高二数学不等式的解法及其应用
不等式的解法、应用习题课

不等式的解法、应用习题课预习案一、 自学教材,思考下列问题 1.不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。
高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。
(1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解;(2)m f x g x >>0,()()与mf x mg x ()()>同解,m f x g x <>0,()()与mf x mg x ()()<同解;(3)f xg x ()()>0与f x g x g x ()()(()⋅>≠00同解); 2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。
ax b a a a >⇒>=<⎧⎨⎪⎩⎪分()()()102030情况分别解之。
3.一元二次不等式ax bx c a 200++>≠()或ax bx c a 200++<≠⇒()分a >0及a <0情况分别解之,还要注意∆=-b ac 24的三种情况,即∆>0或∆=0或∆<0,最好联系二次函数的图象。
二、 一试身手1.下列结论正确的是 . ①不等式x 2≥4的解集为{x |x ≥±2} ②不等式x 2-9<0的解集为{x |x <3}③不等式(x -1)2<2的解集为{x |1-2<x <1+2}④设x 1,x 2为ax 2+bx +c =0的两个实根,且x 1<x 2,则不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2} 2.(2007·湖南理)不等式12+-x x ≤0的解集是 . 3.(2008·天津理)已知函数f (x )=⎩⎨⎧≥-<+-,0,1,0,1x x x x 则不等式x +(x +1)·f (x +1)≤1的解集是 .4.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则a 的取值范围是 .5.(2008·江苏,4)A ={x |(x -1)2<3x -7},则A ∩Z 的元素的个数为 .导学案一、 学习目标1. 掌握有理不等式的解法。
高二数学不等式知识点

高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。
不等式的解是使得不等式成立的数的集合。
1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。
2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。
二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。
三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。
四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。
人教版数学高二-不等式的性质及应用举例

不等式的性质及应用举例1.基本性质:(1)a >b ⇔b <a .(2)a >b ,b >c ⇒a >c .(3)a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d .(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd .(5)a >b >0⇒n a >n b (n ∈N ,n >1);a >b >0⇒a n >b n (n ∈N ,n >1).2.要注意不等式性质成立的条件.例如,重要结论:a >b ,ab >0⇒a 1<b 1,不能弱化条件得a >b ⇒a 1<b 1,也不能强化条件得a >b >0⇒a 1<b1. 3.要正确处理带等号的情况.如由a >b ,b ≥c 或a ≥b ,b >c 均可得出a >c ;而由a ≥b ,b ≥c 可能有a >c ,也可能有a =c ,当且仅当a =b 且b =c 时,才会有a =c .4.性质(3)的推论以及性质(4)的推论可以推广到两个以上的同向不等式.5.性质(5)中的指数n 可以推广到任意正数的情形.6.在利用不等式性质解题时,要注意合理转化,如欲证a>b ,有性质1可知只要证b<a 即可,再如欲证c<a ,由性质2可知只要证c<b,b<a 即可.例1.已知f (x )=ax2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,试求f (3)的取值范围. 错解:由题意得-4≤a-c ≤-1 ①,-1≤4a-c ≤5 ② ,用①②进行加减消元,得0≤a ≤3,1≤c ≤7 ③ ,由f (3)=9a-c ,得-7≤f (3)≤27,辨析:求解不等式问题的关键是恒等变形,本题由①②得③时,不是等价变形。
正解:由⎩⎨⎧=-=-)2(4)1(f c a f c a 解得⎪⎩⎪⎨⎧-=--=)2(31)1(34)]1()2([31f f c f f a ∴ f(3)=9a-c=⋅38 f(2)-35 f(1). ∵-1≤f (2)≤5,∴-38≤⋅38 f(2)≤340, ∵-4≤f (1)≤-1,∴35≤-35 f(1)≤320.∴-38+35≤⋅38 f(2)-35 f(1)≤340+320, 即-1≤f (3)≤20.评注:在错解中,不等式①和②中的a 与c 并不是相互独立的关系,而是由不等式组⎩⎨⎧≤-≤--≤-≤-54114c a c a 决定的互相制约的关系。
高二上学期数学教学课件ppt--第一节 (新)绝对值不等式

①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
例1; 解不等式1 3x 4 6
解 : 原不等式等价于下列不等式组 3x 4 1 3x 4 6
即3x643x
1或3x 46
4
1
x
1或x 10 x 3
2 3
5 3
解得 10 x 5 或 1 x 2
3
3
3
故
原不
解:
(Ⅰ) 或
(Ⅱ)
5x-6<6-x
-(5x-6)<6-x
解(Ⅰ)得:6/5≤x<2 解(Ⅱ) 得:0<x<6/5
取它们的并集得:(0,2)
解不等式 | 5x-6 | < 6 – x
分析:对6-x 符号讨论,
当6进-x≦一0时步,反显然思无:不解等;式组 当6中-x6>-0x时>0,转是化否为可-(以6-x去)<掉5x-6<(6-x)
解:由绝对值的意义,原不等式转化为:
6-x有>0更一般的结论:X<6
|f(x|)f|(>xg-)(|(6<x-g)x()x<5) x-6f(<x(6)->-gxg()x(x)<) f或(xf)5(-<x(x6g-)-6<(xx<-)g(<)65(-xxx)-)6
0<x<2
2.型如|ax+b|≤c,|ax+b|≥c(c∈R)不等式解法
高二数学必修5第三章《基本不等式基本不等式及其变形公式的应用(第三课时)》新授课详细教案

第三章 不等式3.4基本不等式2a bab +≤(第三课时)【创设情景 引入新知】前一节课我们学习了利用基本不等式解一些简单的实际应用问题,求一些简单的最值问题,在应用的过程中,我们对基本不等式2ba ab +≤的结构特征已是充分认识,并能够灵活把握.基本不等式不仅应用广泛,而且由基本不等式还可以推导出许多变形公式,为下一步的学习好应用提供了更多的思路和方法,那么你知道基本不等式有哪些变通形式?怎么灵活应用呢?另外,有一些代数式的积或和都不是定值,应该怎么求最值呢?对一些不等式我们能否利用基本不等式进行证明呢?本节课,我们将对基本不等式展开一些在求有关函数值域、最值的应用,更重要的是对基本不等式展开一些实际应用.【探索问题 形成概念】基本不等式的变通公式: 变式1:将基本不等式2a bab +≥两边平方可得22()a b ab +≥; 变式2:在不等式222a bab +≥两边同加上22a b +,再除以4,可得,22222()a b a b ++≥; 变式3:将不等式2(0,0)a b ab a b +≥>>两边同乘以ab ,可得2abab a b≥+,再让我再想想吧?将2ab a b+的分子、分母同除ab ,得211ab a b≥+.综合上述几种变式得出,2222211a b a b ab a b++≥≥≥+.(一)利用基本不等式求积或和都不是定值的函数的最值问题利用基本不等式求最值时,如果无定值,要先配、凑出定值,再利用基本不等式求解. 【例题】(1)已知3x <,求43()f x x x =+-的最大值;(2)已知01x << ,求 21x x -的最大值.【思路】(1)用基本不等式求最值时,构造积为定值,各项必须为正数,若为负数,则添负号变正.(2)构造和为定值,利用基本不等式求最值. 【解答】(1)330,.x x <∴-<4433334433233331()()()()f x x x x x x x x x ∴=+=+-+--⎡⎤=-+-+≤-⨯-+⎢⎥--⎣⎦=-当且仅当433()x x =--,即x =1时取等号.()f x ∴的最大值为-1.(2)2222201111122,()x x x x xx x <<+-∴-=-≤=当且仅当221xx =-,即22x =时取等号. ()f x ∴的最大值为12.【反思】对于某些问题,从形式上看不具备应用基本不等式的条件,可设法变形拼凑出应用基本不等式的条件,然后用基本不等式求解.(二)形如0()by at t t=+>型函数无法使用基本不等式求最值思考两个正数的积为定值,它们的和一定有最小值吗?不一定.应用基本不等式求最值时还要求等号能取到. 【例题】求函数2232x y x +=+的最小值.【思路】由于分子变量的次幂是分母变量次幂的2倍,因此可化为1y t t=+型函数求解. 【错误解法】22223122222min,.x y x x x y +==++≥++∴=但是22x +与212x +不可能相等,即“=”取不到,因此最小值不是2.【正确解法】222231222x y x x x +==++++,令22t x =+,则2t ≥,所以原式为12()y t t t=+≥.而函数1y t t=+在01(,)t ∈上为减函数,在1(,)t ∈+∞上为增函数,2t ≥,则当2t =时,y 取最小值,且132222min y =+=,此时0x =,故当0x =时,y 取最小值322.【反思】当形如0()by at t t=+>型函数无法使用基本不等式求最值时,可用函数的单调性求解,而函数0()b y at t t =+>在0,b a ⎛⎫⎪ ⎪⎝⎭上为减函数,在,b a ⎛⎫+∞⎪ ⎪⎝⎭上为增函数.(三)利用基本不等式证明不等式证明不等式是均值不等式的一个基本应用,注意分析不等式的左右两边的结构特征,通过拆(添)项创设一个应用均值不等式的条件.在解决本类问题时注意以下几点: (1)均值不等式成立的前提条件;(2)通过加减项的方法配凑成算术平均数、几何平均数的形式; (3)注意“1”的代换;(4)灵活变换基本不等式的形式并注意其变形式的运用.【例题】已知,,a b c 为不全相等的正实数.求证222a b cab bc ac ++>++.【思路】先构造基本不等式的条件,再运用基本不等式证明,不要忘记判断等号成立的条件. 【证明】22222222200022222,,,,,,()(),a b c a b ab b c bc a c ac a b c ab bc ac >>>∴+≥+≥+≥∴++≥++ 即222,a b cab bc ac ++≥++又,,a b c 为不全等的正实数,故等号不成立. ∴222a b cab bc ac ++>++【反思】对要证明的不等式作适当变形,变出基本不等式的形式,然后利用基本不等式进行证明.如果本例条件不变,求证a b c ab bc ac ++>++.则可以类似的证明000,,,a b c >>>222,,,a b ab b c bc a c ac ∴+≥+≥+≥∴22()()a b c ab bc ac ++≥++即a b c ab bc ac ++≥++.由于,,a b c 为不全相等的正实数,故等号不成立. ∴a b c ab bc ac ++>++.【解疑释惑 促进理解】难点一、如何利用基本不等式求条件最值在条件最值中,一种方法是消元转化为函数最值,另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值. 【例题】已知x >0,y >0,且1x +9y =1,求x +y 的最小值;【错误解法】0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。
高二数学知识点:不等式的解法

高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。
例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
人教版数学高二-备课资料四种简单不等式的解法

四种简单不等式的解法四种简单不等式,即含绝对值的不等式、一元二次不等式、简单一元高次不等式、简单分式不等式的解法,是后续课程基本运算的重要解题工具,掌握这些基本不等式的解法十分重要.Ⅰ、含绝对值的不等式解法解含有绝对值不等式基本思想是:−−−−−→去掉绝对值符号转化与化归思想不含绝对值不等式. 1.|ax +b|<c (c >0) 形不等式解法是:先将不等式化为-c <ax +b <c ,再由不等式的有关性质求出x 的范围,即得出原不等式的解集.也可以转化为不等式组,.ax b c ax b c +<⎧⎨+>-⎩求解.|ax +b|>c (c >0)形不等式解法是:先将不等式化为ax +b >c 或ax +b <-c ,再分别求出x 的范围,从而求出原不等式的解集.2.含有多个绝对值不等式的解法有:⑴平方法:对于两边都含有“单项”绝对值的不等式,利用| x |2= x 2可在两边脱去绝对值符号求解,这样解题要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.⑵零点分段讨论法:即求出每一个绝对值为零的零点,再把这些零点标在数轴上,则这些零点把数轴分成若干段,再把每一段内分别去掉绝对值符号,组成若干个不等式组,取其并集,就是原不等式的解集.这样解题需要注意的是,在分段时,分界点(即零点)必须在某一段内,而不能漏掉.⑶⑷Ⅱ、一元二次不等式的解法1.解一元二次不等式一般步骤是:⑴先将不等式化为标准式(a>0):ax2+bx+c>0 ……㈠或;ax2+bx+c <0 ……㈡;⑵解方程ax2+bx+c = 0,并确定判别式△= b2-4ac的符号:①当△>0时,解出二次方程的两根x1、x2且x1<x2,则不等式㈠的解在“两根之外”,即“大于大根或小于小根”,写成解集形式为:{x | x<x1,或x>x2};不等式㈡的解在“两根之间”,即“大于小根且小于大根”,写成解集形式为:{x | x1<x<x2}.②当△= 0时,解得两等根x1= x2=-ab2,则不等式㈠的解集为{x | x ≠-ab2,x∈R};不等式㈡的解集为φ.③当△<0时,二次方程的无实根,则等式㈠的解集为R;不等式㈡的解集为φ.需要特别说明的是:若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集(在两根之内或两根之外).2.含参数一元二次不等式的解法解含参数一元二次不等式(x-a)(x-b)>0 (或<0)时,应根据a<b、a = b、a>b三种情况分类讨论.3.一元二次不等式解法的数学思想一元二次不等式的解法充分运用了“函数与方程”、“数形结合”及“化归”的数学思想.一元二次程ax2+bx+c = 0的根就是使一元二次函数y = ax2+bx +c的函数值为0时对应的x的值,一元二次不等式ax2+bx+c>0或ax2+bx+c <0的解集就是二次函数大于0或小于0时x 的取值范围.因此,解一元二次不等式时,一般要画出与之对应的二次函数的图象.Ⅲ、简单一元高次不等式的解法一元高次不等式(x -a 1)(x -a 2)…(x -a n )>0(或<0),其中a 1<a 2<…<a n .把a 1、a 2、…、a n 按大小顺序标在数轴上,则不等式的解的区域如下图所示:Ⅳ、简单分式不等式的解法 解简单分式不等式ax b cx d++>0(或<0),除了直接对分子、分母进行符号分析外,还常转化为解一元二次不等式.一般地,ax b cx d ++>0(或<0)⇔( ax +b)(cx +d)>0(或<0),但应注意的是ax b cx d ++≥0⇔()()0,0.ax b cx d cx d ++≥⎧⎨+≠⎩,即cx +d ≠0不能忽略.二、几点注意事项1.根据绝对值定义,将| x |<c 或| x |>c (c >0)转化为两个不等式组,这两个不等式组的关系是“或”而不是“且”,因而原不等式的解集是这两个不等式组解的并集,而不是交集.2.| x |<c 和| x |>c (c >0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c >0时导出的,当c ≤0时,需要另行讨论,不能使用该公式.- - - - -a 1 a 2 a 3 a 1n - a n (n 为奇数) x + + - - - -- - - - a 1 a 2 a 3 a 1n - a n (n 为偶数) x+ - + + -3.解一元二次不等式时,应当考虑相应的一元二次方程,其中二次项系数a的正或负影响着不等式解集的形式,判别式△关系到不等式对应的方程是否有解,而两根x1、x2的大小关系到解集的最后顺序.2.二次不等式的解集有两种特殊情况,即解集为 和R,要分清和理解各种不同情况时所对应的方程或函数图象的含义.3.当二次项系数含有参数时,不能忽略二次项系数为零的特殊情形,解含有参数的不等式时,要合理分类,确保不重不漏.4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.5.由于一元二次不等式的解集与相应的一元二次方程的两根有关,当两根中含有字母时,要以两根大小为标准对常数字母进行分类讨论,在讨论时要合理分类,确保不重不漏.6.解简单分式不等式时,一是要注意在转化为整式不等式时,转化前与转化后必须保持相同的解集,二是要注意转化后两个因式中的x的系数的正、负问题.7.用根轴法解一元高次不等式时,必须将未知数x的系数变为正数.。
高二数学 不等式应用-(二)求函数的最大值、最小值

1.依据:和为定值,积有最大值
ab 2 公式: ab ( 2 ) (a 0, b 0).
条件:满足一“正”,二“定”,三 “等”. 例1.已知0<x<3,求函数y=x(9-3x)的最大值 【变式】若x.y均为正数,且3x+4y=12,求 lgx+lgy的最大值及相应的x,y的值
①教科书第93页习题3.4第4,5,6 ②《学习与评价》第12课时
课外作业:
① 求证:
a 2 b 2 b 2 c 2 c 2 a 2 2 ( a b c)
②Байду номын сангаас
设 x R且 的最大值
2 y x2 1 ,求 2
x 1 y
2
x) ③求函数 y x (1 的最大值
2.依据:积为定值,和有最小值 公式: a b 2 ab(a 0, b 0).
条件:满足一“正”,二“定”,三 1 “等” . 例2.已知x>2,求函数 y x
的最小值,并求y取得最小值时x的值
3 【变式一】已知x<0,求函数y 1 2 x x x2
的最小值,并求y取得最小值时x的值
2.依据:积为定值,和有最小值 公式: a b 2 ab(a 0, b 0). 条件:满足一“正”,二“定”,三 2 x 7 x 10 “等” . 【变式二】己知x>-1,求函数 y
x 1
的最小值,并求y取得最小值时x的值
2.依据:积为定值,和有一最小值 公式: a b 2 ab(a 0, b 0). 条件:满足一“正”,二“定”,三 1 2 “等” . 【变式三】己知x>0,y>0且 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于有冠心病危险因子的患者以下血脂水平应考虑调脂药物治疗A.TC>6.24mmol/L(240mg/d1);LDL-C>4.16mmol/L(160mg/d1)B.TC>5.20mmol/L(200mg/d1);LDL-C>3.12mmol/L(120mg/d1)C.TC>5.72mmol/L(220mg/d1);LDL-C>3.64mmol/L(140mg/d1)D. 患者,女性,38岁,左下后牙3天来持续胀痛,有冷热刺激痛,有跳痛,不能咬物。近2个月以来,该牙一直严重食物嵌塞而来我院就诊。最有可能的诊断是()A.牙龈乳头炎B.急性上颌窦炎C.急性根尖周D.三叉神经痛E.急性牙髓炎 在进行水泥试验时,环境温度应控制度,湿度不低于;混凝土标养室温度应控制度,湿度应大于等于。 脑血栓形成在急性期的治疗方法可选用.A.早期溶栓治疗B.静滴PAMBAC.静滴低分子右旋糖酐D.静滴甘露醇E.口服去痛片 患者,女,25岁。身体状况良好,主诉近期计划怀孕,到妇幼保健医院口腔科进行口腔检查,并咨询相关口腔保健问题。妊娠期口腔环境不良的主要原因是A.刷牙次数减少B.进食软食较多C.营养品摄入过多D.妊娠期间睡眠较多E.妊娠期间激素改变 下列微生物染色方法正确的是A.新生隐球菌——革兰染色B.钩端螺旋体——镀银染色C.立克次体——碘液染色D.结核分枝杆菌——Giemsa染色E.结核病的细菌检查——抗酸染色 CPD保养液对红细胞的保存时间为()A.1周B.2周C.3周D.4周E.5周 医疗机构从业人员分为几个类别A.3个B.4个C.5个D.6个E.7个 本岗位停循环水的现象及处理? 甲、乙订立买卖合同,约定甲于2011年3月1日向乙供货,乙在收到货物后1个月内一次性付清全部价款。甲依约供货后,乙未付款,若甲一直未向乙主张权利,则甲对乙的付款请求权诉讼时效期间届满日为。A.2012年4月1日B.2013年3月1日C.2012年3月1日D.2013年4月1日 情感高涨与欣快症的区别点,下列哪项是错误的A.前者对任何事都感兴趣,表现出轻松愉快,洋洋自得;后者给人以呆傻、愚蠢的印象B.前者有较大的感染力;后者缺乏感染力,不能与正常人产生共鸣C.前者对知识和智力的利用增加;后者则下降D.前者与环境的协调性保持完整;后者与环境保持 针灸处方中常用的配穴原则不包括。A.远近配穴B.前后配穴C.左右配穴D.上下配穴E.随症取穴 一个仓泵安有哪几个阀? 下列关于高中数学课程结构的说法不正确的是。A.高中数学课程可分为必修与选修两类B.高中数学选修课程包括4个系列的课程C.高中数学必修课程包括5个模块D.高中课程的组合具有固定性,不能发生改变 [单选,案例分析题]男,50岁,因乙肝后肝硬化行原位肝移植术后1个月,抗病毒、保肝及抗排斥治疗。肝功能恢复正常后出院。出院后1周突发黄疸、发热再次住院,检查发现T管引流液内可见絮状物首选检查方法A.B超B.腹部CTC.T管造影D.肝动脉造影E.肝穿活检 急性间质性肾炎光镜下可见间质水肿伴炎症细胞浸润,其中不常见的炎症细胞为A.淋巴细胞B.中性粒细胞C.嗜酸性细胞D.单核细胞E.嗜碱性粒细胞 《医疗机构从业人员行为规范》的执行和实施情况,应列入A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 硝酸纤维引起的火灾,不能使用干粉灭火剂扑救.A.正确B.错误 ___以后是河南社会历史发展的中衰期。A.北宋B.南宋C.汉代D.夏朝 学生,16岁,在上课中突然站起、挪动桌椅,边挪边喊叫,别人不能打断他的行为,约持续1分钟自动停止,对当时的情况毫无记忆。近半年发生2次。最可能的诊断A.单纯部分性发作B.复杂部分性发作C.失神发作D.肌阵挛发作E.全面性强直-阵挛发作 Graves病时TRH兴奋试验表现为A.正常反应B.增高反应C.低弱反应或无反应D.延迟反应E.延迟增高反应 在处方中需要串料粉碎的中药是A.延胡索B.黄芩C.熟地D.人参E.黄连 患者,男性,48岁。胃穿孔腹膜炎手术后第5天,检查:体温38.8℃,切口无红肿,大便次数增多,有黏液,伴里急后重,应考虑并发()A.膈下脓肿B.盆腔脓肿C.切口感染D.肠间脓肿E.肺部感染 2000年3月18日,阿姆斯特丹交易所、布鲁塞尔交易所、巴黎交易所签署协议,合并成立。A.伦敦国际金融期权期货交易所B.纽交所一泛欧证交所公司C.CME集团有限公司D.泛欧交易所 宫颈癌时行宫颈刮片细胞学检查,恰当的是。A.主要依据细胞核变化判断恶性B.能区分原位癌和镜下早期浸润癌C.临床分期越晚,阳性率越高D.可由阴道镜检查所取代E.以上都不是 高枪位吹炼时,A.熔池搅拌强烈,渣中FeO较高B.熔池搅拌强烈,渣中FeO较低C.熔池搅拌较弱,渣中FeO较高D.熔池搅拌较弱,渣中FeO较低 中性粒细胞碱性磷酸酶活性明显增高见于A.慢性粒细胞白血病B.类白血病反应C.急性粒细胞白血病D.急性淋巴细胞白血病E.淋巴瘤 是明细核算的主要账簿,按单位或资金性质设户,是各科目的详细记录。根据凭证逐笔连续记载,以具体反映每个账户的资金活动情况。A、分户账B、总账C、登记簿D、余额表 X-连锁无丙种球蛋白血症的突变基因是A.2日左右出现B.3d左右出现C.4日左右出现D.5日左右出现E.7日左右出现 建筑安全监督机构在检查施工现场时,发现某施工单位在没有竣工的建筑物设置员工集体宿舍,下列表述正确的是施工单位()。A.经工程所在地建设安全监督机构同意,可以继续使用B.经工程所在地建设行政主管部门同意,可以继续使用C.必须迁出D.经工程所在地质量监督机构同意,可以继续使 延迟交货所造成的损失,如果收货人未在提货后连续内向港站经营人发出通知,港站经营人便不负赔偿责任。A、3天B、15天C、21天D、3个月 婴儿期与胸围相近,以后又小于胸围的指标是A.体重B.身高C.胸围D.上臂围E.腹围 便秘概述 新生儿可以分娩中或出生后立即排小便,尿液A、绿透明B、白色透明C、黄色透明D、纯透明 女性,68岁,进行性乏力,间断痰中带血10个月。近3个月来晨起干咳,咳少量暗红色痰,胸片示左肺门阴影。既往吸烟史30年。该患者最可能的诊断是()A.慢性支气管炎B.支气管扩张C.肺脓肿D.肺结核E.支气管肺癌 下列哪项叙述符合小儿急性阑尾炎的临床特点A.有右下腹明显压痛和肌紧张的典型体征B.病情发展快且较重,早期即出现高热、呕吐C.穿孔率、并发症和死亡率较高D.治疗原则是早期手术E.自觉症状不明显 下列住院病案错误的是()A.医疗记录B.护理记录C.检验记录D.镜检记录E.交班报告 世界卫生组织推荐的预防接种的4种疫苗是。A、卡介苗麻疹疫苗百白破混合疫苗脊髓灰质炎疫苗B、卡介苗流感疫苗白喉疫苗脊髓灰质炎疫苗C、卡介苗麻疹疫苗伤寒疫苗霍乱疫苗D、卡介苗麻疹疫苗风疹疫苗脊髓灰质炎疫苗E、麻疹疫苗流感疫苗天花疫苗脊髓灰质炎疫苗 根据施工现场固体废物的减量化和回收再利用的要求,施工单位应采取的有效措施包括()。A.生活垃圾袋装化B.建筑垃圾分类化C.建筑垃圾及时清运D.设置封闭式垃圾容器E.建筑垃圾集中化 在机械制图中,物体的正投影称为。A.视图B.主