机器视觉的组成及工作原理

合集下载

机器视觉(相机、镜头、光源 )全面概括

机器视觉(相机、镜头、光源    )全面概括

机器视觉(相机、镜头、光源)全面概括分类:机器视觉2013-08-19 10:52 1133人阅读评论(0) 收藏举报机器视觉工业相机光源镜头1.1.1视觉系统原理描述机器视觉就是用机器代替人眼来做测量和判断。

机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

2.1.1视觉系统组成部分视觉系统主要由以下部分组成1.照明光源2.镜头3.工业摄像机4.图像采集/处理卡5.图像处理系统6.其它外部设备2.1.1.1相机篇详细介绍:工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD(ChargeCoupled Device)或CMOS(Complementary Metal OxideSemiconductor)芯片的相机。

CCD是目前机器视觉最为常用的图像传感器。

它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。

CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。

这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。

典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。

CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。

CMOS图像传感器的开发最早出现在20世纪70 年代初,90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。

CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。

机器人视觉系统介绍

机器人视觉系统介绍

机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。

按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。

三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。

所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。

如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。

产品的分类和选择也集成于检测功能中。

下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。

图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。

数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。

机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。

由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

机器视觉技术原理

机器视觉技术原理

机器视觉技术原理
机器视觉技术是一种利用计算机视觉和图像处理技术,使计算机能够模拟和理解人类视觉系统的能力。

其原理基于以下几个核心步骤:
1. 图像获取:机器视觉系统首先需要获取待处理的图像或视频。

这可以通过相机、摄像机或其他图像传感器来实现。

2. 图像预处理:在对图像进行进一步分析之前,通常需要进行预处理步骤。

这包括图像去噪、增强对比度、调整颜色平衡等操作,以提高后续处理的效果。

3. 特征提取:在特征提取阶段,机器视觉系统会从图像中提取出代表目标或感兴趣区域的关键特征。

这些特征可以是边缘、角点、纹理、颜色、形状等。

4. 特征匹配:特征匹配是将提取的特征与已知的模板或数据库中的特征进行比对的过程。

通过比对,机器视觉系统可以确定目标的位置、识别物体等。

5. 目标检测和识别:在目标检测和识别阶段,机器视觉系统可以根据先前提取的特征和模型,对图像中的物体进行检测、分类和识别。

这可能涉及使用机器学习算法。

6. 决策和输出:最后,机器视觉系统会根据分析结果做出决策,并将结果以可视化形式或其他方式输出,如标记目标位置、显示识别结果等。

1/ 1。

机器视觉系统工作原理

机器视觉系统工作原理

机器视觉系统工作原理
机器视觉是一种通过计算机科学和人工智能技术,使计算机能够识别、理解和解释图像和视频的过程。

机器视觉系统主要包括以下几个核心步骤:
1. 图像采集:机器视觉系统首先需要获取图像或视频数据。

这可以通过摄像头、相机或其他图像采集设备来实现。

2. 图像预处理:获取到的图像数据首先需要进行预处理,以提高后续处理的效果。

预处理步骤可能包括图像去噪、图像增强、图像变换等。

3. 特征提取:在预处理后,机器视觉系统需要从图像中提取关键特征。

这些特征可以是图像的边缘、纹理、颜色等。

特征提取可以通过各种计算机视觉算法实现。

4. 特征匹配:提取到的特征需要与模板或分类器进行匹配。

特征匹配的目的是将提取到的特征与已知的模式进行比较,以确定图像中的目标物体或场景。

5. 目标识别和分类:经过特征匹配后,机器视觉系统可以识别和分类图像中的目标物体或场景。

这可以通过训练好的分类器或深度学习模型来实现。

6. 目标跟踪:在某些应用中,机器视觉系统需要实时跟踪目标物体的运动。

目标跟踪可以通过目标的特征匹配或运动估计来完成。

7. 结果输出:机器视觉系统将处理结果输出给用户或其他系统。

输出结果可能包括识别的对象、位置信息、运动轨迹等。

以上是机器视觉系统的基本工作原理。

不同的应用领域可能会有不同的算法和技术来实现特定的功能,但总体上,机器视觉系统是通过图像采集、图像预处理、特征提取、特征匹配、目标识别和跟踪等步骤来实现图像和视频的分析和处理。

机器视觉系统之案例篇课件

机器视觉系统之案例篇课件

系统配置
某电子元件制造企业需要检测电子元件表 面缺陷。
采用高分辨率相机和LED光源,搭配高性能 图像处理单元。
算法优化
实施效果
针对电子元件表面的特点,对预处理和特 征提取算法进行优化,提高检测准确率。
经过优化后的机器视觉系统,能够快速准 确地检测出电子元件表面的缺陷,提高了 生产效率和产品质量。
03
案例二:物体识别
物体识别的应用场景
生产线检测
在生产线中,机器视觉系统可以 对产品进行实时检测,识别出不 合格品或缺陷,提高生产效率和
产品质量。
物流分拣
在物流领域,机器视觉系统可以快 速识别物品的形状、大小、颜色等 信息,实现自动化分拣和分类。
安全监控
在公共安全领域,机器视觉系统可 以实时监测监控画面,自动识别异 常行为、人员和物品,提高安全防 范能力。
工作原理
通过图像采集设备获取原始图像信息,经过预处理进行噪声去除、对比度增强 等操作,提取出目标物体的特征信息,再利用分类器进行分类与识别,最终输 出结果。
02
案例一:表面检测
表面检测的应用场景
电子行业
检测电子元件表面缺陷 ,如划痕、污渍、气泡
等。
汽车行业
检测汽车零部件表面质 量,如刹车片、发动机
案例分析
应用场景
生产线上的零件检测。
算法选择
基于模板匹配的算法,快速识别不同 形状和大小的零件。
系统组成
高分辨率相机、图像处理单元、控制 单元等。
实现效果
系统能够准确快速地识别出零件是否 合格,并自动分拣出不合格品,提高 了生产效率和产品质量。
04
案例三:机器人导航
机器人导航的应用场景
工业自动化生产线

机器视觉系统基本构成和各部件基本原理PPT课件

机器视觉系统基本构成和各部件基本原理PPT课件

包括光源、镜头、相机、 图像采集卡等。
wwww
为什么要采用机器视觉
• 节省时间 • 降低生产成本 • 优化物流过程 • 缩短机器停工期 • 提高生产率和产品质量 • 减轻测试及检测人员劳动强度 • 减少不合格产品的数量 • 提高机器利用率
wwww
机器视觉应用简介
GIGI(Gauge、Inspection、Guide、Identification)
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
Video out
Interlace
Progressive
wwww
Moving object
GBGBG RGRGR GBGBG RGRGR GBGBG RGRGR
彩色相机
Bul
Bur
Rul
Rur
Gu
b
r
Gle g Gr
Bll
Blr
Rll
Rlr
Gl
b=1/4(Bur+Bul+Bll+Blr) r=1/4(Rur+Rul+Rll+Rlgr)=1/4(Gu+Gr+Gl+Gle)
CCD Format
Sony: Diagonal:
1” format Type 1 16 mm
Image size
12.8 mm
2/3” format Type 2/3
11 mm
8.8 mm
1/2” format Type 1/2
8 mm
1/3” format Type 1/3

工业机器视觉技术与应用

工业机器视觉技术与应用

工业机器视觉技术与应用工业机器视觉技术是指利用计算机、摄像机、传感器等设备对工业生产过程中的物体、图形、文字等进行自动识别、检测、测量等操作的技术。

它可以提高生产效率、保证产品质量、节约人力物力,广泛应用于制造业、汽车工业、半导体工业、食品、医药等产业。

工业机器视觉技术的应用越来越广泛,已经成为工业现代化的重要组成部分。

一、工业机器视觉技术的原理和特点工业机器视觉技术的核心是图像处理技术。

通过对数字图像的识别、分析、处理和存储,实现对工件形状、尺寸、颜色、纹理等特征的高速检测和精确测量。

其中,图像传感器起到非常重要的作用。

它会将光学映像转化为数字信号,并实现图像采集。

与传统的人工检测方式相比,机器视觉技术无需依赖技术工人,可以大大节约人力成本。

同时,由于机器视觉技术能够快速、准确地检测到问题,因此也可以避免因人工检测漏掉问题所带来的产品质量风险。

二、工业机器视觉技术的应用(一)机器视觉质量检测机器视觉技术可以应用于产品的表面缺陷检测、棱角毛刺检测、裂纹检测、尺寸精度检测等方面。

例如,在汽车工业中,汽车制造商可以通过机器视觉技术对发动机缸套、气门导管等关键零部件的质量进行检测,以确保它们符合产品标准。

机器视觉技术可以实现对半导体芯片、电子元件、玻璃光学件、液晶显示屏、手机外壳等产品的检测,大幅提高产品质量和生产效率。

(二)机器视觉组装和排布机器人在生产线上无人化操作已经不可避免,而机器视觉技术可以辅助机器人进行部件抓取、拼装、定位等操作。

通过机器视觉技术,机器人可以实现更加复杂的操作,提高整条生产线的效率和品质。

例如,在食品生产线上,机器视觉技术可以辅助机器人进行异形物品的识别和抓取,实现精确配料和食品组装。

在汽车零部件工厂中,机器视觉技术可以精确检测汽车零部件的尺寸、形状和颜色等特征,实现零部件的精确排布和拼装。

(三)机器视觉基于物联网的应用随着物联网的发展,机器视觉技术也在往物联网方向发展。

将机器视觉技术与物联网相结合,可以实现对生产线上的整个生产过程的远程监测和控制。

人工智能知识:机器视觉与人工智能

人工智能知识:机器视觉与人工智能

人工智能知识:机器视觉与人工智能随着科技的发展,人类在各个方面都在寻求以人工智能的方式来提高效率。

而机器视觉就是其中之一。

机器视觉是指让计算机识别和处理图片和视频信息的能力,它属于人工智能技术的一部分。

机器视觉可以通过计算机的视觉和图像方式来实现各种不同的功能,比如图像识别,目标搜索,场景分析等等。

本文将着重讨论机器视觉和人工智能之间的关系以及机器视觉在人工智能中的应用。

一、机器视觉的概念和技术原理机器视觉的学科主要研究计算机视觉和图像处理两个方面,主要应用于智能监控,智能制造,物流自动化等领域。

机器视觉的主要任务是视觉信息处理,包括图像,模式识别,物体检测和跟踪等。

其中最重要的技术是图像处理和模式识别技术,这是机器视觉实现自动化和智能化的基础。

图像处理是机器视觉的基础技术之一,它主要是对图像进行数字化处理,包括图像预处理、特征提取、图像分类等。

而模式识别技术是通过对已知的样本进行分析和学习,最后形成一个由特征向量组成的模型。

这个模型可以识别输入的图片,并对输入的信息进行分类、跟踪和分析。

二、机器视觉和人工智能机器视觉和人工智能的关系十分密切,两者是相辅相成的。

人工智能是一种可以模仿人类智能特性的科技,旨在培养机器进行各种复杂的推理和任务执行、自动化流程,实现机器人技术的控制,并从中学习和发展新技术。

基于机器视觉的技术,能够让计算机像人类一样感知和理解世界,从而更好地接近人类的真实需求。

机器视觉是人工智能的重要组成部分。

懂得看和理解图像是人类理解世界的重要手段。

相比较而言,机器视觉是权衡的一种选择。

人们可以使用许多成分设备来实现人工视觉和智能处理,比如光学传感器、激光测距仪、声学数组等等。

但是,对于大多数人手中拥有的那个计算机,采用摄像机、麦克风和其他传感器来模拟自然感知过程的话,就是通过机器视觉来实现的。

所以说,机器视觉也可以看作是计算机实现人工智能和自然交互的一个模拟过程。

在实际的应用过程中,机器视觉往往需要使用图像处理和模式识别技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.机器视觉的组成及工作原理
机器视觉系统处理的核心目标是“图像”,一目标物体的“图像”被单帧或多帧采集量化为数字化信息,反之可以说,用一些离散的数字化数值阵列就可以表示一目标物体的“图像”。

对于复杂的“图像”或需要进行更高精度的处理来说,采集量化的数字化信息则要求更大。

即处理精度与数字化信息量成正比。

一般来说,图像用多级亮度来表示并进行量化采集,即所谓灰度法。

以灰度来表示图像量化的每一个像元素特征。

基于灰度法的机器视系统框图由图1所示。

机器视觉系统包括:光路系统、面阵摄像机(CCD)、量化存贮单元、模板库、专用高速处理单元、监视单元等大模块。

其中光路系统由程控光源、变焦伺服机构、自动光圈、光学镜片组等组成。

对于以灰度进行量化处理的机器视觉系统而言,图像亮度是一个尤为重要的参数,而决定这一重要参数的因素便是光路系统的质量。

一般来说机器视觉系统为了避免环境自然光线或灯光对其工作状态的影响,光路设计均采用自足光源,程控光源要求亮度大、亮度可调、均匀性好、稳定性高,以抑制外界环境各种光对图像质量产生较大影响而导致机器视觉系统故障或误判行为。

其次,光路系统设计需满足视场需求和图像分辨率要求。

它的设计质量决定了图像质量,决定了机器视觉系统的准确率。

工业生产中采用的机器视觉系统,灰度级差异较大,小到二值图像、大到256灰度级,以及特殊需求可更大。

采用的灰度级越大,数字化图像越逼真清晰,越接近原视图。

一般来说,人眼能分辨的灰度级约为50~60级之问。

因此64级灰度足以提供必要的观察信息及辨认需求,这是许多机器视觉系统采用64级灰度级的原因。

但是,要使机器视觉系统具有很强的精密区别目标的能力,一般采用的灰度级为256级,但是由于要处理的信息量很大,要求处理单元有足够快的运算能力。

例如采用512×512阵列像元图像量化为二值图像,一帧图像信息量为262 144Bit,而按256级灰度时,一帧图像信息量为2 000 000 Bit。

因此,实用化的机器视觉系统除尽可能选用专用高速处理单元外,还应根据不同应用需要选取,在识别处理精度、处理时间长短、像元灰度级等因素之间进行综合平衡,以达到高效、实用的目的。

机器视觉系统常用的摄像机一般为固态CCD或线阵摄像机,面阵分辨率可为300~700线或更高,线阵分辨率则可多达4 048像元以至更高。

根据需求进行取舍配置。

机器视觉系统的精度取决于摄像机视场和所包含的像元数量,视场越小,每个像元代表的距离也越小,识别精度也越高。

标准CCD像元阵列为768×576和512×512二种。

另外,为满足某些需要较大视场较小分辨率的要求,可设计多路CCD将视图分割为一个个较小视场,又可提高分辨率。

机器视觉系统的核心是专用高速图像处理单元,如何把存入存贮单元大量离散的数字化信息与模板库信息进行比较处理,并快速得出结论是处理单元软、硬件面对的问题。

运算信
息量大,意味着处理结果的准确率高,但如果运算时问较长,机器视觉便失去其存在的意义。

这种信息量与运算速度之问的矛盾已成为世界各国微处理器研制生产厂商必须面对的课题。

目前,已有多种视觉专用硬件处理器芯片、DSP芯片等等不断涌现并被广泛应用于计算机、通讯、娱乐等产品之中,进行高速图像计算、数据压缩,解压缩、贮存与传输。

除去硬件因素,选用适当的算法,可以提高处理运行效率,减少存贮容量、提高运算速度及准确度。

图像处理算法软件及技巧也成为高效机器视觉系统需要精益求精、探索不止的目的和不可缺少的重要组成部分。

2.。

相关文档
最新文档