机器视觉基础

合集下载

技能培训专题机器视觉重要基础

技能培训专题机器视觉重要基础

技能培训专题机器视觉重要基础机器视觉是指使用计算机视觉技术和现代机器学习算法来实现对视觉世界的感知和理解。

机器视觉一直是计算机视觉领域中的重要分支,它使用图像或视频数据来对物体、场景等进行分析,从而实现识别、测量、定位、跟踪、分割等功能。

机器视觉是在工业、医疗、安防、自动驾驶、智能家居等领域中应用广泛的技术,它的应用不断拓展和深化,对人类社会的生产力和生活水平有重要影响。

机器视觉的基础知识和技能培训非常重要,以下是机器视觉的重要基础技能:1.数字图像处理技术数字图像处理技术是机器视觉领域的基础,主要涉及图像采集、图像预处理、图像增强、图像恢复、图像分割、图像特征提取、图像分类和图像识别等方面。

学习数字图像处理技术需要掌握各种数字滤波器、几何变换、灰度变换、运动补偿、压缩编码等基本算法,以及各种图像处理工具的使用方法。

2.计算机视觉算法计算机视觉算法是机器视觉中最关键的技术之一。

计算机视觉算法主要涉及特征提取、特征匹配、目标检测、目标跟踪、三维重建等方面。

学习计算机视觉算法需要掌握各种数学基础理论,如线性代数、概率论、统计学、优化理论等,以及各种机器学习算法、深度学习算法等。

3.机器人学机器视觉是机器人技术中的重要分支之一,学习机器人学能够让我们更好地理解机器人结构、运动学和动力学,从而更好地设计机器人视觉系统和控制系统。

机器人学涉及的知识点很广泛,包括机器人运动学、机器人轨迹规划、机器人状态估计和控制等方面。

机器视觉的基础知识和技能培训非常重要,它涉及到数字图像处理、计算机视觉算法和机器人学等多个方面。

只有掌握了这些基础技能,才能更好地设计和实现机器视觉系统,为各个领域的应用提供更好的支持和解决方案。

《机器视觉基础》课件

《机器视觉基础》课件
在农业领域,机器视觉技术被用于监测作物 生长状况、病虫害识别等方面。通过对农田 的图像采集和处理,机器视觉系统能够实时 监测作物的生长情况,及时发现病虫害,为 农民提供科学的管理依据,从而提高农产品 的产量和质量。
安全监控
要点一
总结词
机器视觉在安全监控领域的应用,能够提高安全防范能力 和监控效率。
机器视觉的优势与挑战
优势
非接触式、高精度、高效率、高可靠 性、可实现自动化和智能化等。
挑战
数据量大、计算复杂度高、对光照和 角度敏感、对遮挡和噪声的鲁棒性差 等。
02
机器视觉系统组成
图像获取
图像获取是机器视觉系统的第一步, 负责将目标物体转化为数字图像,以 便后续处理。
图像获取的关键在于获取高质量的图 像,以便后续处理能够准确地进行特 征提取和目标识别。
基于概率统计的算法
总结词
利用概率统计理论,对图像中的目标进行识别和分类的方法。
详细描述
基于概率统计的算法通过建立目标模型,利用概率分布和统计规律对图像中的目标进行识别和分类。 该算法具有较强的鲁棒性和适应性,能够处理一些复杂的视觉任务,如目标跟踪、场景识别等。
基于深度学习的算法
总结词
利用深度神经网络对图像进行层次化特征提取和分类的方法。
VS
详细描述
机器视觉技术被广泛应用于工业生产线上 ,对产品进行外观、尺寸、缺陷等方面的 检测。通过高精度的图像采集和处理,机 器视觉系统能够快速准确地识别出不合格 品,并自动剔除或进行分类,从而提高生 产效率和产品质量。
农业检测
总结词
机器视觉在农业领域的应用,有助于提高农 产品的产量和质量。
详细描述
03
02
角点检测

机器视觉基础知识(PDF)

机器视觉基础知识(PDF)

机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(7)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(8)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(9)
镜头的调制传递函数MTF
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(4)
镜头接口 – C-MOUNT 镜头的标准接口之一,镜头的接口螺纹参数: 公称直径:1“ 螺距:32牙 – CS-Mount是C-Mount的一个变种,区别仅仅在于 镜头定位面到图像传感器光敏面的距离的不同,C- Mount 是17。5mm,CS-Mount是12。5mm。 – C/CS能够匹配的最大的图像传感器的尺寸不超过1“。
一、镜头基本概念(10)
系统的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(1)
按照等效焦距分为 广角镜头
等效焦距小于标准镜头(等效焦距为50mm)的镜头。特点 是最小工作距离短,景深大,视角大。常常表现为桶形畸变。 中焦距镜头 焦距介于广角镜头和长焦镜头之间的镜头。通常情况下畸变 校正较好。 长焦距镜头 等效焦距超过200mm的镜头。工作距离长,放大比大,畸变 常常表现为枕形状畸变。
像素速率(Pixel Rate)
相机每秒中能够输出像素的个数,仅仅对于数字相机有意 义。
机器视觉中的图像采集技术硬件基础知识
第二节 工业相机
一、工业相机的基本概念(5)
卷帘快门(Rolling Shutter)

机器视觉基础

机器视觉基础

机器视觉基础机器视觉是一种让计算机系统具备解释和理解图像或视频的能力的技术。

它模拟了人类视觉系统的工作方式,通过摄像头或其他传感器捕获图像,并对图像进行处理和分析,从而实现对图像内容的理解和识别。

机器视觉技术已经在各个领域得到广泛应用,包括工业自动化、医疗诊断、安防监控、无人驾驶等。

在机器视觉的基础上,计算机系统可以实现识别和分类图像中的物体、人脸或文字,检测图像中的运动物体,测量物体的尺寸和形状,甚至实现对图像内容的理解和推理。

这些功能的实现离不开图像处理、模式识别、机器学习和人工智能等技术的支持。

图像处理是机器视觉的基础,它包括对图像进行预处理、特征提取和特征匹配等步骤。

预处理是为了提高图像质量,包括去噪、锐化、增强对比度等操作;特征提取是指从图像中提取出具有代表性的特征,如边缘、纹理、颜色等;特征匹配是指将提取出的特征与已知的模式进行对比,从而实现对图像内容的识别和分类。

模式识别是机器视觉的核心技术之一,它是通过对图像中的特征进行分类和识别,从而实现对图像内容的理解。

模式识别包括监督学习和无监督学习两种方式。

监督学习是在已知样本的基础上进行训练,从而建立起分类器或识别器;无监督学习则是在没有标注样本的情况下进行特征聚类和模式识别。

机器学习是机器视觉的另一个重要支撑技术,它是指通过对大量数据进行学习和训练,从而实现对图像内容的自动识别和分类。

机器学习包括监督学习、无监督学习和强化学习等方式。

监督学习是在已知标注数据的基础上进行模型训练,无监督学习则是在没有标注数据的情况下进行模式发现,强化学习则是通过与环境的交互学习来获得最优策略。

人工智能是机器视觉的终极目标,它是指让计算机系统具备类似于人类的智能和思维能力。

人工智能技术包括知识表示、推理推断、自然语言处理等多个方向,通过结合机器视觉技术,可以实现对图像内容的高级理解和智能决策。

总的来说,机器视觉基础是机器视觉技术发展的基石,它包括图像处理、模式识别、机器学习和人工智能等多个方向。

机器视觉基础知识培训课件

机器视觉基础知识培训课件
机器视觉具有高效、准确、可靠、非 接触性等优点,能够适应各种复杂环 境,广泛应用于工业自动化、智能安 防、医疗诊断等领域。
机器视觉的应用领域
01
02
03
04
工业自动化
检测产品质量、定位与装配、 包装与码垛等。
智能安防
人脸识别、车牌识别、行为分 析等。
医疗诊断
医学影像分析、病灶检测与识 别等。
其他领域
自动驾驶案例
总结词
机器视觉是自动驾驶技术的关键组成部分,为车辆提供实时路况感知和目标识别能力。
详细描述
自动驾驶汽车通过安装多个高分辨率摄像头和传感器,获取周围环境的三维信息。机器 视觉技术对这些信息进行处理和分析,识别出道路标志、车辆、行人以及其他障碍物, 为自动驾驶系统提供决策依据。这使得车辆能够在复杂的道路环境中实现自主导航和驾
相机
相机的作用
捕捉目标物体的图像。
相机类型
面阵相机、线阵相机、立体相机等。
相机选择要点
根据应用场景选择合适的相机类型和分辨率。
图像采集卡
图像采集卡的作用
将相机捕捉的图像转换为数字信号,便于计算机处理。
图像采集卡性能参数
分辨率、传输速率、接口类型等。
图像采集卡选择要点
根据计算机性能和图像处理要求选择合适的图像采Байду номын сангаас卡。
驶,提高道路安全性和通行效率。
人脸识别案例
总结词
人脸识别技术利用机器视觉实现身份验 证和安全监控,广泛应用于金融、安防 等领域。
VS
详细描述
人脸识别系统通过高分辨率摄像头捕捉人 的面部特征,利用机器视觉算法对图像进 行分析和处理,提取出面部的各种特征点 。这些特征点与数据库中的数据进行比对 ,以实现身份的快速验证。人脸识别技术 广泛应用于金融交易、门禁系统、公共安 全监控等领域,提高安全性和便利性。

机器视觉培训教程

机器视觉培训教程

机器视觉培训教程第一点:机器视觉基础理论机器视觉是人工智能的一个重要分支,它涉及到计算机科学、图像处理、模式识别、机器学习等多个领域。

在本部分,我们将介绍机器视觉的基础理论,包括图像处理、特征提取、目标检测、图像分类等核心概念。

1.1 图像处理:图像处理是机器视觉的基本环节,主要包括图像增强、图像滤波、图像边缘检测等操作。

这些操作可以帮助机器更好地理解图像中的信息,提取出有用的特征。

1.2 特征提取:特征提取是机器视觉中的关键步骤,它的目的是从图像中提取出具有区分性的特征信息。

常用的特征提取方法有关联矩阵、主成分分析(PCA)、线性判别分析(LDA)等。

1.3 目标检测:目标检测是机器视觉中的一个重要任务,它的目的是在图像中找到并识别出特定目标。

常用的目标检测方法有基于滑动窗口的方法、基于区域的方法、基于深度学习的方法等。

1.4 图像分类:图像分类是机器视觉中的应用之一,它的目的是将给定的图像划分到预定义的类别中。

常用的图像分类方法有支持向量机(SVM)、卷积神经网络(CNN)等。

第二点:机器视觉应用案例机器视觉在现实生活中的应用非常广泛,涵盖了工业检测、自动驾驶、安防监控、医疗诊断等多个领域。

在本部分,我们将介绍几个典型的机器视觉应用案例,以帮助大家更好地理解机器视觉的实际应用。

2.1 工业检测:机器视觉在工业检测领域的应用非常广泛,它可以用于检测产品的质量、尺寸、形状等参数,提高生产效率,降低人工成本。

2.2 自动驾驶:机器视觉在自动驾驶领域的应用主要包括环境感知、车辆定位、目标识别等。

通过识别道路标志、行人、车辆等障碍物,自动驾驶系统可以做出相应的决策,保证行驶的安全性。

2.3 安防监控:机器视觉在安防监控领域的应用主要包括人脸识别、行为识别、车辆识别等。

通过实时监控和分析监控画面,机器视觉系统可以有效地发现异常情况,提高安防效果。

2.4 医疗诊断:机器视觉在医疗诊断领域的应用主要包括病变识别、组织分割、影像分析等。

机器视觉基础

机器视觉基础
Dr. Yu Wenyong
机械制造பைடு நூலகம்
汽车
IC装备
消费电子
11
4.1电子与半导体行业应用
• LED和LCD测试
– 大小、形状、亮度、颜色ON/OFF – LCD平板玻璃
• PCB检查
– 焊点质量、丝印质量 – 钻孔对位
• IC芯片、元件检测
– 有无、方向/极性 – 印刷质量、字符识别 – 管脚排列一致性
机器视觉自动检测技术
余文勇
Dr. Yu Wenyong 1
• 联系方式
– 机械学院 数字制造国家重点实验室
– E-mail:ywy20052006@
Dr. Yu Wenyong
2
学习目的
• 知识-了解机器视觉与图像处理的基本原 理、构造、编程技术,以及各种机器视觉 检测技术的相关知识; • 能力-熟悉图像处理程序的编写与调试, 具备基本的编程解决问题的能力; • 情商-具有机电工程师应有的认真负责之 态度
• 机器视觉易于实现信息集成,是实现计算机集成 制造的基础技术。
Dr. Yu Wenyong
8

机器视觉与计算机视觉
图 像 处 理
模 式 识 别
机 器 学 习
认 知 科 学
人 工 智 能
计 数 算 机 图 学 形 学
传 自 计 计 感 动 算 算 器 控 机 机 制 软 网 件 络
机 械 设 计
应 用 光 学
14
4.4包装行业应用
• 药品、化妆品包装
– 外观、条码 – 完整性
• 食品包装
– 生产日期、条码、密封性
Dr. Yu Wenyong
15
4.5汽车行业应用
• 仪表盘校准(速度表) – 由表盘图像计算指针位置 • 风挡雨刮器零件分类

机器视觉基础课件

机器视觉基础课件

机器视觉的应用领域
工业自动化
医疗诊断
机器视觉在工业自动化领域应用广泛, 如生产线上的零件检测、装配、定位 等,能够提高生产效率和产品质量。
机器视觉在医疗诊断领域的应用包括 医学影像分析、病灶识别等,能够帮 助医生提高诊断的准确性和效率。
智能安防
机器视觉在智能安防领域的应用包括 人脸识别、车牌识别、行为分析等, 能够提高安全监控的准确性和实时性。
系统性能评估
准确性评估
实时性评估
通过对比实际结果与机器视觉系统输出的 结果,评估系统的准确性。
测试系统对实时图像的处理速度,确保满 足实际应用的需求。
鲁棒性评估
可维护性评估
在不同环境条件下测试系统的稳定性,评 估其鲁棒性。
评估系统的可维护性和可扩展性,以便在 未来进行升级或改进。
感谢您的观看
THANKS
机器视觉基础课件
• 图像处理 • 特征提取 • 目标识别
01
机器视觉概述
定义与特点
定义
机器视觉是通过计算机模拟人类的视 觉功能,利用图像处理和模式识别等 技术,实现对图像的自动识别、跟踪 和测量的技术。
特点
机器视觉具有高效、准确、可靠、非 接触性等优点,能够适应各种复杂的 环境和任务,广泛应用于工业自动化、 智能安防、医疗诊断等领域。
系统优化
参数调整 根据实际应用情况,调整相机、镜头的 参数,如曝光时间、增益等,以获取更
好的图像效果。 计算资源优化
合理分配计算资源,如CPU、GPU等, 以提高机器视觉系统的处理效率。
算法优化 针对特定的应用场景,对图像处算 法进行优化,以提高处理速度和准确 性。
网络通信优化 优化网络通信协议和传输方式,确保 图像数据能够实时、稳定地传输。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 测量 – 亚像素概念 ➢ 特征点 – 5x5 像素区域
校正
• 目标校正 ➢ 使用标准的圆点目标校正板 ➢ 镜头畸变补偿 ➢ 比例缩放 – 例如: 在1英寸视场内有1000 个像素 = 0.001”/像素 ➢ 重新标定变化的检测必要条件。(镜头,工作距离,光源等等)
• 比例缩放 ➢ 无变形补偿 ➢ 值=单位值/像素
模板 – Adaptive/Greyscale
➢ 训练 理想模式 ➢ 检测图像的不同部分 ➢ 结果 – 结果差异图像, blob数据, pass/fail
读取工具
➢ 条形码 (UPC, 128, 2 of 5, 等等) ➢ 数据点阵 ➢ (光学字符识别)OCR
➢ 训练字形库 ➢ 设置最小匹配率以及匹配字符
镜头
镜头兼容芯片尺寸和相机芯片尺寸关系
印刷和纸张检测
光学器件
• 标准镜头 ➢ 成本较低, 尺寸较小 ➢ 透视误差 ➢ 距离的改变会引起大小的改变 ➢ 畸变大 ➢ 较大的检测对象, 特征点检测, 测量相对差
光学器件
• 远心镜头 ➢ 成本较高, 体积较大 ➢ 无透视误差 ➢ 距离不改变大小 ➢ 畸变小 ➢ 较小检测对象, 精准测量
➢ 多个ROI ➢ 通过百分比、数量检测 ➢ 结果 – 亮度, 像素数量, pass/fail
特征检测 – Blob 分析
➢ 多个ROI ➢ 外形过滤(面积,高度,宽度等) ➢ 结果 – blob序列, blob数量, pass/fail
模式匹配
➢ 训练 理想模式 ➢ 查找最佳匹配 ➢ 结果 – 定位, 匹配率, pass/fail
纯白 = 255 中等灰度 = 128 纯黑 = 0
CCD & CMOS
填充因数
系统干扰
响应速度 动态范围 建模 速度 图像质量 耗电性能
CCD

低 中等
高 快,质量高 中等偏高

中等
CMOS
中等 中等
稍快 中等 差 较高
一般
稍微少于CCD
镜头
➢分辨率 ➢焦距 ➢景深 ➢兼容芯片尺寸 ➢远心 ➢畸变
1.长距离传输线缆价格 稍贵
GigE 1000Mbps
Ethernet 100Mbps
100m
100m
1.易用,价格 低,多相机
2.传输距离远 ,线缆价格低
3.标准GigE Vision协议
1.易用, 价格低 2.传输距 离远,线 缆价格低
1.CPU占用高 2.对主机配置
要求高 3.有时存在丢
包现象
频闪灯; ➢ 运行成本低、寿命长的LED,会在综合成本和性能方面体现出更大
的优势; ➢ 可根据客户的需要,进行特殊设计。
光源
两种常见正向打光方式
暗视野
亮视野
光源
两种常见正向打光方式
亮视野
暗视野
光源
低角度
光源
前向光
照明光源
光源
背光
光源
照射物
白色光
(混合色 )
蓝色
其它颜色 被吸收
光源 被检测零件特征
原理是在灯泡内注入碘或溴等卤素气体,在高温下,升华的钨丝与卤素进行化学 作用,冷却后的钨会重新凝固在钨丝上,形成平衡的循环,避免钨丝过早断裂。因此 卤素灯泡比白炽灯更长寿。
卤素灯供电电压通常分为交流220V和直流12V两种。 例子:氙气灯泡
光源
LED光源的优势
➢ 可制成各种形状、尺寸及各种照射角度; ➢ 可根据需要制成各种颜色,并可以随时调节亮度; ➢ 通过散热装置,散热效果更好,光亮度更稳定; ➢ 使用寿命长(约3万小时,间断使用寿命更长); ➢ 反应快捷,可在10us或更短的时间内达到最大亮度; ➢ 电源带有外触发,可以通过计算机控制,起动速度快,可以用作
机器视觉基础知识
机器视觉技术示意图
触发信号
获取图像
图像处理
sensor PLC
Robot
输出
Digital output Serial out TCP/IP out Ethernet I/P
Field Bus
机器视觉系统概述
成像系统 ➢ 相机, 光学部件,光源 ➢ 目标 – 特征部分与“背景”形成高反差的图像 ➢ 校正 & 比例缩放
特征检测
多出/缺损特征以及缺陷检测 方法…
➢ 灰度分析 ➢ 灰度百分比 ➢ 像素统计
➢ Blob 分析 ➢ 灰度像素聚合 ➢ 通过大小以及外形过滤
➢ 模式匹配 ➢ 模板匹配 (可训练) ➢ 结果 – 条形码, 字符读取(OCR)等
特征检测 – Average Intensity/Contrast
视觉应用建立的基本思路
➢ 前期评估:拿到检测样品、要求。根据要求在实验室得 到图像做出基本思路程序以及得出可行性结果。
➢ 中期制作:根据前期评估制作出项目需要的硬件不见以 及利用视觉分析软件编辑可用出可用检测程序。
➢ 后期调试运行:到现场根据情况安装设备,进行后期调 试运行。
编程详细思路:
➢ 选择/设定触发方式 ➢ 获取图像 ➢ 图像检测项目确认 ➢ 工具原点定位 ➢ 检测、测量、模板对比等检测方法 ➢ 得到结果做出分析 ➢ 根据要求结果输出(数字I/0、串口、网口)
1.价格高
Usb2.0 480Mbps
5m 1.易用 2.价格低 3.多相机
1.无标准协 议
2.CPU占用高
1394a 400Mbps
1394b 800Mbps
4.5m
4.5m
1.易用,价格低,多相 机
2.传输距离远,实际线 缆可达到17.5m,光纤传
输可达100m 3.有标准DCAM协议
4.CPU占用最低
光学器件
镜头
光学器件
标准镜头
远心镜头
镜头
景深
印刷和纸张检测
光源
目的
➢ 将被测物体与背景尽量明显分别,获得高品质、高对 比度的图像。
重要性 ➢ 直接影响处理精度和速度,甚至系统的成败。
光源
• 目标 – 高对比图像! ➢ 最明显的检测特征点 ➢ 最不明显的“背景”和干扰
• 打光注意事项 ➢ 被检测零件的特征 ➢ 打光技术 ➢ 彩色效果
吸收
反射
传递
漫反射
镜面反射
光源 打光技术
明视场
暗视场
背光
Dome 光
结构光
同轴光
光源 案例
明视场
Dome 光
光源 彩色效果
白光得到各颜色
RV
O
B
YG
单色图像
滤光镜
偏振 ➢用于减少闪烁 ➢塑料或者玻璃
交叉偏光镜
偏光镜
滤光镜应用
无滤色镜
红色滤色镜
绿色滤色镜
相机
工业相机有多种类型
常见的分类方式如下
图像增强 – 亮度级别/二值化
✓ 全部或者部分图像 ✓ 平衡亮度级别的不一致 ✓ 创建黑白图像 ✓ 结果 – 改良后的图像
优化工具运行速度,节约检测时间,实现精确定位检测 方法…
➢ 边缘定位 ➢ Blob定位 ➢ 模式匹配
定位 – Origin 工具
➢ 1 到 3 个ROI ➢ 单点
➢ 中心功能 ➢ 结果 - X, Y, 以及角度
灰度
• 灰度像素深度 ➢ 转换光亮度级别成可测量信号级别 ➢ 0 – 255 (0 – 黑, 255 – 白) ➢ 部分软件使用百分比表示方法(0-100%)
8 bit(256 greylevels) 0 26 51 77 102 128 153 179 204 230 255 Percentage Scale 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
光源
高频荧光灯
卤 素 灯 LED灯
光源
光源
荧光灯,传统型荧光灯即低压汞灯,是利用低气压的汞蒸气在通电后释放紫外线 ,从而使荧光粉发出可见光的原理发光,因此它属于低气压弧光放电光源。
卤素灯泡(英文:halogen lamp),简称为卤素泡或者卤素灯,又称为钨卤灯泡 、石英灯泡,是白炽灯的一个变种。
1.无标准 协议
2.带宽过 低
3.CPU占 用过高
相机
➢面阵相机芯片是M*N方式排列; ➢线阵相机芯片是1*N方式;
成像系统分辨率
系统组成 – 相机, 光学部件, 软件 最小可区别的特征大小 系统测量精度– 系统精度、重复精度 影响因素
➢ 分辨率 – 640x480… 1600x1200 ➢ 光学部件质量 ➢ 软件分辨率
灰度(阀值) • 图像黑白部分分割界限 • 自动或者固定的阀值方法
0-25%
0-75%
梯度分析
• 边缘检测方法 • 灰度值的变化率
Greylevel el Gradient n
100 90 80 70 60 50 40 30 20 10 0 28
Greylevel vs. Gradient
30
el Gradient
➢黑白相机和彩色相机 ➢面阵相机和线阵相机 ➢CCD相机和CMOS相机 ➢模拟相机,数字相机,智能相机
相机
速度 距离 优势
缺点
CameraLink Base: 1.5Gbps Medium: 3.8Gbps Full: 5.1 Gbps
10m 1.带宽高 2.有带预处理功能 的采集设备 3.抗干扰能力强
20
10
0
-10 -20
-30
38
48
58
68
Pixel
图像增强
较少多余的干扰 提高被测的特征点或者边缘 可能占用宝贵的检测时间 方法…
➢ 形态学方法 ➢ 改变亮度级别 ➢ 二值化
降低干扰 – 腐蚀/膨胀/打开/关闭/数学
相关文档
最新文档