最近邻分类算法解析

合集下载

最近邻算法

最近邻算法

最近邻算法
最近邻算法(k-Nearest Neighbor Algorithm,KNN)是一种基于实例的学习或懒惰学习算法,它允许计算机系统“学习”在给定的训练集上的输入实例的属性与相应的类标号之间的关系,从而实现对新的数据实例进行分类。

KNN算法是一种被称作非参数学习法的监督学习方法,该方法不需要事先对数据进行定量化和标准化处理,也不涉及参数估计,大大简化了模型的构建过程。

KNN算法的基本思想十分简单:给定一个新的实例,将其与训练样本中的所有数据进行比较,然后依据一定的距离度量准则将新的实例分配给与其最为相似的那些训练样本所对应的类别。

KNN算法的实现原理很容易理解,但是在实际应用中,它却是一种高效的分类算法。

该算法能够从无序的、高维度的数据集中提取出有用的类别信息,使用者只需少量参数调节以及短暂的训练过程便可得到一个完整的建模。

KNN算法是一种基于实例的学习,主要由两步组成:第一步是计算两个实例之间的“距离”,第二步是根据距离选取“k”个最邻近的实例,并将其类标号合并以形成最终的预测类标号。

当新的数据实例到达时,KNN算法可以计算与该实例的每一个已知实例的距离,选择与该实例距离最近的K个实例来投票确定该新实例的类别标号。

KNN算法具有训练速度快、容易理解、可解释性高、支持多样性等优点,因此近年来得到了越来越多的应用。

然而,KNN算法也存在一些缺点,如计算复杂度高、空间开销不稳定以及容易受到噪声影响等。

1.简述k最近邻算法的原理、算法流程以及优缺点

1.简述k最近邻算法的原理、算法流程以及优缺点

1.简述k最近邻算法的原理、算法流程以及优缺点一、什么是K近邻算法k近邻算法又称knn算法、最近邻算法,是一种用于分类和回归的非参数统计方法。

在这两种情况下,输入包含特征空间中的k个最接近的训练样本,这个k可以由你自己进行设置。

在knn分类中,输出是一个分类族群。

一个对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小),所谓的多数表决指的是,在k个最近邻中,取与输入的类别相同最多的类别,作为输入的输出类别。

简而言之,k近邻算法采用测量不同特征值之间的距离方法进行分类。

knn算法还可以运用在回归预测中,这里的运用主要是指分类。

二、k近邻算法的优缺点和运用范围优点:精度高、对异常值不敏感、无数据输入假定。

缺点:计算复杂度高、空间复杂度高。

适用范围:数值型和标称型、如手写数字的分类等。

三、k近邻算法的工作原理假定存在一个样本数据集合,并且样本集中的数据每个都存在标签,也就是说,我们知道每一个样本数据和标签的对应关系。

输入一个需要分类的标签,判断输入的数据属于那个标签,我们提取出输入数据的特征与样本集的特征进行比较,然后通过算法计算出与输入数据最相似的k个样本,取k个样本中,出现次数最多的标签,作为输入数据的标签。

四、k近邻算法的一般流程(1)收集数据:可以使用任何方法,可以去一些数据集的网站进行下载数据。

(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式(3)分析数据:可以使用任何方法(4)训练算法:此步骤不适用于k近邻算法(5)测试算法:计算错误率(6)使用算法:首先需要输入样本数据和结构化的输出结构(统一数据格式),然后运行k近邻算法判定输入数据属于哪一种类别。

五、k近邻算法的实现前言:在使用python实现k近邻算法的时候,需要使用到Numpy科学计算包。

如果想要在python中使用它,可以按照anaconda,这里包含了需要python需要经常使用到的科学计算库,如何安装。

knn算法的分类规则

knn算法的分类规则

knn算法的分类规则目录1.KNN 算法简介2.KNN 算法的分类规则3.KNN 算法的优缺点4.KNN 算法的应用实例正文1.KNN 算法简介KNN(k-Nearest Neighbors,k-近邻)算法是一种基于距离度量的分类和回归方法。

该算法的基本思想是:在一个数据集中,每个数据点根据其距离其他数据点的距离进行分类。

具体而言,KNN 算法会找到距离目标数据点最近的 k 个数据点,然后根据这些邻居的数据类别决定目标数据点的类别。

2.KNN 算法的分类规则KNN 算法的分类规则非常简单,可以概括为以下三个步骤:(1)计算数据点之间的距离:首先,需要计算数据集中每个数据点之间的距离。

通常使用欧氏距离、曼哈顿距离等度量方法。

(2)确定邻居数据点:根据距离度量,找到距离目标数据点最近的 k 个数据点。

这里 k 是一个超参数,可以根据实际问题和数据集的特点进行选择。

(3)决定目标数据点的类别:根据邻居数据点的类别,决定目标数据点的类别。

如果邻居数据点的类别多数为某一类别,则目标数据点也被划分为该类别;否则,目标数据点不被划分为任何类别。

3.KNN 算法的优缺点KNN 算法的优点包括:简单易懂、易于实现、对数据集的噪声不敏感、能够很好地处理不同密度的数据等。

然而,KNN 算法也存在一些缺点,如计算量大、需要存储所有数据点、对 k 的选择敏感等。

4.KNN 算法的应用实例KNN 算法在许多领域都有广泛的应用,例如文本分类、图像分类、生物信息学、金融风险管理等。

例如,在文本分类任务中,可以将文本表示为特征向量,然后使用 KNN 算法根据特征向量的距离对文本进行分类。

总之,KNN 算法是一种简单且易于实现的分类方法,适用于各种数据集和领域。

k-近邻分类算法

k-近邻分类算法

k-近邻分类算法K近邻分类算法是一种基于实例的分类算法,它的主要思想是通过计算每个样本点与其周围的k个最近邻点的距离来确定该点的类别。

该算法主要应用于分类问题中,并且在实际应用过程中具有很好的可用性、易实现性和理解性。

算法原理算法首先通过确定k值来确定分类的邻域大小,以及根据k值的选择来确定分类的准确性和鲁棒性。

之后通过计算每个样本点与其邻域内k个最近邻点之间的距离来确定该样本点所属的分类。

具体流程如下:1.确定数据集中的k值和距离度量标准;2.对于每个待分类的样本点,计算与其邻域中k个最近邻点之间的距离;3.根据邻域中k个最近邻点的类别来确定该样本点所属的类别;4.重复步骤2和3,直到所有待分类的样本点均被分类完毕;5.给出分类结果。

距离度量标准在k-近邻分类算法中,距离度量标准是非常重要的,因为它决定了样本点之间距离的计算方式。

目前常见的距离度量标准有欧式距离、曼哈顿距离和切比雪夫距离。

欧式距离:$d=\sqrt{{\sum_{i=1}^{n}{(x_i-y_i)^2}}}$优缺点1.基于实例,不需要对数据进行任何假设和理论分析;2.算法的可预测性高,具有很好的分类性能;3.没有过拟合的现象,可以对复杂的数据集进行分类;4.整体而言,k-近邻分类算法非常容易理解和实现。

1.计算量比较大,对于大型数据集而言,算法的效率较低;2.对于高维数据集而言,容易出现维数灾难问题,即算法的效果会逐渐降低;3.容易受到异常值的影响,且在分类决策区域方面可能存在不连续的问题。

应用场景k-近邻分类算法广泛应用于模式识别、数据挖掘和生物信息学等领域,特别适合处理较小的数据集。

目前该算法已被应用于医疗诊断、电子商务、物联网等领域,既可以用于分类问题,也可以用于回归问题。

同时,对于分类问题而言,该算法并不适用于类别数比较多或类别间存在相互交叉的情况。

因此,在实际应用过程中,应根据具体情况来选择算法,以达到最佳的分类效果。

最近邻算法原理

最近邻算法原理

最近邻算法原理一、引言最近邻算法是一种常见的分类算法,其原理简单易懂,应用广泛。

本文将介绍最近邻算法的原理及其实现过程。

二、最近邻算法概述最近邻算法是一种基于实例的学习方法,它通过计算新样本与已有样本之间的距离来确定新样本所属的类别。

具体来说,该算法将所有已知样本划分到不同的类别中,并在新样本到来时,计算该样本与每个已知样本之间的距离,并选择距离最近的k个已知样本作为该新样本所属类别的参考。

其中k值通常为奇数,以避免出现平局。

三、最近邻算法流程1. 收集数据:收集已有分类数据。

2. 准备数据:将数据格式化为适合计算距离的形式。

3. 分析数据:可以使用任何方法。

4. 训练算法:此步骤不适用于最近邻算法。

5. 测试算法:计算错误率。

6. 使用算法:输入新数据并将其分类。

四、距离度量方法在进行最近邻分类时,需要计算新样本与已有样本之间的距离。

以下是常见的几种距离度量方法:1. 欧氏距离欧氏距离是最常用的距离度量方法,它是指在n维空间中两个点之间的真实距离。

公式如下:d(x,y) = sqrt((x1-y1)^2 +(x2-y2)^2 +...(xn-yn)^2)2. 曼哈顿距离曼哈顿距离是指在n维空间中两个点在各个维度上坐标数值差的绝对值之和。

公式如下:d(x,y) = |x1-y1| +|x2-y2| +...+|xn-yn|3. 切比雪夫距离切比雪夫距离是指在n维空间中两个点在各个维度上坐标数值差的最大值。

公式如下:d(x,y) = max(|x1-y1|, |x2-y2|,..., |xn-yn|)4. 余弦相似度余弦相似度是指两个向量夹角的余弦值,其取值范围为[-1, 1]。

当两个向量方向相同时,余弦相似度为1;当两个向量方向完全相反时,余弦相似度为-1;当两者之间不存在关系时,余弦相似度为0。

公式如下:cos(x,y) = (x*y)/(||x||*||y||)五、最近邻算法实现最近邻算法的实现过程通常可分为以下几个步骤:1. 准备数据将已有样本和新样本转化为机器学习可处理的格式,通常是向量或矩阵。

最近邻算法(KNN)

最近邻算法(KNN)

最近邻算法(KNN)
KNN算法的步骤如下:
1.计算距离:计算测试样本与训练样本之间的距离,常用的距离度量
方法有欧氏距离、曼哈顿距离、余弦相似度等,选择合适的距离度量方法
是KNN算法的重要一环。

2.选择K值:确定K的取值,即选择最近的K个邻居来进行分类或回归。

K的取值通常是根据实际应用和数据集来确定的,一般选择较小的K
值会使模型更复杂,较大的K值会使模型更简单。

3.排序:根据计算得到的距离,对训练样本进行排序,选择距离最近
的K个邻居。

KNN算法的优点包括简单易懂、不需要训练过程、适用于多分类和回
归问题。

然而,KNN算法也有一些缺点。

首先,KNN算法需要计算测试样
本和所有训练样本之间的距离,当训练样本很大时,计算量可能会很大。

其次,KNN算法对于样本不平衡的数据集可能会造成预测结果偏向多数类别。

此外,KNN算法对于特征空间的密度变化敏感,如果样本分布不均匀,可能会影响预测结果。

为了提高KNN算法的性能,可以采取一些优化措施。

例如,可以使用
特征选择或降维方法来减少特征维度,以降低计算复杂度。

此外,可以使
用KD树、球树等数据结构来存储训练样本,以加速近邻的过程。

还可以
使用加权投票或距离加权的方法来考虑邻居之间的权重,使得距离更近的
邻居具有更大的影响力。

总之,最近邻算法(KNN)是一种简单而有效的分类和回归算法,具有广泛的应用。

虽然KNN算法有一些缺点,但通过适当的优化和改进,可以提高其性能并有效解决实际问题。

k-最近邻算法

k-最近邻算法

k-最近邻算法
1.k-最近邻算法是一种基于实例(Instance-based)的学习方法,也称为惰性学习(Lazy learning)方法或者近似实例学习方法。

它是一种分类方法,它不学习实例及其
之间的关系,而是直接存储数据,当需要进行分类预测时,寻找距离最近的K个点,然后
根据这些点的类别进行预测。

2.k-最近邻算法原理:通过比较未知实例与训练数据库中的实例,测量它们之间的距离,来预测该未知实例的类别。

与距离它最近的K个实例的类别最多的作为该未知实例的
类别。

3.k-近邻算法的优缺点:
优点:
1.简单易行:最近邻算法是计算机最简单的分类算法,直观有效,操作简单易行。

2.可预测性良好:最近邻分类算法可以获得较好的解决方法,并达到较高的预测性能。

3.大规模数据集可以很快地进行分类:kNN算法仅依赖训练数据中出现的模型,而不
用于存储数据,因此它可以在庞大的数据集上进行分类并实现极快的计算性能。

1.计算复杂度高:KNN算法比较复杂,需要调参数,计算复杂度较高且及时性较差。

2.存在样本不平衡问题:由于KNN算法没有考虑数据的内在分布特征,对于样本不平
衡的问题容易出现误分的情况。

3.维数灾难:KNN算法容易陷入维数灾难,即随着维数增加,距离也会不断增加,准
确率越来越低。

knn算法的用法

knn算法的用法

knn算法的用法一、引言K近邻算法(K-NearestNeighbors,简称KNN)是一种基于实例的学习算法,它广泛用于分类和回归问题。

KNN算法以其简单、直观且易于理解的特点,在许多领域得到了广泛应用。

本文将详细介绍KNN算法的原理、应用场景、参数设置以及优缺点,帮助读者更好地理解和应用该算法。

二、KNN算法原理KNN算法的基本思想是通过比较待分类项与已知样本集中的每个样本的距离,找出与待分类项距离最近的K个样本。

根据这K个样本的类别,对待分类项进行预测。

最终,待分类项的类别是由这K个样本中最常见的类别决定。

三、KNN算法的应用场景KNN算法适用于以下场景:1.分类问题:KNN算法可以应用于各种分类问题,如文本分类、图像分类、生物信息学中的基因分类等。

2.回归问题:KNN算法也可以应用于回归问题,如房价预测、股票价格预测等。

3.异常检测:通过比较待分类项与已知样本集的距离,KNN算法可以用于异常检测,识别出与正常样本显著不同的数据点。

四、KNN算法参数设置KNN算法的参数包括:1.K值:确定近邻数,影响算法的准确度和计算复杂度。

过小的K 值可能会导致漏检,而过大的K值可能会导致误检。

需要根据实际问题进行尝试和调整。

2.距离度量方法:KNN算法支持多种距离度量方法,如欧氏距离、曼哈顿距离等。

选择合适的距离度量方法对于算法的性能至关重要。

3.权重策略:在计算待分类项的近邻时,不同的样本可能具有不同的权重。

常见的权重策略包括按照样本出现次数加权、按照距离加权等。

合适的权重策略可以提高算法的准确度和鲁棒性。

五、KNN算法优缺点优点:1.简单易实现:KNN算法实现简单,易于理解和应用。

2.对异常值和噪声具有鲁棒性:KNN算法对异常值和噪声具有较强的鲁棒性,可以有效地处理这些问题。

3.无需大量的参数调优:与其他机器学习算法相比,KNN算法的参数较少,无需进行复杂的参数调优。

缺点:1.对大数据处理能力有限:KNN算法的计算复杂度较高,尤其是在大规模数据集上,处理速度较慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢ K值选取
k值通常是采用交叉检验来确定(以k=1为基准)
交叉验证的概念:将数据样本的一部分作为训练样本,一部分作为测试样本,比如选择95%作 为训练样本,剩下的用作测试样本。通过训练数据训练一个模型,然后利用测试数据测试其误 差率。 cross-validate(交叉验证)误差统计选择法就是比较不同K值时的交叉验证平均误差率, 选择误差率最小的那个K值。例如选择K=1,2,3,... , 对每个K=i做100次交叉验证,计算出平均 误差,然后比较、选出最小的那个。
➢ 行业应用
客户流失预测、欺诈侦测等(更适合于稀有事件的分类 问题)
对垃圾邮件的筛选拦截;
可以用于推荐:这里我们不用KNN来实现分类,我们使用KNN
最原始的算法思路,即为每个内容寻找K个与其最相似的内容,合于多分类问题(multi-modal,对象具有多个类别标签),例如 根据基因特征来判断其功能分类,kNN比SVM的表现要好
对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方 法更为适合。
➢ 优缺点
2、缺点
懒惰算法,就是说直到预测阶段采取处理训练数据。 对测试样本分类时的计算量大,内存开销大,评分慢。 可解释性较差,无法给出决策树那样的规则。 由于没有涉及抽象过程,kNN实际上并没有创建一个模型,预测时
➢ 示例:
如图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形? 如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三
角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被 赋予蓝色四方形类。
1、优点
➢ 优缺点
简单,易于理解,易于实现,无需估计参数,无需训练
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%, 构造流失预测模型)
数据挖掘算法
——K最近邻分类(KNN)
➢ K最近邻分类(KNN)
该方法的思路是:如果一个样本在特征空间中的k个最相近(即特征 空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于 这个类别。即—“近朱者赤,近墨者黑”,由你的邻居来推断出你 的类别。
用下面的谚语最能说明:“如果走像鸭子,叫像鸭子,看起来还像鸭 子,那么它很可能就是一只鸭子。”
如果训练数据大部分都属于某一类,投票算法就有很大问题了。这 时候就需要考虑设计每个投票者票的权重了。
加权投票法:根据距离的远近,对近邻的投票进行加权, 距离越近则权重越大(权重为距离平方的倒数)
若样本到测试点距离为d,则选1/d为该邻居的权重(也就是得到了 该邻居所属类的权重),接下来统计统计k个邻居所有类标签的权 重和,值最大的那个就是新数据点的预测类标签。
也称欧几里得距离,它是一个采用的距离定义,他是在 维空间中两个点之间的真实距离。
二维的公式:d (x1 x2)2 (y1 y2)2
➢ 计算步骤如下:
1.计算未知样本和每个训练样本的距离dist 2.得到目前K个最临近样本中的最大距离maxdist 3.如果dist小于maxdist,则将该训练样本作为K-最近邻
经验规则:k一般低于训练样本数的平方根。
需要指出的是:取k=1常常会得到比其他值好的结果,特别是在小 数据集中。
不过仍然要注意:在样本充足的情况下,选择较大的K值能提高抗 躁能力。
➢ 欧氏距离
计算距离有许多种不同的方法,如欧氏距离、余弦距离、 汉明距离、曼哈顿距离等等,传统上,kNN算法采用的 是欧式距离。
样本 4.重复步骤2、3、4,直到未知样本和所有训练样本的
距离都算完 5.统计K个最近邻样本中每个类别出现的次数
注意:
该算法不需要花费时间做模型的构建。其他大多数分类 算法,如决策树等都需要构建模型的阶段,而且该阶段 非常耗时,但是它们在分类的时候非常省时。
➢ 类别的判定
投票决定:少数服从多数,近邻中哪个类别的点最多就 分为该类。
间较长。
该算法在分类时有个主要的不足是,当样本不平衡时, 如一个类的样本容量很大,而其他类样本容量很小时, 有可能导致当输入一个新样本时,该样本的K个邻居中 大容量类的样本占多数。
➢ 改进
分组快速搜索近邻法
其基本思想是:将样本集按近邻关系分解成组,给出每组质心的位 置,以质心作为代表点,和未知样本计算距离,选出距离最近的一 个或若干个组,再在组的范围内应用一般的knn算法。由于并不是 将未知样本与所有样本计算距离,故该改进算法可以减少计算量, 但并不能减少存储量
相关文档
最新文档