实像
f<u<2fv>2f放大倒立的实像幻灯机投影仪
u=f不成像(呈平行光射出)!!
u<fv>u放大正立的虚像放大镜还有公式1/u+1/v=1/f
只是凹透镜对于薄凹透镜:当物体为实物时,成正立、缩小的虚像,像和物在透镜的同侧;
当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)以内时,成正立、放大的实像,像与物在透镜的同侧;
当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)时,成像于无穷远;
当物体为虚物,凹透镜到虚物的距离为一倍焦距以外两倍焦距以内(均指绝对值)时,成倒立、放大的虚像,像与物在透镜的异侧;
当物体为虚物,凹透镜到虚物的距离为两倍焦距(指绝对值)时,成与物体同样大小的虚像,像与物在透镜的异侧;
当物体为虚物,凹透镜到虚物的距离为两倍焦距以外(指绝对值)时,成倒立、缩小的虚像,像与物在透镜的异侧。
如果是厚的弯月形凹透镜,情况会更复杂。
当厚度足够大时相当于伽利略望远镜,厚度更大时还会相当于正透镜。