分类算法综述及kNN全解
knn算法的分类规则

knn算法的分类规则目录1.KNN 算法简介2.KNN 算法的分类规则3.KNN 算法的优缺点4.KNN 算法的应用实例正文1.KNN 算法简介KNN(k-Nearest Neighbors,k-近邻)算法是一种基于距离度量的分类和回归方法。
该算法的基本思想是:在一个数据集中,每个数据点根据其距离其他数据点的距离进行分类。
具体而言,KNN 算法会找到距离目标数据点最近的 k 个数据点,然后根据这些邻居的数据类别决定目标数据点的类别。
2.KNN 算法的分类规则KNN 算法的分类规则非常简单,可以概括为以下三个步骤:(1)计算数据点之间的距离:首先,需要计算数据集中每个数据点之间的距离。
通常使用欧氏距离、曼哈顿距离等度量方法。
(2)确定邻居数据点:根据距离度量,找到距离目标数据点最近的 k 个数据点。
这里 k 是一个超参数,可以根据实际问题和数据集的特点进行选择。
(3)决定目标数据点的类别:根据邻居数据点的类别,决定目标数据点的类别。
如果邻居数据点的类别多数为某一类别,则目标数据点也被划分为该类别;否则,目标数据点不被划分为任何类别。
3.KNN 算法的优缺点KNN 算法的优点包括:简单易懂、易于实现、对数据集的噪声不敏感、能够很好地处理不同密度的数据等。
然而,KNN 算法也存在一些缺点,如计算量大、需要存储所有数据点、对 k 的选择敏感等。
4.KNN 算法的应用实例KNN 算法在许多领域都有广泛的应用,例如文本分类、图像分类、生物信息学、金融风险管理等。
例如,在文本分类任务中,可以将文本表示为特征向量,然后使用 KNN 算法根据特征向量的距离对文本进行分类。
总之,KNN 算法是一种简单且易于实现的分类方法,适用于各种数据集和领域。
分类算法综述

分类算法综述分类算法综述分类算法是一种机器学习技术,它的目标是将输入数据分成不同的类别。
分类算法广泛应用于数据挖掘、自然语言处理、计算机视觉等领域。
本文将对常见的分类算法进行综述。
1. 朴素贝叶斯分类算法朴素贝叶斯分类算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。
该算法的核心思想是通过先验概率和条件概率来计算后验概率,从而确定每个类别的概率。
朴素贝叶斯分类算法的优点是简单易懂,适用于大规模数据集。
2. 决策树分类算法决策树分类算法是一种基于树形结构的分类算法。
该算法通过对训练数据进行分析,构建一棵决策树,用于对新数据进行分类。
决策树分类算法的优点是易于理解和实现,同时可以处理具有非线性关系的数据。
3. 支持向量机分类算法支持向量机分类算法是一种基于间隔最大化的分类算法。
该算法通过将数据映射到高维空间,使得数据在该空间中可以被线性分割,从而实现分类。
支持向量机分类算法的优点是对于高维数据具有很好的分类效果。
4. 最近邻分类算法最近邻分类算法是一种基于距离度量的分类算法。
该算法的核心思想是找到离待分类数据最近的K个已知分类的数据,通过它们的类别来确定待分类数据的类别。
最近邻分类算法的优点是简单易懂,适用于多分类问题。
5. 随机森林分类算法随机森林分类算法是一种基于决策树的集成学习算法。
该算法通过对训练数据随机采样,并对每个采样数据构建一棵决策树,最终将这些决策树集成起来进行分类。
随机森林分类算法的优点是对于噪声数据具有很好的分类效果。
总的来说,不同的分类算法在处理不同类型的数据和问题时具有各自的优缺点。
选择合适的分类算法需要考虑数据的特点、算法的性能以及应用场景等因素。
KNN算法原理以及代码实现

KNN算法原理以及代码实现⼀、KNN简述KNN是⽐较经典的算法,也是是数据挖掘分类技术中最简单的⽅法之⼀。
KNN的核⼼思想很简单:离谁近就是谁。
具体解释为如果⼀个实例在特征空间中的K个最相似(即特征空间中最近邻)的实例中的⼤多数属于某⼀个类别,则该实例也属于这个类别。
换个说法可能更好理解,⽐如⼀个⼀定范围的平⾯随机分布着两种颜⾊的样本点,在这个平⾯内有个实例点不知道它是什么颜⾊,因此通过它周边的不同颜⾊的点分布情况进⾏推测,假设取K=3,意思是在离这个实例点最近的样本点中去前三个最近的,然后看这三个当中那种类别占⽐⼤,就判断该实例点属于那个类别的,当k=5的时候也⼀样这样判断,因此k的取值很关键,通常不会超过20。
当然,因为每个样本有多个特征,因此实际⼯作中,这个‘平⾯’就是三维甚⾄是多维的,道理是⼀样的。
如图:⼆、KNN算法原理在KNN中,通过计算对象间距离来作为各个对象之间的⾮相似性指标,避免了对象之间的匹配问题,在这⾥距离⼀般使⽤欧⽒距离或曼哈顿距离:对KNN算法的思想总结⼀下:就是在训练集中数据和标签已知的情况下,输⼊测试数据,将测试数据的特征与训练集中对应的特征进⾏相互⽐较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:1)计算测试数据与各个训练数据之间的距离;2)按照距离的递增关系进⾏排序;3)选取距离最⼩的K个点;4)确定前K个点所在类别的出现频率;5)返回前K个点中出现频率最⾼的类别作为测试数据的预测分类。
三、KNN算法优缺点以及算法改进优缺点:1、简单,易于理解,是⼀个天然的多分类器;2、不需要庞⼤的样本数据也可以完成⼀个简单的分类;3、不需要训练和求解参数(既是优点也是缺点);4、数据量⼤的时候,计算量也⾮常⼤(样本多,特征多);5、不平衡样本处理能⼒差;6、并没有学习和优化的过程,严格来说不算是机器学习。
改进:进⾏加权平均,离得近的样本给予更⼤的权重,离得远的样本使其权重变⼩。
KNN讲解

2024/7/18
23
2024/7/18
24
2024/7/18
25
计算相似度
设两个特征向量分别为X=(x1,x2,...,xn)和Y=(y1,y2,...yn)
2024/7/18
26
将需要预测的学生的特征向量与训练集 中的所有特征向量,用上述公式计算出距离, 将各个距离值排序,将最距离小的排在前面, 最后取前k个样本,得出在这k个样本中,国 企、外企、私企所占比例,比例最大的就是 该预测样本所属于的类别。
2024/7/18
27
传统KNN算法实验结果
2024/7/18
28
2024/7/18
29
2024/7/18
30
改进
1、样本特征加权处理
传统的方法认为样本各个特征(属性)的作 用是相同的,即权重相同,无法体现各特征与分 类间的关系。如果有些特征与分类相关度很高, 有些很低,则其分类误差就会较大。
,而其他类样本容量很小时,有可能导致当输入 一个新样本时,该样本的K个邻居中大容量类的样 本占多数。该算法只计算“最近的”邻居样本, 如果某一类的样本数量很大,那么可能目标样本 并不接近这类样本,却会将目标样本分到该类下 ,影响分类准确率。
2024/7/18
14
(3)样本库容量依赖性较强; (4)K值不好确定;
(1)从降低计算复杂度的角度 当样本容量较大以及特征属性较多时,KNN算
法分类的效率就将大大降低。可以采用以下方法 进行改进。 ✓如果在使用KNN算法之前对样本的属性进行约简, 删除那些对分类结果影响较小(不重要)的属性, 则可以用KNN算法快速地得出待分类样本的类别, 从而可以得到更好的效果。
分类算法综述

分类算法综述1 分类算法分类是数据挖掘中的一个重要课题。
分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。
分类可用于提取描述重要数据类的模型或预测未来的数据趋势。
分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。
每一条记录包含若干个属性(Attribute),组成一个特征向量。
训练集的每条记录还有一个特定的类标签(Class Label)与之对应。
该类标签是系统的输入,通常是以往的一些经验数据。
一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。
在这里vi表示字段值,c表示类别。
分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。
这种描述常常用谓词表示。
由此生成的类描述用来对未来的测试数据进行分类。
尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。
注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。
我们也可以由此对数据中的每一个类有更好的理解。
也就是说:我们获得了对这个类的知识。
2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析各自的优缺点。
2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。
决策树方法是利用信息论中的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的不同取值建立树的分支,在每个子分支子集中重复建立树的下层结点和分支的一个过程。
构造决策树的具体过程为:首先寻找初始分裂,整个训练集作为产生决策树的集合,训练集每个记录必须是已经分好类的,以决定哪个属性域(Field)作为目前最好的分类指标。
一般的做法是穷尽所有的属性域,对每个属性域分裂的好坏做出量化,计算出最好的一个分裂。
最近邻分类算法

最近邻分类算法K最近邻(KNN,K-NearestNeighbor)分类算法是指数据挖掘分类技术中最简单的方法之一。
所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K 个邻居来代表。
KNN算法的核心思想是如果一个样本在特征空间中的K 个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN方法在类别决策时,只与极少量的相邻样本有关。
由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。
通过找出一个样本的K个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。
更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
给定一个训练数据集,对于新的输入实例,根据这个实例最近的k 个实例所属的类别来决定其属于哪一类。
所以相对于其它机器学习模型和算法,k 近邻总体上而言是一种非常简单的方法。
找到与该实例最近邻的实例,这里就涉及到如何找到,即在特征向量空间中,我们要采取何种方式来对距离进行度量。
距离的度量用在k 近邻中我们也可以称之为相似性度量,即特征空间中两个实例点相似程度的反映。
在机器学习中,常用的距离度量方式包括欧式距离、曼哈顿距离、余弦距离以及切比雪夫距离等。
在k 近邻算法中常用的距离度量方式是欧式距离,也即L2 距离,L2 距离计算公式如下:一般而言,k 值的大小对分类结果有着重大的影响。
当选择的k 值较小的情况下,就相当于用较小的邻域中的训练实例进行预测,只有当与输入实例较近的训练实例才会对预测结果起作用。
但与此同时预测结果会对实例点非常敏感,分类器抗噪能力较差,因而容易产生过拟合,所以一般而言,k 值的选择不宜过小。
KNN讲解

2015-3-13
19
(2)从优化相似度度量方法的角度
基本的KNN算法基于欧几里得距离来计算样 本的相似度,这种方法对噪声特征非常敏感。 为了改变传统KNN算法中特征作用相同的缺 陷,可在度量相似度的距离公式中给特征赋予 不同权重,特征的权重一般根据各个特征在分 类中的作用设定。
2015-3-13
2015-3-13
14
(3)样本库容量依赖性较强; (4)K值不好确定; k 值选择过小,得到的近邻数过少,会降 低分类精度,同时也会放大噪声数据的干扰; 而 k 值选择过大,如果待分类样本属于训练集 中包含数据较少的类,那么在选择 k 个近邻的 时候,实际上并不相似的数据也被包含进来, 造成噪声增加而导致分类效果的降低。
2015-3-13
32
改进的KNN算法实验结果
2015-3-13
33
小结: KNN算法简单,易于实现,但当样本规 模很大时,其复杂度会很大,所谓“适合 的就是最好的”,在选择分类算法时我们 应该根据具体应用的需求,选择适当的分 类算法。
2015-3-13
34
2015-3-13
23
2015-3-13
24
2015-3-13
25
计算相似度
设两个特征向量分别为X=(x1,x2,...,xn)和Y=(y1,y2,...yn)
2015-3-13
26
将需要预测的学生的特征向量与训练集 中的所有特征向量,用上述公式计算出距离, 将各个距离值排序,将最距离小的排在前面, 最后取前k个样本,得出在这k个样本中,国 企、外企、私企所占比例,比例最大的就是 该预测样本所属于的类别。
2015-3-13
11
4 KNN的优缺点
knn算法原理

knn算法原理KNN(K近邻算法)是一种基于实例的机器学习算法,是机器学习领域中非常常见的算法。
KNN法的基本思想是:如果一个样本在特征空间中的k个最相近的样本中的大多数属于某一个类别,则该样本也属于该类别。
KNN法中,所选择的邻居都是已经正确分类的对象。
KNN法的基本原理是:在给定一个未知类别的对象(样本数据)时,根据其特征属性和它最接近的K个已经知道分类的样本,对这个对象进行分类。
KNN法就是从训练集中找出这K个“邻居”,根据这K 个“邻居”的类别,来确定当前未知类别的对象的分类。
KNN法的基本流程如下:1. 从训练集中计算测试实例与每个训练集实例之间的距离;2.据距离选择K个最近邻;3.据K个邻居的类别,通过投票或者加权求和,确定测试实例的类别。
KNN法使用数据中“靠近”的训练实例来预测未知实例,因此,KNN法是一种基于实例的学习算法。
KNN法的实质是在训练集中查找与当前输入实例最在的 K 个实例,并将它们的“类标记”作为对应的输入实例的预测。
KNN法的优点是:1. KNN法的思想简单,实现容易,它不需要学习过程,也不需要假设数据的分布,只需要保存所有数据实例;2.实际数据建模时,可以有效地处理属性间关系比较复杂和数据不平衡的情况;3. KNN法可以灵活地处理不同的数据类型。
KNN法也存在一些缺点:1. KNN法需要大量的计算,当训练数据集特别大的时候,搜索K 个最近邻计算量就比较大,可能会耗费较多的时间;2. KNN法的效果依赖于k的值,但是k的值没有一个理论上的确定方法,只能选取不同的k值进行实验;3. KNN法不能很好地处理类别不平衡问题,因为它采用的算法是加权求和,类别不平衡的情况下,加权求和会倾向于那些比较多的类别;4. KNN法的思想是当前的数据点的类别取决于它的K个邻居,而这里的K个邻居都是已经被正确分类的,即每个邻居都是“正确”的,这种认为是不合理的,因为它假定K个邻居的类别都被正确分类了,而这并不一定是真的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关应用
垃圾邮件识别 信用卡用户分级,低风险优质客户给予较高的额度 手写字体识别、语音输入、图像识别 ...
相关应用
9月26日,石家庄市建华大街和 裕华路交叉口西南角的行人闯红 灯自动识别抓拍系统开始试用。
如果行人指示信号灯为红灯时, 仍有行人在斑马线上过马路,这 套系统会自动将其中一个人的图 像拍摄下来并形成照片。
邮件
分类 算法
正常邮件 垃圾邮件
数值预测
数值预测(numeric prediction)是预测一个连续值或有序值, 而不是类标号
例如预测某同学在期末考试中的成绩为95分,95是一个数 值,而不是“树”、“船”这样的类标号
分类和数值预测是“预测问题”的两种主要类型,简单起 见,在不产生混淆时,使用较短术语“预测”表示“数值 预测”
模型
可将模型看成一个映射或函数 y = f(X),其中X是特征向量 给定未知实例的特征向量X,算法即可得出其关联的y的值 分类和预测算法的训练过程即是为了从训练数据中“学习”
得到这个函数,进而用于未知数据
分类算法的评价
预测的准确率 正确地预测新的或先前未见过的数据的类标号的能力
速度 构造模型的速度、利用模型进行分类的速度
基于实例的表达
直接将训练样本保存下来,使用实例本身来表达所学到的 (知识),而不是推断出一个规则集或决策树,并保存它
数据挖掘
王成 华侨大学计算机科学与技术学院
/ml/data
/v_july_v/article/details/6142146 数据挖掘领域十大经典算法
你见或不见, 我都在那里
示例来源于July博客: /v_july_v/article/details/7577684
基于决策树的表达
晴 温度
天气 多云
小雨
去玩
刮大风
<=35度
>35度
去玩
不要去玩
是
否
不要去玩
去玩
基于规则的表达
IF 天气 = 多云 THEN 去玩 IF 天气 = 晴 AND 温度 <= 35 THEN 去玩 IF 天气 = 晴 AND 温度 > 35 THEN 不要去玩 IF 天气 = 小雨 AND 刮大风 THEN 不要去玩 IF 天气 = 小雨 AND 没有刮大风 THEN 去玩
/v_july_v/article/details/7577684
主要内容
分类和预测 知识的表达 基于距离的分类
聚类
聚类(Clustering) 解决的是事物分组的问题,目的是将类似 的事物放在一起
聚类算法
(k-Means, DBSCAN...)
线性模型的输出仅是实例的各属性的加权求和
y w0 w1x1 w2 x2 w3x3 ... wn xn
其中y为输出,(x1, x2, x3...xn)为特征向量,w0, w1, w2...wn为权值,将由算法学习得到
例如,给定学生的特征向量(x1, x2, x3...),预测模型可表示为
数值预测过程
数值预测也是一个两步过程,和分类过程类似,只不过没 有“类标号属性”,因为要预测的属性值是连续值,而不 是分类的(离散值)
例如预测某同学的期末考试成绩得分,如果转换成预测某 同学的期末考试成绩“是否合格”,该数据挖掘任务就由 数值预测变成了分类。
有监督和无监督学习
监督学习 (Supervised learning)
分类
分类(Classification)是解决“这是什么?”的问题,分类所 承担的角色就如同回答小孩子的问题“这是一只船”, “这是一棵树”等。
把每个数据点分配到合适的类别中,即所谓的“分类”
例如,邮件系统接收到一封陌生邮件时,算法能识别出该 邮件是否垃圾邮件。聚类能将一堆邮件分成两组,但不知 道哪组是垃圾邮件
训练集是带有类标签的,例如邮件系统中针对每封训练邮件,都标记 好是否垃圾邮件 学习是在训练样本的“指导”下操作的,“指导”指每个训练样本都 有一个明确的结论(类别),故称有“监督”学习 分类算法是有监督的机器学习算法
无监督学习 (Unsupervised learning)
学习不是在训练样本的“指导”下操作的 让计算机自己去学习怎样做一件事情 聚类算法是无监督的机器学习算法
分类的两个步骤
训练模型:对一个类别已经确定的训练集创建模型 用于创建模型的数据集叫做训练集 每一条记录都属于一个确定的类别或类标号
模型使用:用创建的模型预测未来或者类别未知的记录
分类过程:训练模型
训练集
分类算法
天气
气温
湿度
晴
中
中
雨
低
高
晴
高
低
...
适合运动 是 否 否
模型
IF 气温低 THEN 不适合运动 ......
分类过程:测试模型
测试集
天气 晴 雨 晴 ...
气温 中 低 高
湿度 中 高 低
适合运动
分类算法
模型
真实结果: 不适合运动
预测结果: 不适合运动
分类过程:训练集和测试集的划分
十折交叉验证 留一法 过拟合
分类过程:使用模型
未分类数据 (天气晴,温度高,湿度中等)
分类算法
模型
不适合运动
成绩 50 0.8x1 0.2x2 0.6x3 ...
其中50, 0.8, 0.2, 0.6...的值将由算法学习得到
基于线性模型的表达
y 1 0.5x
基于决策树的表达
母亲:闺女,给你介绍个对象 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。
强壮性 给定噪声数据或具有空缺值的数据,模型正确预测的能力
可伸缩性 当给定大量数据时,有效地构造模型的能力
可解释性 涉及学习模型提供的理解和洞察的层次
分类算法预测准确率的指标
两类错误 查全率 查准率 精度
主要内容
分类和预测 知识的表达 基于距离的分类
基于线性模型的表达