流量测量技术讲解
流体力学实验装置的流体参数测量技术

流体力学实验装置的流体参数测量技术流体力学是研究流动物质力学性质和规律的学科,涉及领域广泛,包括气体、液体等多种介质的研究。
在流体力学实验中,准确测量流体参数是非常重要的,如流速、压力、密度、流量等。
本文将重点介绍流体力学实验装置中常用的流体参数测量技术。
流速测量技术实验室常用的流速测量技术有热膜法、热线法、红外法和激光多普勒测速法等。
其中,热膜法是一种简单有效的方法。
通过在管道内安装薄膜传感器,利用电热效应产生的温度变化来测量流体速度。
热线法则是利用导电材料丝在流体中受热后的电阻变化来测量流速。
红外法是通过感应被测流体中红外辐射的强度来判断流速。
而激光多普勒测速法则是通过激光束对流体中颗粒反射回来的光频率变化来计算流速。
这些方法在实验装置中广泛应用,可以满足不同流速范围的测量需求。
压力测量技术在流体力学实验中,压力是一个非常重要的参数。
常用的压力测量技术包括毛细管压力计、压电传感器、晶体管传感器和压力传感器等。
毛细管压力计是一种简单且精确的压力测量方法,通过测量管道中液体的压力差来计算流速。
压电传感器则是利用压电效应将压力转化为电信号进行测量。
晶体管传感器也是一种常用的压力测量设备,通过晶体管的变化来判断压力值。
而压力传感器则是一种高精度的压力测量装置,可以满足各种实验装置对于精准压力测量的需求。
密度测量技术密度是流体的重要参数之一,对流体的性质和流动规律有着重要影响。
在流体力学实验中,准确测量密度是非常关键的。
常用的密度测量技术有悬浮小球法、浮标法、声速法和测量涡旋频率等。
悬浮小球法是通过将小球悬浮在流体中并测量其浮力来计算密度。
浮标法则是通过在流体中浮放不同密度的浮标,通过其浸没深度来计算密度。
声速法则是通过测量声波在流体中的传播速度来计算密度。
而测量涡旋频率则是利用涡旋在流体中传播的规律来间接计算密度。
这些方法在实验装置中广泛应用,为密度测量提供了多种选择。
流量测量技术流量是指单位时间内流体通过管道或通道的体积或质量。
水文测绘中的流量测量技术实践要点解析

水文测绘中的流量测量技术实践要点解析随着社会的不断发展,水资源的管理和保护成为了一个重要话题。
而水文测绘中的流量测量技术则是评估水资源量的重要手段之一。
本文将着重探讨水文测绘中流量测量技术的实践要点,旨在为水文测绘工作提供一些实用的指导意见。
流量测量是水文测绘中的关键环节,它主要通过对河道横截面面积和流速的测量来计算流量。
对于流量测量技术的实践要点,首先需要考虑的是选择合适的测量方式和仪器。
常用的流量测量方法包括挂板法、速度面积法和声波测流法等。
不同的方法适用于不同的测量条件,例如流速较小的微小河流适合使用挂板法,而流速较大的主要河流则适合使用速度面积法。
对于仪器的选择,则需要根据具体需求考虑精度、稳定性和易用性等因素。
其次,流量测量需要对河道横截面进行测量,因此准确测量河道横截面的形状和尺寸是流量测量的基础。
在实践中,可以采用激光测距仪、全站仪等现代测量仪器进行河道横截面的测量。
值得注意的是,在测量过程中要充分考虑不同因素对测量结果的影响,例如水位的波动和河床的变化等。
此外,为了提高测量精度,可以进行多次测量并求取平均值,同时采用适当的数据处理方法进行校正。
另外,流量测量中的流速测量是一个关键环节。
对于流速的测量,可以使用流速仪、浮标法或经验公式进行计算。
流速仪是一种较为常用的测量工具,它可以利用测速轮或超声波等原理来测量流速。
浮标法则是通过放置浮标并测量其通过某一距离的时间来计算流速。
至于经验公式,则是根据历史数据和经验总结得到的一种近似计算方法。
在实践中,选择合适的流速测量方法需要根据测量条件和需求进行权衡,并结合实际情况进行调整。
此外,流量测量的实践中还需要考虑数据的获取和处理。
对于数据的获取,可以借助于现代化的数据采集系统和传感器设备,实时获取流量、流速和水位等数据。
对于多个测点的测量,可以使用遥感技术进行遥测监测,提高测量效率。
对于数据的处理,则需要采用适当的方法对采集到的数据进行校正和分析,以获得准确的流量结果。
简述流量测验及方法

简述流量测验及方法我折腾了好久流量测验这事儿,总算找到点门道。
流量测验呢,简单来说就是测量水在河道或者渠道里流动的量。
这可不像你想象的那么简单,我一开始也是瞎摸索。
我试过一种方法叫流速仪法,这就是用一个专门的流速仪放到水里去测水的流速。
那个流速仪就像一个特别灵敏的小探子一样。
你得把这个流速仪放得恰到好处,我一开始就没做好,放得歪了或者深度不对,测出来的数据那简直是乱七八糟,后来才知道这里面的讲究可多了。
放的时候要垂直,就像你插一根直直的筷子到水里那感觉。
而且不同深度的水啊,流速可能不一样,所以还得在不同深度多测几次取平均值呢。
同一个位置,从水面开始,每隔一点距离就测一次,比如说每隔20厘米测一次,测个四五次之后再把这些数据平均一下,这才大概能代表这个位置的流速。
还有个办法是浮标法。
这个就更容易理解些。
就找个漂浮物,像一块小木头啥的,放到水面上,然后看它随着水流从这边飘到那边的时间,再根据放漂浮物的地方和它飘到的地方之间的距离,来推算流速。
但这个方法不太准,因为风啊、水本身转动啥的都会影响漂浮物的运动轨迹。
我上次做的时候,开始就没考虑到风的影响,那算出来的结果差得老远了。
所以用这个方法的时候,一定要找那种风小的时候,并且要多测几次求平均,这样能减少误差。
堰测法我也了解过。
就是在水里造个像小水坝一样的堰,根据水漫过堰的高度来测算流量。
不过这可就需要些工程技术了,你得把堰修得规规矩矩,高度、宽度啥的都有严格要求,我也没什么机会自己动手做这个,但是相关的原理是明白的。
流量测验真的不是个简单的事儿,每个方法都有优缺点,要根据具体的情况去选择合适的方法,这可是我摸索这么久的一点心得。
有时候还可以把这些方法结合起来用,比如说先用浮标法粗略测一下,心里有个大概的数,再用流速仪法精准测量,这样更保险些,而且还可以相互验证数据的准确性,就像你做数学题有了两种解题法,可以相互检查对错一样。
流量测量的方法及其原理

流量测量的方法及其原理流量可以根据被测物理量的不同分为质量流量(mass flow rate)和体积流量(volume flow rate)的测量,由于质量相对于体积是一个不变量,因此前者更为准确.二者的主要测量方法如下所述:1、质量流量(mass flow rate)的测量方法及其原理1.1 传送带的流量测量传送带的流量测量原理如图1所示,通过重力传感器测量传送带上长度为L部分的质量M,如果传送带的速度为v,质量流量为Q,那么,Q可以表示为:Q/(1)LMv图1 传送带的流量测量原理示意图1.2 Coriolis流量计Coriolis流量计多用于测量液体的质量流量,主要工作原理是通过测量在旋转管中的流体的Coriolis力,进而间接测得质量流量.1.3 热式质量流量计热式质量流量计多用于测量气体的质量流量,使流体通过加热装置,通过测量:a)流体温度的上升,b)把流体加热至一定温度时加热装置的功率,进而测得质量流量.1.4 通过测量体积流量与流体密度进行测量2、体积流量(volume flow rate)的测量方法及其原理2.1 压差流量计压差流量计的测量原理如图2所示:在流体通道管中加入一个障碍物(如,文丘里管),当流体通过障碍物时,其速度增加,对容器壁产生的压强减小,体积流量正比于约束装置前后流体压强之差的平方根。
图2 压差流量计的测量原理示意图图2中1P 对应通过障碍之前的位置,2P 对应流体通过障碍后压强为极小值的位置,体积流量Q 可以表示为: ⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡-=ρ)(2)/(1212122P P A A A Q (2) 其中,1A 与1P 分别表示流体通过障碍之前的横截面积以及压强,2A 与2P 分别表示流体通过障碍之后的横截面积以及压强,ρ表示流体的密度。
以上公式在实际应用之中有一定的不便,比如相应的横截面积1A 与2A 都不宜测得,因此,经常把公式(2)修正为: ⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡-=ρ)(2)'/'(1'212122P P A A A C Q D (3) 式(3)中,'1A 为流体通过障碍之前管道的直径,'2A 为障碍的直径,D C 是流量系数,与Reynolds 数以及管道与流体的直径差有关。
流量检测技术

绝对压力
Mpa 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
饱和蒸汽温度
Kg/m3 195 198.3 201.4 204.3 207.1 209.8 212.4 214.8 217.2 219.5 221.8 223.9
饱和蒸汽密度
摄氏度 7.1038 7.5928 8.082 8.5718 9.0616 9.552 10.043 10.535 11.028 11.521 12.016 12.511
① 原理:浮子流量计的测量本体由一根自下向上扩 大的垂直锥管和一只可以沿着锥管的轴向自由移 动的浮子组成,当被测流体自锥管下端流入流量 计时,由于流体的作用,浮子上下端面产生一差 压,该差压即为浮子的上升力。当差压值大于浸 在流体中浮子的重量时,浮子开始上升。随着浮 子的上升,浮子最大外径与锥管之间的环形面积 逐渐增大,流体的流速则相应下降,作用在浮子 上的上升力逐渐减小,直至上升力等于浸在流体 中的浮子的重量时,浮子便稳定在某一高度上。 这时浮子在锥管中的高度h与所通过的流量有对 应的关系。
1cP 103 Pa• S
运动粘度:
m2 / s
1m2 / s 104 St 1cSt 106 m2 / s
2.2 流量测量基本概念
(1)流量:
体积流量:
qV
V t
uA( m3 / s )
qV 3600 uA ( m3 / h )
标准状态下体积流量:
qVN
TN PN
P T
qv
( Nm3 / h )
350
0.69 1.05 1.40 1.75 2.11 2.46 2.82 3.54 4.26 5.36 7.21 9.11 11.05 13.02 15.05 19.26 25.53
河流流量测量技术及其应用研究

河流流量测量技术及其应用研究河流的水量以及流量的测量对于河流的管理和水资源的合理利用非常重要。
因此,河流流量测量技术的研究和应用显得尤为重要。
本文将介绍几种常见的河流流量测量技术及其应用,并对其优缺点进行分析。
1. 水尺测量法水尺测量法是一种传统且简便的河流流量测量技术。
它使用水尺来测量河流的流速,并结合断面形状来计算河流的流量。
水尺测量法的优点在于成本低廉,测量结果准确。
然而,它需要人工投入较多,且在流速较快的河流中难以操作。
2. 测流船法测流船法是通过在测量断面上运行测流船来测量河流的流速和流量。
测流船上配备有流速测量仪器,并记录船在不同位置的时间以计算流速。
该方法的优点在于不需要人工测量,并能够应用于大型河流。
然而,该方法的成本较高,且对于小型河流不太适用。
3. 漂浮物法漂浮物法是一种利用漂浮物在水中流动的原理来测量河流流量的技术。
通过投放一定数量的漂浮物,并记录其移动的时间和距离,可以计算出河流的流速和流量。
漂浮物法的优点在于简单易行且成本较低,但受到漂浮物的运动影响,并且在水流较快的情况下准确度较低。
4. 静压式测流仪静压式测流仪是一种利用静压原理来测量河流流速及流量的技术。
测流仪通常由压力传感器和数据记录器组成,可以通过测量水位和压力来计算出河流的流速和流量。
静压式测流仪的优点在于准确度较高且适用于各种类型的河流,但成本较高且需要专业人员进行操作。
5. 激光测距法激光测距法是一种基于激光技术的非接触式测量方法,可以用于测量河流的流速。
该方法通过测量从激光器发射到水面然后反射回来的激光束的时间来计算水流的速度。
激光测距法的优点在于非接触式测量、准确度高以及适用于各种水流条件。
然而,该方法的成本较高,且对于大型河流的测量有一定的局限性。
综上所述,河流流量测量技术多种多样,各有优缺点。
在实际应用中,根据具体情况选择适合的测量技术是十分重要的。
未来,随着技术的不断发展,相信会有更多先进的河流流量测量技术出现,为河流管理和水资源利用提供更加可靠的数据支持。
第8章流量测量课件

流体在单位时间内通过管道或设备某横截面处的数量。
➢流量的表示方法
质量流量、体积流量、重量流量。
▪若以M表示流体流过一定截面的质量,则质量流量为
qm
dm dt
kg/s
▪若以V表示流体流过一定截面的体积,则体积流量为
qv
dV dt
m 3/s
▪若以G表示流体流过一定截面的重量,则重量流量为
q G
由节流件、取压装置、阻流件、中间管道组成。
中间管道
取压装置
上游第二 个阻流件
上游第一 个阻流件
节流件
下游第一 个阻流件
▪常用节流元件
▪取压方式 取压方式有角接取压、法兰取压、D和D/2取压等方式
角接取压
法兰取压
▪节流原理
•流速收缩:沿管道轴向流动 的流体,当遇到节流装置时, 近壁处的流体由于受到节流 装置的阻挡最大,促使流体 的一部分动压头转换为静压 头,体现在P1的升高。
第五节 超声波流量计
假定流体静止的声速为c,流体速 度 为 v , 顺 流 时 传 播 速 度 为 c+v , 逆流时则为c-v。在流道中设置两 个 超 声 波 发 生 器 T1 和 T2 , 两 个 接 收器R1和R2,发生器与接收器的 间距为l。在不用两个放大器的情 况下,声波从T1到R1和T2到R2的 时间分别为t1和t2:
dG dt
三者的关系为
kgf s
qm
qv
qG g
➢流量的测量方法 可分为直接测量法和间接测量法。
▪直接测量法:用标准容积和标准时间计量后,计算平均流量。
▪间接测量法:通过测量与流量有关的物理量得出流量。
➢间接测量法的常见形式
▪流速法
流量测量的测量方法

流量测量的测量方法流量测量是指测量液体、气体或固体通过管道、通道或其他设备的流动速度和量的过程。
在工程和科学领域中,流量测量是非常重要的,它能够帮助我们了解和控制流体的流动。
以下是一些常用的流量测量方法。
1.浮子流量计浮子流量计是一种机械式的流量计,通过测量浮子在流体中的位置来确定流量。
当流体通过管道时,浮子会随着流动而上下浮动,浮子的位置可以通过透明管道上的刻度来读取。
根据浮子的位置,我们可以推断出流体的流量。
浮子流量计适用于低流速和低粘度的流体。
2.涡轮流量计涡轮流量计是一种机械和电子相结合的流量计,适用于中等到高流速的流体测量。
涡轮流量计利用装在管道内部的旋转涡轮来测量流体的流速。
每当流体通过时,涡轮就会旋转,旋转速度与流体的速度成正比。
通过测量涡轮的旋转速度,我们可以计算出流体的流量。
3.电磁流量计电磁流量计是一种非侵入式的流量计,适用于液体和导电性较好的流体的测量。
电磁流量计利用在管道外部产生的磁场和流体内部导电材料的运动来测量流体的流速。
当流体通过导电管时,电磁流量计会在管道外部产生一个磁场,并测量磁场的变化来计算流体的流速。
4.超声波流量计超声波流量计是一种无损的流量计,适用于多种流体的测量。
超声波流量计利用超声波的传播速度差来测量流体的流速。
它通过发射超声波脉冲并测量来回传播的时间来计算流体的流速。
由于超声波流量计不需要与流体接触,因此适用于腐蚀性和高温流体的测量。
5.差压流量计差压流量计是一种基于流体流动导致的压力差来测量流速的流量计。
差压流量计通常由一个流量测量装置和一个压力传感器组成。
流量测量装置可以是孔板、喷嘴或流体动力学计。
当流体通过流量测量装置时,它会产生一个压力差,通过测量压力差,我们可以计算出流体的流速。
这些是常用的流量测量方法,每种方法都有其适用范围和优缺点。
在选择流量测量方法时,需要考虑流体的性质、流程条件、精度要求、可靠性和经济性等因素。
流量测量的准确性对于工业自动化、流程控制和效能改善至关重要。