学习笔记5:大数据预处理与大数据挖掘十大经典算法
数据挖掘10大经典算法

数据挖掘10大经典算法
1. K-均值聚类算法:将数据集分成k个簇,使得同簇的样本之间的距离最小化。
2. 支持向量机算法:通过定义分类超平面来实现分类任务,使得超平面到两类样本的最小距离最大化。
3. 决策树算法:通过一系列的决策规则对样本进行分类或预测。
4. 朴素贝叶斯算法:基于贝叶斯定理,通过计算样本的概率来进行分类或预测。
5. 随机森林算法:通过构建多个决策树,然后集成这些决策树的结果来进行分类或预测。
6. AdaBoost算法:通过序列化训练和集成多个弱分类器,来实现更准确的分类。
7. 主成分分析算法:通过线性变换将高维数据转化为低维数据,同时保留原始数据的主要信息。
8. Apriori算法:用于挖掘关联规则的算法,通过发现频繁项集来确定项集之间的关联性。
9. 线性回归算法:通过拟合数据集中的线性模型,并预测因变量的值。
10. 基于规则的分类算法:通过对事先定义的规则进行匹配和判断,来进行分类任务。
数据挖掘十大经典算法

数据挖掘十大经典算法数据挖掘是一种通过计算机科学的方法,从大量数据中挖掘出有用的信息和知识的过程。
在这个过程中,数据挖掘算法扮演着非常重要的角色,它们能够帮助我们从数据中抽取出精华,更好地理解和利用数据。
下面是十大经典数据挖掘算法。
1. K-Means算法:K-Means算法是一种聚类算法,可以将数据集分成K个不同的类别。
这种算法的基本思想是将数据分成若干个类别,使得同一类别内的数据点的距离比其他类别内的数据点的距离更短。
2. Apriori算法:Apriori算法是一种关联规则挖掘算法,可以用来发现最常见的数据项之间的关联性。
这种算法基于频繁项集的概念,通过计算数据中频繁项集的支持度和置信度来挖掘关联规则。
3. 决策树算法:决策树算法是一种基于树结构的分类算法,可以将数据集分成若干个不同的类别。
这种算法的基本思想是通过递归地将数据集划分成不同的子集,直到子集中所有数据都属于同一类别为止。
4. SVM算法:SVM算法是一种基于统计学习理论的分类算法,可以用于解决非线性问题。
这种算法的基本思想是将数据集映射到高维空间中,然后在高维空间中建立超平面,将不同类别的数据分开。
5. 神经网络算法:神经网络算法是一种模拟人脑神经系统的分类算法,可以用来处理非线性问题。
这种算法的基本思想是通过构建一个多层的神经网络,将输入数据映射到输出数据。
6. 贝叶斯分类算法:贝叶斯分类算法是一种基于贝叶斯定理的分类算法,可以用来预测数据的类别。
这种算法的基本思想是根据已知数据的先验概率和新数据的特征,计算这个数据属于不同类别的概率,然后选择概率最大的类别作为预测结果。
7. 随机森林算法:随机森林算法是一种基于决策树的集成算法,可以用来处理大量的数据和高维数据。
这种算法的基本思想是通过随机选取特征和样本,构建多个决策树,然后将多个决策树的结果汇总,得到最终的分类结果。
8. Adaboost算法:Adaboost算法是一种基于加权的集成算法,可以用来提高分类算法的准确率。
十大经典大数据算法

十大经典大数据算法大数据算法是指应用于大规模数据集的算法,旨在从这些数据中提取有价值的信息和洞察力。
下面是十大经典大数据算法的介绍:1. MapReduce算法:MapReduce是一种用于处理大规模数据集的编程模型,它将任务分成多个子任务并在分布式计算环境中并行执行。
这种算法在Google的大数据处理框架Hadoop中得到广泛应用。
2. PageRank算法:PageRank是一种用于评估网页重要性的算法,通过分析网页之间的链接关系来确定网页的排名。
它在谷歌搜索引擎的排名算法中起到了重要作用。
3. Apriori算法:Apriori算法用于挖掘关联规则,通过发现数据集中的频繁项集来识别项目之间的关联。
该算法在市场篮子分析和推荐系统中有广泛应用。
4. k-means算法:k-means算法是一种聚类算法,用于将数据集划分为k个不重叠的簇。
该算法在数据挖掘和图像分析中常用于聚类分析。
5. 随机森林算法:随机森林是一种集成学习算法,通过构建多个决策树并对它们的结果进行投票来进行分类或回归。
该算法在数据挖掘和机器学习中常用于分类和预测问题。
6. SVM算法:支持向量机(SVM)是一种监督学习算法,用于进行分类和回归分析。
它通过构建一个最优的超平面来将不同类别的样本分开。
7. LDA算法:潜在狄利克雷分配(LDA)是一种用于主题建模的生成模型,用于从文本数据中发现隐藏的主题结构。
该算法在自然语言处理和信息检索中有广泛应用。
8. 特征选择算法:特征选择是一种用于从数据集中选择最相关特征的方法。
常用的特征选择算法包括信息增益、卡方检验和互信息等。
9. 随机梯度下降算法:随机梯度下降是一种用于优化模型参数的迭代优化算法。
该算法通过计算损失函数的梯度来更新模型参数,从而最小化损失函数。
10. 奇异值分解算法:奇异值分解(SVD)是一种矩阵分解方法,用于降低数据维度和提取数据的主要特征。
该算法在推荐系统和图像处理中常用于降维和特征提取。
数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用数据挖掘是指从大量的数据中发现关联规则、分类模型、聚类模型等有用的信息的过程。
以下是数据挖掘领域的十大经典算法原理及应用:1. 决策树算法(Decision Tree)决策树是一种基于树形结构的分类模型,它通过构建树来将输入数据集划分为不同的类别。
决策树算法在金融风险评估、医疗诊断等领域有广泛应用。
2. 支持向量机算法(Support Vector Machine,SVM)支持向量机是一种二分类模型,其目标是在高维空间中找到一个最优的超平面,将不同类别的样本分离开来。
SVM在图像识别、文本分类等领域有广泛应用。
3. 神经网络算法(Neural Network)神经网络模拟人脑的工作原理,通过连接众多的神经元来完成学习和预测任务。
神经网络在图像处理、自然语言处理等领域有广泛应用。
4. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的统计分类方法,它假设所有特征之间相互独立,并通过计算后验概率来进行分类。
朴素贝叶斯在垃圾邮件过滤、文本分类等领域有广泛应用。
5. K均值聚类算法(K-means Clustering)K均值聚类是一种无监督学习算法,它通过将样本分成K个簇来实现数据的聚类。
K均值聚类在市场细分、客户群体分析等领域有广泛应用。
6. Apriori算法Apriori算法是一种频繁项集挖掘算法,它可以找出数据集中项之间的关联关系。
Apriori算法在购物篮分析、推荐系统等领域有广泛应用。
7. PageRank算法PageRank算法是一种用于网页排序的算法,它通过计算网页之间的链接关系来确定网页的重要性。
PageRank算法在引擎领域有广泛应用。
8. 随机森林算法(Random Forest)随机森林是一种集成学习算法,它通过构建多个决策树,并通过投票方式来进行分类或回归。
随机森林在金融风险评估、信用评分等领域有广泛应用。
9. AdaBoost算法AdaBoost是一种迭代的强学习算法,它通过调整样本权重来训练多个弱分类器,并通过加权投票方式来进行分类。
数据挖掘领域中的10大算法

数据挖掘领域中的10大算法在当今数字化社会中,数据挖掘已经成为了广泛应用的一种技术手段。
它可以从海量数据中提取出人们所需要的信息,帮助人们做出更加科学的决策和规划。
随着技术的发展,数据挖掘的应用领域也越来越广泛,其中的算法也日益丰富多彩。
今天,我们就来介绍一下数据挖掘领域中的10大算法。
一、C4.5算法C4.5算法是一种基于决策树的分类算法。
它通过对数据的分析和建模,可以从中得出一系列决策规则。
C4.5算法被广泛应用于分类和预测领域,尤其在电子商务和金融领域中应用较为广泛。
二、朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的分类算法。
它通过概率论来描述事物之间的关系,从而实现对数据的分类和预测。
朴素贝叶斯算法在数据挖掘领域中被广泛应用,尤其在文本分类和垃圾邮件过滤等方面应用非常广泛。
三、Apriori算法Apriori算法是一种基于频繁项集的关联规则挖掘算法。
它通过扫描数据集来查找频繁项集,并基于频繁项集构造出关联规则。
Apriori算法在电子商务和市场营销领域中被广泛应用,可以帮助人们了解顾客的购买决策,进行目标市场的选定等工作。
四、K-Means算法K-Means算法是一种基于聚类的数据挖掘算法。
它通过将数据划分为多个簇,使得同一簇内的数据彼此相似,不同簇内的数据彼此不同。
K-Means算法被广泛应用于数据分析和聚类分析等领域。
五、支持向量机算法支持向量机算法是一种基于分类和回归分析的算法。
它通过构造超平面来将数据划分为不同类别,从而实现对数据的识别和分类。
支持向量机算法在数据挖掘领域中被广泛应用,例如图像识别和文本分类等方面。
六、随机森林算法随机森林算法是一种基于决策树的集成学习算法。
它通过将多个决策树组合在一起,从而实现对数据的分类和预测。
随机森林算法在数据挖掘领域中被广泛应用,例如金融风险评估和医学诊断等方面。
七、多层感知器算法多层感知器算法是一种基于神经网络的分类算法。
它通过模拟人脑的神经网络来实现对数据的分类和预测。
数据挖掘十大经典算法

数据挖掘十大经典算法数据挖掘是通过分析大量数据来发现隐藏的模式和关联,提供商业决策支持的过程。
在数据挖掘中,算法起着至关重要的作用,因为它们能够帮助我们从数据中提取有用的信息。
以下是十大经典的数据挖掘算法:1.决策树算法:决策树是一种基于分层选择的预测模型,它使用树状图的结构来表示决策规则。
决策树算法适用于分类和回归问题,并且可以解释性强。
常用的决策树算法有ID3、C4.5和CART。
2.朴素贝叶斯算法:朴素贝叶斯是一种基于概率的分类算法,它假设特征之间是相互独立的。
朴素贝叶斯算法简单有效,适用于大规模数据集和高维数据。
3.支持向量机(SVM)算法:SVM是一种针对分类和回归问题的监督学习算法,它通过构建一个最优的超平面来实现分类。
SVM在处理非线性问题时使用核函数进行转换,具有较强的泛化能力。
4.K近邻算法:K近邻是一种基于实例的分类算法,它通过找到与目标实例最接近的K个邻居来确定目标实例的类别。
K近邻算法简单易懂,但对于大规模数据集的计算成本较高。
5.聚类算法:聚类是一种无监督学习算法,它将相似的实例聚集在一起形成簇。
常用的聚类算法有K均值聚类、层次聚类和DBSCAN等。
6.主成分分析(PCA)算法:PCA是一种常用的降维算法,它通过线性变换将原始数据转换为具有更少维度的新数据。
PCA能够保留原始数据的大部分信息,并且可以降低计算的复杂性。
7. 关联规则算法:关联规则用于发现项集之间的关联关系,常用于市场篮子分析和推荐系统。
Apriori算法是一个经典的关联规则算法。
8.神经网络算法:神经网络是一种模仿人脑神经元通信方式的机器学习算法,它能够学习和适应数据。
神经网络适用于各种问题的处理,但对于参数选择和计算量较大。
9.随机森林算法:随机森林是一种基于决策树的集成学习算法,它通过建立多个决策树来提高预测的准确性。
随机森林具有较强的鲁棒性和泛化能力。
10.改进的遗传算法:遗传算法是一种模拟生物进化过程的优化算法,在数据挖掘中常用于最优解。
数据挖掘的10大算法

数据挖掘的10大算法数据挖掘的10大算法1-决策树算法●简介:决策树是一种基于树结构的预测模型,通过分析数据集中的特征和目标变量之间的关系,来进行分类或回归分析。
●实现步骤:根据数据集中的特征和目标变量,构建一个树结构,在每个节点上根据某个特征的取值将数据集划分为子集,然后根据某个准则选择最佳的特征进行划分,继续构建子树,直到满足停止条件。
●应用场景:决策树算法常用于金融风险评估、医疗诊断、客户行为分析等领域。
2-K均值算法●简介:K均值算法是一种聚类分析的方法,通过将数据集中的样本划分为K个簇,使得簇内的样本相似度最大化,簇间的相似度最小化。
●实现步骤:随机选择K个样本作为簇的中心点,然后对每个样本计算与各簇中心的距离,将样本划分到距离最近的簇中,更新簇的中心点,重复以上过程直到簇的中心点不再改变。
●应用场景:K均值算法常用于客户分群、文本聚类、图像分割等领域。
3-支持向量机算法●简介:支持向量机是一种二分类模型,通过构造一个超平面来将不同类别的样本分开,同时最大化样本与超平面之间的间隔。
●实现步骤:选择合适的核函数,转化样本特征空间,构造目标函数并进行优化,最终得到一个能够将样本正确分类的超平面。
●应用场景:支持向量机算法常用于图像识别、文本分类、异常检测等领域。
4-朴素贝叶斯算法●简介:朴素贝叶斯算法是一种基于贝叶斯理论的分类算法,通过计算样本的后验概率来进行分类。
●实现步骤:基于训练数据集计算类别的先验概率和条件概率,然后根据贝叶斯公式计算样本属于各个类别的后验概率,选择后验概率最大的类别作为预测结果。
●应用场景:朴素贝叶斯算法常用于垃圾邮件过滤、情感分析、文本分类等领域。
5-神经网络算法●简介:神经网络是一种模拟人脑神经元网络结构的算法,通过构造多层神经元网络,通过学习调整网络中的权重和偏置,从而实现对数据的分类或回归分析。
●实现步骤:选择合适的网络结构和激活函数,通过前向传播计算网络的输出,通过反向传播更新网络中的参数,不断迭代直到网络收敛。
数据挖掘的10大算法

数据挖掘的10大算法1. 介绍数据挖掘是一种从大量数据中提取有用信息和模式的过程。
它可以帮助企业做出更明智的决策,发现隐藏在海量数据背后的规律,并预测未来趋势。
本文将介绍十个常用且重要的数据挖掘算法。
2. 决策树算法决策树是一种基于条件语句构建分类或回归模型的方法。
通过对属性值进行判断,逐步分割样本集合并一个可解释性强、易理解和直观表示结果关系图形化结构。
3. K均值聚类算法K均值聚类是一种无监督学习方法,在给定K个簇数目下,将n个对象划分为K组以最小化各组内部距离平方之和,并使得每组间距尽可能地远离其他点。
4. 支持向量机(SVM)SVM 是一种二元线性分类器及非线性拓展工具, 它能够找到两者之间超平面上支撑向量与边界相隔最近位置.5. 集成学习 (Ensemble Learning)集成学习利用多个单独训练的模型来进行预测,通过结合多个弱分类器或回归器以获得更好的性能。
6. 朴素贝叶斯算法贝叶斯定理是一种基于概率统计方法推断未知事件发生可能性的数学公式。
在数据挖掘中,朴素贝叶斯算法将特征之间假设为相互独立,并根据已有样本训练出一个分类模型。
7. 神经网络 (Neural Networks)神经网络是由大量神经元组成并具备自我适应和学习功能的信息处理系统, 它可以用于解决复杂问题、识别图像等任务.8. 关联规则挖掘(Association Rule Mining)关联规则挖掘旨在寻找频繁项集及其关联规则,在市场篮子分析、交易记录分析等领域广泛应用。
它帮助企业了解产品购买行为与消费者喜好之间存在着怎样密切联系9. 主成分分析(PCA)PCA 是一种常见降维技巧, 又称主轴变换/空值转化/协方差最小化投影.10. 隐马尔可夫模型(HMM)HMM 模拟了一个隐藏的马尔可夫链随机不可观测序列, 通过这个模型可以预测未来状态.本文档涉及附件:1. 示例数据集2. 算法实现代码本文所涉及的法律名词及注释:- 数据挖掘:指从大量数据中提取有用信息和模式的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习笔记5:数据预处理与数据挖掘十大经典算法前言在介绍了数据挖掘的一般流程、常用方法、应用功能和数据可视化之后,在本篇博文中,笔者想要分享一些在数据挖掘开始之前要做的一些事——数据预处理。
在第二部分中,笔者整理了数据挖掘中的十大经典算法,与读者们共享。
两部分分别从《数据挖掘中数据预处理的方法与技术》一文与网络中引用而来,作为自己和读者朋友们的学习笔记。
在第三部分阶段小结中,笔者对近期的学习进行了阶段性的总结。
一、数据预处理现实中数据大多数都是不完整、不一致的,无法直接进行数据挖掘,或直接影响了挖掘结果。
为了提高数据挖掘质量和数据挖掘效率,产生了数据预处理技术。
对数据进行预处理,不但可以节约大量的空间和时间而且得到的挖掘结果能更好地起到决策和预测作用。
数据预处理一般包括:数据清理,数据集成,数据变换,数据归约等方法。
这些数据预处理技术根据数据挖掘项目的需要和原始数据的特点,在数据挖掘之前有选择的单独使用或综合使用,可大大提高数据挖掘模式的质量,降低实际挖掘所需要的时间。
数据预处理技术整理如下:1、数据清理数据清理是数据预处理中最花费时间、最乏味的,但也是最重要的一步。
该步骤可以有效地减少学习过程中可能出现相互矛盾的情况。
数据清理主要处理缺失数据,噪声数据,识别、删除孤立点。
数据清理的基本方法有:(1)缺失数据处理:目前最常用的方法是使用最可能的值填充缺失值,比如可以用回归、贝叶斯形式化方法工具或判定树归纳等确定缺失值。
这类方法依靠现有的数据信息来推测缺失值,使缺失值有更大的机会保持与其他属性之间的联系。
还有其他一些方法来处理缺失值,如用一个全局常量替换缺失值、使用属性的平均值填充缺失值或将所有元组按某些属性分类,然后用同一类中属性的平均值填充缺失值。
如果缺失值很多,这些方法可能误导挖掘结果。
如果缺失值很少,可以忽略缺失数据。
(2)噪声数据处理:噪声是一个测量变量中的随机错误或偏差,包括错误的值或偏离期望的孤立点值。
目前最广泛的是应用数据平滑技术处理,具体包括:分箱技术,将存储的值分布到一些箱中,用箱中的数据值来局部平滑存储数据的值。
具体可以采用按箱平均值平滑、按箱中值平滑和按箱边界平滑;回归方法,可以找到恰当的回归函数来平滑数据。
线性回归要找出适合两个变量的“最佳”直线,使得一个变量能预测另一个。
多线性回归涉及多个变量,数据要适合一个多维面;计算机检查和人工检查结合方法,可以通过计算机将被判定数据与已知的正常值比较,将差异程度大于某个阈值的模式输出到一个表中,然后人工审核表中的模式,识别出孤立点;聚类技术,将类似的值组织成群或“聚类”,落在聚类集合之外的值被视为孤立点。
孤立点可能是垃圾数据,也可能为我们提供重要信息。
对于确认的孤立点垃圾数据将从数据库中予以清除。
2、数据集成数据集成就是将多个数据源中的数据合并存放在一个同一的数据存储(如数据仓库、数据库等)的一种技术和过程,数据源可以是多个数据库、数据立方体或一般的数据文件。
数据集成涉及3个问题:模式集成。
涉及实体识别,即如何将不同信息源中的实体匹配来进行模式集成。
通常借助于数据库或数据仓库的元数据进行模式识别;冗余数据集成。
在数据集成中往往导致数据冗余,如同一属性多次出现、同一属性命名不一致等。
对于属性间冗余,可以先采用相关性分析检测,然后删除;数据值冲突的检测与处理。
由于表示、比例、编码等的不同,现实世界中的同一实体,在不同数据源的属性值可能不同。
这种数据语义上的歧义性是数据集成的最大难点,目前没有很好的办法解决。
3、数据变换数据变换是采用线性或非线性的数学变换方法将多维数据压缩成较少维数的数据,消除它们在时间、空间、属性及精度等特征表现方面的差异。
这方法虽然对原始数据都有一定的损害,但其结果往往具有更大的实用性。
常见数据变换方法如下:数据平滑:去除数据中的噪声数据,将连续数据离散化,增加粒度。
通常采用分箱、聚类和回归技术。
数据聚集:对数据进行汇总和聚集。
数据概化:减少数据复杂度,用高层概念替换。
数据规范化:使属性数据按比例缩放,使之落入一个小的特定区域;常用的规范化方法有最小---最大规范化、z—score 规范化、按小数定标规范化等。
属性构造:构造出新的属性并添加到属性集中,以帮助挖掘过程。
应用实例表明,通过数据变换可用相当少的变量来捕获原始数据的最大变化。
具体采用哪种变换方法应根据涉及的相关数据的属性特点而定,根据研究目的可把定性问题定量化,也可把定量问题定性化。
4、数据归约数据归约技术可以用来得到数据集的归约表示,它接近于保持原数据的完整性,但数据量比原数据小得多。
与非归约数据相比,在归约的数据上进行挖掘,所需的时间和内存资源更少,挖掘将更有效,并产生相同或几乎相同的分析结果。
几种数据归约的方法:(1)维归约:通过删除不相关的属性(或维)减少数据量。
不仅压缩了数据集,还减少了出现在发现模式上的属性数目。
通常采用属性子集选择方法找出最小属性集,使得数据类的概率分布尽可能地接近使用所有属性的原分布。
属性子集选择的启发式方法技术有:逐步向前选择,由空属性集开始,将原属性集中“最好的”属性逐步填加到该集合中;逐步向后删除,由整个属性集开始,每一步删除当前属性集中的“最坏”属性;向前选择和向后删除的结合,每一步选择“最好的”属性,删除“最坏的”属性;判定树归纳,使用信息增益度量建立分类判定树,树中的属性形成归约后的属性子集。
(2)数据压缩:应用数据编码或变换,得到原数据的归约或压缩表示。
数据压缩分为无损压缩和有损压缩。
比较流行和有效的有损数据压缩方法是小波变换和主要成分分析。
小波变换对于稀疏或倾斜数据以及具有有序属性的数据有很好的压缩结果。
主要成分分析计算花费低,可以用于有序或无序的属性,并且可以处理稀疏或倾斜数据。
(3)数值归约:通过选择替代的、较小的数据表示形式来减少数据量。
数值归约技术可以是有参的,也可以是无参的。
有参方法是使用一个模型来评估数据,只需存放参数,而不需要存放实际数据。
有参的数值归约技术有以下2 种:①回归:线性回归和多元回归;②对数线性模型:近似离散属性集中的多维概率分布。
无参的数值归约技术有3 种:①直方图:采用分箱技术来近似数据分布,是一种流行的数值归约形式。
其中V-最优和Max Diff 直方图是最精确和最实用的;②聚类:聚类是将数据元组视为对象,它将对象划分为群或聚类,使得在一个聚类中的对象“类似”,而与其他聚类中的对象“不类似”,在数据归约时用数据的聚类代替实际数据;③选样:用数据的较小随机样本表示大的数据集,如简单选样、聚类选样和分层选样等(4)概念分层:通过收集并用较高层的概念替换较低层的概念来定义数值属性的一个离散化。
概念分层可以用来归约数据,通过这种概化尽管细节丢失了,但概化后的数据更有意义、更容易理解,并且所需的空间比原数据少。
对于数值属性,由于数据的可能取值范围的多样性和数据值的更新频繁,说明概念分层是困难的。
数值属性的概念分层可以根据数据的分布分析自动地构造,如用分箱、直方图分析、聚类分析、基于熵的离散化和自然划分分段等技术生成数值概念分层。
分类数据本身是离散数据,一个分类属性具有有限个不同值,值之间无序。
一种方法是由用户专家在模式级显示地说明属性的部分序或全序,从而获得概念的分层;另一种方法是只说明属性集,但不说明它们的偏序,由系统根据每个属性不同值的个数产生属性序,自动构造有意义的概念分层。
5、小结在数据实际挖掘过程中,针对不同的数据源和数据挖掘目标,有选择的使用数据清理、数据集成、数据变换和数据归约等数据预处理方法和技术。
它们的使用没有先后顺序的约束,某一种预处理可能需要循环多次进行,某一种预处理可能一次也不需要。
尽管有多种数据预处理的方法和技术,但都不够成熟。
所以,对数据挖掘中的数据预处理还需要做更进一步的深入研究。
二、数据挖掘十大经典算法国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.C4.5算法:是ID3算法的扩展,它能够产生用决策树表示的分类器,而且它还可以通过更加容易理解的规则集形式来表示分类器。
K-means算法:是一种简单的迭代算法,它能够将给定的数据集划分为用户定义的聚簇数目。
SVM支持向量机:在机器学习应用中,支持向量机被考虑为很重要的一个尝试——在所有著名的算法中,它提供了一种稳定准确的方法。
它拥有强大的理论基础,只需要少数示例进行训练,并且对数据集维度数量不敏感。
另外,训练SVM的有效方法已经得到快速地发展。
Apriori算法:最流行的数据挖掘方法之一就是从交易数据集中寻找频繁项集,并且产生关联规则。
寻找频繁项目集是非平凡的,因为它存在组合爆炸的问题。
一旦获得到频繁项目集,就可以直接根据用户定义的置信度产生关联规则。
Apriori算法是一种采用候选集方法寻找频繁项目集。
它是一种使用反单调性的完全层次搜索算法。
如果一个项目集是非频繁的,那么它的任何超集都是非频繁的。
EM算法:有限混合分布提供一种灵活的,基于数学的建模和聚类数据集方法。
常见的混合模型可以用来聚类连续数据和预测潜在的密度函数。
这些混合模型可以通过最大似然的期望最大化算法来进行拟合。
PageRank算法:是一种使用互联网上的超链接的搜索排序算法。
PageRank基本的方法是,越是重要的文件链接一个文件,则这个文件就越重要,但那些入站链接并不是被平等计算的。
首先,如果其他高等级的文件连接到它,那么根据PageRank的规则,此文件的等级也高。
AdaBoost:集成学习是应用多个学习器来解决问题。
一般来说,集成学习的能力较单个学习器的效果更优。
因此,集成学习方法具有很强的吸引能力。
AdaBoost方法是最重要的集成学习算法之一,它拥有牢固的理论基础,预测非常准确,并且简单和易于实现。
KNN 分类算法:是通过在数据集中寻找与测试对象最近的k个对象。
并且,预先定义类别标签。
KNN有三个主要的核心元素:标记对象集合,对象之间的相似性度量或者距离度量,最近邻居个数K。
为了区分没有标记的对象,计算对象与标记对象之间的距离。
从而,识别k个最近邻居。
这些最近邻居的类别标签被用来决定对象的类别标签。
朴素贝叶斯:发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
理论上,NBC模型与其他分类方法相比具有最小的误差率。