IGBT保护电路的过流保护设计方案

合集下载

一种IGBT过流保护方法和装置[发明专利]

一种IGBT过流保护方法和装置[发明专利]

专利名称:一种IGBT过流保护方法和装置
专利类型:发明专利
发明人:贺之渊,客金坤,白建成,吕铮,冯静波,许航宇,邓卫华申请号:CN201710428369.6
申请日:20170608
公开号:CN107342755A
公开日:
20171110
专利内容由知识产权出版社提供
摘要:本发明公开了一种IGBT过流保护方法和装置,该方法包括:获取待保护IGBT的当前结温和所述当前结温与集电极发射极电压集电极电流特性的对应关系;根据所述对应关系,通过预设的集电极过流保护电流值获取对应的集电极发射极电压值作为集电极发射极过流保护电压值。

由此,可以使IGBT发生过流动作时的实际Ic更接近设定的过流保护Ic值。

申请人:全球能源互联网研究院
地址:102211 北京市昌平区小汤山镇大东流村路270号
国籍:CN
代理机构:北京三聚阳光知识产权代理有限公司
代理人:吴黎
更多信息请下载全文后查看。

一种简单的IGBT驱动和过流保护电路

一种简单的IGBT驱动和过流保护电路

一种简单的IGBT驱动和过流保护电路王永,沈颂华(北京航空航天大学,北京100083)摘要:讨论了IGBT驱动电路对其静态和动态特性的影响以及对驱动电路与过流保护电路的要求。

利用IGBT的通态饱和压降与集电极电流呈近似线性关系的特性,设计了一个具有完善的过流保护功能的IGBT驱动电路。

经分析和实验表明,该电路具有简单、实用、可靠性高等优点。

关键词:IGBT;驱动电路;过流保护中图分类号:TM131.4文献标识码:B文章编号:1001-1390(2004)04-0025-03Wang Yong,Shen Songhua(Beihang University,Beijing100083,China)Abstract:The infiuence of static state and dynamic characteristic by IGBT drive circuit and the reguirements for drive and over-current protection circuit are described.A new circuit of IGBT drive and over-current protection circuit with perfect performance is de-veioped.It based on the principie of coiiector-emitter saturation voitage-drop approxi-mateiy proportion to the coiiector current.Anaiysis and experiment resuits show that the new circuit has the advantages of simpie,reiiabie,great appiication vaiue and so on. Key words:IGBT;driving circuit;over-current protectionA simple IGBT drive and over-current protection circuit0前言绝缘门极双极型晶体管(Isoiated Gate Bipoiar Transistor)简称IGBT,也被称为绝缘门极晶体管。

IGBT的保护

IGBT的保护

IGBT的保护摘要:通过对IGBT损坏机理的分析,根据其损坏的原因,采取相应措施对其进行保护,以保证其安全可靠工作。

关键词:IGBT;MOSFET;驱动;过压;浪涌;缓冲;过流;过热;保护0 引言绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。

它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。

在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。

但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。

因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。

1 IGBT的工作原理IGBT的等效电路如图1所示。

由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOS FET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

图1 IGBT的等效电路由此可知,IGBT的安全可靠与否主要由以下因素决定:——IGBT栅极与发射极之间的电压;——IGBT集电极与发射极之间的电压;——流过IGBT集电极-发射极的电流;——IGBT的结温。

如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,I GBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。

IGBT的一种驱动和过流保护电路的设计

IGBT的一种驱动和过流保护电路的设计

IGBT的一种驱动和过流保护电路的设计图2 IGBT驱动和过流庇护电路图2中,高速光耦6N137实现输入输出信号的电气隔离,能够达到很好的电气隔离,适合高频应用场合。

驱动主电路采纳推挽输出方式,有效地降低了驱动电路的输出阻抗,提高了驱动能力,使之适合于大功率IGBT的驱动,过流庇护电路运用退集电极饱和原理,在发生过流时准时的关断IGBT,其中V1.V3.V4构成驱动脉冲放大电路。

V1和R5构成一个射极尾随器,该射极尾随器提供了一个迅速的电流源,削减了功率管的开通和关断时光。

利用集电极退饱和原理,D1、R6、R7和V2构成短路信号检测电路.其中D1采纳迅速复原,为了防止IGBT关断时其集电极上的高电压窜入驱动电路。

为了防止静电使功率器件误导通,在栅源之间并接双向稳压管D3和D4。

如是IGBT的门极串联电阻。

正常工作时:当控制电路送来高电平信号时,光耦6N137导通,V1、V2截止,V3导通而V4截止,该驱动电路向IBGT提供+15V的驱动开启电压,使IGBT 开通。

当控制电路送来低电平信号时,光耦6N137截至,VI、V2导通。

V4导通而v3截止,该驱动电路向IBGT提供-5v的电压,使IGBT关闭。

当过流时:当电路浮现短路故障时,上、下桥直通此时+15V的电压几乎全加在IGBT上.产生很大的电流,此时在短路信号检测电路中v2截止,A点的电位取决于D1、R6、R7和Vces的分压打算,当主电路正常工作时,且IGBT导通时,A点保持低电平,从而低于B点电位。

全部A1输出低电平,此时V5截止,而c点为高电平,所以正常工作时。

输入到光耦6N137的信号始终和输出保持全都。

当发生过流时,IGBT集电极退饱和,A点电位上升,当高于B电位(即是所设置的电位)时,即是当电流超过设计定值时,A1翻转而输出高电平,V5导通,从而将C点的电位箝在低电位状态,使与门4081始终输出低电平,即无论控制电第1页共2页。

IGBT——过流、短路保护

IGBT——过流、短路保护

IGBT——过流、短路保护短路与过流之前我们介绍过IGBT的短路测试,今天我们来聊聊IGBT短路和过流时该如何保护。

首先一点,对IGBT的过流或短路保护响应时间必须快,必须在10us以内完成。

一般来说,过电流是IGBT电力电子线路中经常发生的故障和损坏IGBT的主要原因之一,过流保护应当首先考虑。

过流与短路保护是两个概念,它们既有联系也有区别。

过流大多数是指某种原因引起的负载过载;短路是指桥臂直通,或主电压经过开关IGBT的无负载回路,它们的保护方法也有一定区别。

如过流保护常用电流检也传感器,短路保护常通过检测IGBT饱和压降,配合驱动电路来实现。

不同的功率有不同的方法来实现过流或短路保护。

短路分为一类及二类两种,但这两种短路都有一个共同点,那就是,IGBT会出现“退饱和现象”,当IGBT一旦退出饱和区,它的损耗会成百倍的往上升,那么允许持续这种状态的时会非常苛刻了,只有10us,我们需要靠驱动器发现这一行为并关掉门极。

IGBT过流的情况则是,回路电感较大,电流爬升很慢(相对于短路),IGBT不会发生退饱和现象,但是由于电流比正常工况要高很多,因此经过若干个开关周期后,IGBT的损耗也会比较高,结温也会迅速上升,从而导致失效。

在这时,IGBT驱动器一般是不能及时发现这一现象的,因为IGBT的饱和压降的变化很微弱,驱动器通常识别不到这种变化。

所以需要靠电流传感器来感知电流的数值,对系统进行保护。

所以,我们认为,IGBT驱动器是为了解决短路保护,而过流保护则是由电流传感器来完成。

IGBT发生短路时,描述短路电流的数学表达式如下,这是一个线性方程。

它表示,在短路发生时,电流的绝对值与电压,回路中的电感量,及整个过程持续的时间有关系。

绝大部分的短路母线电压都是在额定点的影响短路电流的因素主要是“短路回路中的电感量”。

因此对短路行为进行分类定义时,短路回路中的电感量是主要的分类依据。

如果短路回路中的电感量再继续增大,那么电流变化率就变得更低,此时就不是短路了,变成“过流”了。

最经典的IGBT资料大全,技术详解,设计技巧,应用案例

最经典的IGBT资料大全,技术详解,设计技巧,应用案例

最经典的IGBT资料大全,技术详解,设计技巧,应用案例IGBT系统的介绍就IGBT的定义、工作原理、等效电路、特性参数、设计技巧等作全面介绍……设计技巧IGBT的驱动和过流保护电路的研究IGBT目前被广泛使用的具有自关断能力的器件,广泛应用于各类固态电源中。

IGBT的工作状态直接影响整机的性能,所以合理的驱动电路对整机显得很重要,但是如果控制不当,它很容易损坏,其中一种就是发生过流而使IGBT损坏,本文主要研究了IGBT的驱动和短路保护问题,就其工作原理进行分析,设计出具有过流保护功能的驱动电路,并进行了仿真研究。

隔离驱动IGBT和Power MOSFET等功率器件所需要的一些技巧对隔离驱动IGBT和Power MOSFET等功率器件出现的一些常见问题的汇总和解答功率器件IGBT应用中的常见问题解决方法随着现代电力电子技术的高频大功率化的发展,IGBT在应用中潜在的问题越来越凸出,开关过程引起的电压、电流过冲,影响到了逆变器的工作效率和工作可靠性。

为解决以上问题,过电流保护、散热及减少线路电感等措施被积极采用,缓冲电路和软开关技术也得到了广泛的研究,取得了迅速的进展。

本文就针对这方面进行了分析。

使用栅极电阻控制IGBT的开关IGBT的动态性能可通过栅极电阻值来调节。

栅极电阻影响IGBT的开关时间、开关损耗及各种其他参数,从电磁干扰EMI到电压和电流的变化率。

因此,栅极电阻必须根据具体应用的参数非常仔细地选择和优化。

杂散电感对高效IGBT逆变器设计的影响当工作在相同条件下,IGBT针对提高软度需求的设计优化将会付出开关损耗提高的代价。

除开关损耗外,开通和关断速度、电流突变和振荡(EMI)的发生也越来越受到重视。

寄生杂散电感对直流母线谐振频率和二极管电流突变起到了重要作用。

至少从EMI角度考虑,二极管电流突变将会对通过增加杂散电感或提高IGBT开通速度来降低开通损耗有所限制新型IGBT系统电路保护设计的解决方案在研究IGBT失效机理的基础上,通过整合系统内外部来突破设计瓶颈。

IGBT驱动保护电路的详细的设计与如何测试

IGBT驱动保护电路的详细的设计与如何测试

IGBT驱动保护电路的详细的设计与如何测试过流保护:1.过流检测器设计:使用电流传感器来检测IGBT的电流,常见的传感器有霍尔效应传感器和电阻式传感器。

根据检测到的电流信号,设计一个比较器电路,比较检测到的电流值与预设的过流阈值。

当电流超过阈值时,比较器输出高电平,触发保护电路。

2.过流保护电路设计:采用一级或多级的电流保护电路,例如使用可控整流器电路、继电器电路或熔断器电路来切断IGBT的电源。

过温保护:1.过温检测器设计:通过温度传感器监测IGBT的温度。

可选用NTC 热敏电阻或热电偶等传感器。

根据检测到的温度信号,设计一个比较器电路,将检测到的温度值与预设的过温阈值进行比较。

当温度超过阈值时,比较器输出高电平,触发保护电路。

2.过温保护电路设计:使用温度控制器(例如PID控制器)来降低IGBT的温度。

可以通过减小机箱内部温度、增加散热和降低IGBT占空比等方式来实现。

过压保护:1.过压检测器设计:使用电压传感器来检测IGBT的输入电压。

可以选用正弦波电流互感器等传感器。

设计一个比较器电路,将检测到的电压值与预设的过压阈值进行比较。

当电压超过阈值时,比较器输出高电平,触发保护电路。

2.过压保护电路设计:可以采用电压降压器或直流开关等方法来控制IGBT的输入电压,将其降低到安全范围内。

1.过电流测试:在设计过程中,设置合理的过电流阈值。

通过电流源提供过电流信号,触发保护电路,验证保护电路的响应时间和准确性。

2.过温测试:在设计过程中,设置合理的过温阈值。

通过加热IGBT 器件,提高其温度,触发保护电路,验证保护电路的响应时间和准确性。

3.过压测试:在设计过程中,设置合理的过压阈值。

通过提供超过预设阈值的电压信号,触发保护电路,验证保护电路的响应时间和准确性。

4.短路测试:将IGBT的输出端短接,触发保护电路,验证保护电路的响应时间和准确性。

5.整体测试:在实际应用中,应全面测试保护电路的性能。

IGBT过流保护电路设计

IGBT过流保护电路设计

IGBT过流保护电路设计张海亮;陈国定;夏德印【摘要】In order to solve the over-current breakdown problem of insulated gate bipolar transistor (IGBT) in practical applications, short-circuit protection circuit and overload protection circuits were proposed according to the IGBT's collector current, after the analysis of IGBT's characteristics and over-current measures. When overload protection circuits detected over-current, it switched off IGBT immediately, IGBT's drive signal can be blocked continuously, for fixed time or for a single cycle based on different overload protection requirements; short-circuit protection circuit detected the over-current by measuring IGBT's on-state voltage drop, using dropping the grid voltage, soft switch-off and reducing IGBT's working frequency the circuit can decrease short-circuit current and switch off IGBT safely. Detailed elaboration of circuits' operating mechanism was given. The over-current testing of the all designed protection circuits was done. The waveform graphs were obtained. The experimental results indicate that protection circuits can detect over-current in time and response accurately, IGBT is protected reliably under different over—current conditions.%为解决绝缘栅双极性晶体管(IGBT)在实际应用中经常出现的过流击穿问题,在分析了IGBT过流特性和过流检测方法的基础上,根据过流时IGBT集电极电流的大小分别设计了过载保护电路和短路保护电路.过载保护电路在检测到过载时立即关断IGBT,根据不同的过载保护要求可实现持续封锁、固定时间封锁及单周期封锁IGBT的驱动信号;短路保护电路通过检测IGBT通态压降判别短路故障,利用降栅压、软关断和降频综合保护技术降低短路电流并安全关断IGBT.详细阐述了保护电路的保护机制及电路原理,最后对设计的所有保护电路进行了对应的过流保护测试,给出了测试波形图.试验结果表明,IGBT 保护电路能及时进行过流检测并准确动作,IGBT在不同的过流情况下都得到了可靠保护.【期刊名称】《机电工程》【年(卷),期】2012(029)008【总页数】5页(P966-970)【关键词】绝缘栅双极性晶体管;过流保护;降栅压;软关断【作者】张海亮;陈国定;夏德印【作者单位】浙江工业大学信息工程学院,浙江杭州310023;浙江工业大学信息工程学院,浙江杭州310023;浙江工业大学信息工程学院,浙江杭州310023【正文语种】中文【中图分类】TN386.2;TM130 引言IGBT既具有功率MOSFET的高速开关及电压驱动特性,又具有巨型晶体管(GTR)的低饱和电压特性及易实现较大电流的能力,广泛应用于电机调速、UPS、开关电源等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT保护电路的过流保护设计方案
2012年01月26日[责任编辑:sandyxu] 中心议题:
* 论述IGBT的过流保护、过压保护与过热保护相关问题
* 从实际应用中总结出各种保护方法
解决方案:
* 尽可能减少电路中的杂散电感
* 采用吸收回路
* 适当增大栅极电阻Rg
本文论述了IGBT的过流保护、过压保护与过热保护相关问题,并从实际应用中总结出各种保护方法,这些方法实用性强,保护效果好,是IGBT保护电路设计必备知识。

IGBT(绝缘栅双极性晶体管)是一种用MOS来控制晶体管的新型电力电子器件,具有电压高、电流大、频率高、导通电阻小等特点,因而广泛应用在变频器的逆变电路中。

但由于IGBT的耐过流能力与耐过压能力较差,一旦出现意外就会使它损坏。

为此,必须但对IGBT 进行相关保护。

过流保护
生产厂家对IGBT提供的安全工作区有严格的限制条件,且IGBT承受过电流的时间仅为几微秒(SCR、GTR等器件承受过流时间为几十微秒),耐过流量小,因此使用IGBT首要注意的是过流保护。

产生过流的原因大致有:晶体管或二极管损坏、控制与驱动电路故障或干扰等引起误动、输出线接错或绝缘损坏等形成短路、输出端对地短路与电机绝缘损坏、逆变桥的桥臂短路等。

对IGBT的过流检测保护分两种情况:
(1)驱动电路中无保护功能。

这时在主电路中要设置过流检测器件。

对于小容量变频器,一般是把电阻R直接串接在主电路中,如图1(a)所示,通过电阻两端的电压来反映电流的大小;对于大中容量变频器,因电流大,需用电流互感器TA(如霍尔传感器等)。

电流互感器所接位置:一是像串电阻那样串接在主回路中,如图1(a)中的虚线所示;二是串接在每个IGBT上,如图1(b)所示。

前者只用一个电流互感器检测流过IGBT的总电流,经济简单,但检测精度较差;后者直接反映每个IGBT的电流,测量精度高,但需6个电流互感器。

过电流检测出来的电流信号,经光耦管向控制电路输出封锁信号,从而关断IGBT的触发,实现过流保护。

图1 IGBT的过流检测
(2)驱动电路中设有保护功能。

如日本英达公司的HR065、富士电机的EXB840~844、三菱公司的M57962L等,是集驱动与保护功能于一体的集成电路(称为混合驱动模块),其电流检测是利用在某一正向栅压Uge下,正向导通管压降Uce(ON)与集电极电流Ie成正比的特性,通过检测Uce(ON)的大小来判断Ie的大小,产品的可靠性高。

不同型号的混
合驱动模块,其输出能力、开关速度与du/dt的承受能力不同,使用时要根据实际情况恰当选用。

由于混合驱动模块本身的过流保护临界电压动作值是固定的(一般为7~10V),因而存在着一个与IGBT配合的问题。

通常采用的方法是调整串联在IGBT集电极与驱动模块之间的二极管V的个数,如图2(a)所示,使这些二极管的通态压降之和等于或略大于驱动模块过流保护动作电压与IGBT的通态饱和压降Uce(ON)之差。

图2 混合驱动模块与IGBT过流保护的配合
上述用改变二极管的个数来调整过流保护动作点的方法,虽然简单实用,但精度不高。

这是因为每个二极管的通态压降为固定值,使得驱动模块与IGBT集电极c之间的电压不能连续可调。

在实际工作中,改进方法有两种:
(1)改变二极管的型号与个数相结合。

例如,IGBT的通态饱和压降为2.65V,驱动模块过流保护临界动作电压值为7.84V时,那么整个二极管上的通态压降之和应为7.84-2.65=5.19V,此时选用7个硅二极管与1个锗二极管串联,其通态压降之和为0.7×7+0.3×1=5.20V(硅管视为0.7V,锗管视为0.3V),则能较好地实现配合
(2)二极管与电阻相结合。

由于二极管通态压降的差异性,上述改进方法很难精确设定IGBT过流保护的临界动作电压值如果用电阻取代1~2个二极管,如图2(b),则可做到精确配合。

另外,由于同一桥臂上的两个IGBT的控制信号重叠或开关器件本身延时过长等原因,使上下两个IGBT直通,桥臂短路,此时电流的上升率和浪涌冲击电流都很大,极易损坏IGBT 为此,还可以设置桥臂互锁保护,如图3所示。

图中用两个与门对同一桥臂上的两个IGBT的驱动信号进行互锁,使每个IGBT的工作状态都互为另一个IGBT驱动信号可否通过的制约条件,只有在一个IGBT被确认关断后,另一个IGBT才能导通,这样严格防止了臂桥短路引起过流情况的出现。

图3 IGBT桥臂直通短路保护
过压保护
IGBT在由导通状态关断时,电流Ic突然变小,由于电路中的杂散电感与负载电感的作用,将在IGBT的c、e两端产生很高的浪涌尖峰电压uce=L dic/dt,加之IGBT的耐过压能力
较差,这样就会使IGBT击穿,因此,其过压保护也是十分重要的。

过压保护可以从以下几个方面进行:
(1)尽可能减少电路中的杂散电感。

作为模块设计制造者来说,要优化模块内部结构(如采用分层电路、缩小有效回路面积等),减少寄生电感;作为使用者来说,要优化主电路结构(采用分层布线、尽量缩短联接线等),减少杂散电感。

另外,在整个线路上多加一些低阻低感的退耦电容,进一步减少线路电感。

所有这些,对于直接减少IGBT的关断过电压均有较好的效果。

(2)采用吸收回路。

吸收回路的作用是;当IGBT关断时,吸收电感中释放的能量,以降低关断过电压。

常用的吸收回路有两种,如图4所示。

其中(a)图为充放电吸收回路,(b)图为钳位式吸收回路。

对于电路中元件的选用,在实际工作中,电容c选用高频低感圈绕聚乙烯或聚丙烯电容,也可选用陶瓷电容,容量为2 F左右。

电容量选得大一些,对浪涌尖峰电压的抑制好一些,但过大会受到放电时间的限制。

电阻R选用氧化膜无感电阻,其阻值的确定要满足放电时间明显小于主电路开关周期的要求,可按R≤T/6C计算,T为主电路的开关周期。

二极管V应选用正向过渡电压低、逆向恢复时间短的软特性缓冲二极管。

(3)适当增大栅极电阻Rg。

实践证明,Rg增大,使IGBT的开关速度减慢,能明显减少开关过电压尖峰,但相应的增加了开关损耗,使IGBT发热增多,要配合进行过热保护。

Rg 阻值的选择原则是:在开关损耗不太大的情况下,尽可能选用较大的电阻,实际工作中按Rg=3000/Ic 选取。

图4 吸收回路
除了上述减少c、e之间的过电压之外,为防止栅极电荷积累、栅源电压出现尖峰损坏IGBT,可在g、e之间设置一些保护元件,电路如图5所示。

电阻R的作用是使栅极积累电荷泄放,其阻值可取4.7kΩ;两个反向串联的稳压二极管V1、V2。

是为了防止栅源电压尖峰损坏IGBT。

图5 防栅极电荷积累与栅源电压尖峰的保护
过热保护
IGBT 的损耗功率主要包括开关损耗和导通损耗,前者随开关频率的增高而增大,占整个损耗的主要部分;后者是IGBT控制的平均电流与电源电压的乘积。

由于IGBT是大功率半
导体器件,损耗功率使其发热较多(尤其是Rg选择偏大时),加之IGBT的结温不能超过125℃,不宜长期工作在较高温度下,因此要采取恰当的散热措施进行过热保护。

散热一般是采用散热器(包括普通散热器与热管散热器),并可进行强迫风冷。

散热器的结构设计应满足:Tj=P△(Rjc+Rcs+Rsa)《Tjm式中Tj-IGBT的工作结温
P△-损耗功率
Rjc-结-壳热阻vkZ电子资料网
Rcs-壳-散热器热阻
Rsa-散热器-环境热阻
Tjm-IGBT的最高结温
在实际工作中,我们采用普通散热器与强迫风冷相结合的措施,并在散热器上安装温度开关。

当温度达到75℃~80℃时,通过SG3525的关闭信号停止PMW 发送控制信号,从而使驱动器封锁IGBT的开关输出,并予以关断保护。

原创文章:"/article/articleinfo/id/80010769/page/3"
【请保留版权,谢谢!】文章出自我爱方案网。

相关文档
最新文档