数据挖掘中的文本挖掘的分类算法综述

合集下载

数据挖掘的分类算法

数据挖掘的分类算法

数据挖掘的分类算法数据挖掘是指通过分析大量数据来发现隐藏在其中的规律和趋势的过程。

分类算法是数据挖掘中的一种重要方法,主要是通过构建模型将数据划分为不同的类别。

在本文中,我们将讨论几种常见的分类算法。

1. 决策树算法决策树算法是一种基于树形数据结构的分类算法。

它将数据集分成许多小的子集,并对每个子集进行分类。

决策树的节点表示一个属性,每个分支代表该属性可能的取值。

通过选择适当的划分条件,可以使决策树的分类效果更加准确。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率论的分类算法。

它基于贝叶斯定理,利用先验概率和条件概率推断后验概率,并将数据分为不同的类别。

朴素贝叶斯算法在文本分类、垃圾邮件识别等方面有广泛的应用。

3. 支持向量机算法支持向量机算法是一种基于分类的学习方法,通过构造一个最优的超平面将数据集分为两个或多个类别。

该算法可以用于解决多分类、回归、异常检测等问题。

支持向量机算法在人脸识别、文本分类、图像识别等方面有很好的应用。

4. K近邻算法K近邻算法通过计算样本之间的距离来确定每个样本的类别,即将每个样本划分到与其最近的K个邻居的类别中。

该算法是一种简单有效的分类算法,在文本分类、医学诊断等方面得到了广泛应用。

5. 神经网络算法神经网络算法是一种基于类似人类神经系统的计算模型,通过构造多个神经元并利用它们之间的联系来分类。

该算法可以解决多分类、回归、信号识别等问题,并在语音识别、图像处理等方面得到了广泛应用。

总之,分类算法在数据挖掘中起着重要的作用。

通过对不同分类算法的了解和应用,可以提高分类的准确性和效率。

在实际应用中,需要根据数据类型、数据量和应用场景等因素选择合适的分类算法。

基于机器学习的文本分类方法综述

基于机器学习的文本分类方法综述

基于机器学习的文本分类方法综述随着现代信息技术的快速发展和普及,人们面临着海量的数据和信息。

在这样一个大数据时代,如何高效地处理和分析这些信息成为了所有人都面临的一项巨大挑战。

文本分类作为自然语言处理和数据挖掘领域的一个重要研究方向,也备受重视。

本文将综述基于机器学习的文本分类方法,旨在为读者提供一个系统全面的文本分类方法介绍。

一、文本分类简介文本分类是将大量的文本按照一定的标准和要求进行划分和归类的过程。

它在信息检索、智能搜索、情感分析、垃圾邮件过滤和风险预警等领域都有广泛的应用。

文本分类的自动化和高效性显然是人力难以承受的,因此需要借助机器学习等数据挖掘技术来实现。

二、基于机器学习的文本分类方法1. 朴素贝叶斯算法朴素贝叶斯算法是最经典的基于机器学习的文本分类方法之一。

它基于贝叶斯定理,通过计算文本出现某一类别的概率来进行分类。

该算法的优点是速度快、效率高、容易实现。

但是它需要假设特征之间的独立性,并且在某些情况下可能会出现过拟合。

2. 支持向量机算法支持向量机算法是一种常用的分类算法,可以在高维空间中进行分类,并且对于样本数量较小和噪声较大的情况也有很好的效果。

该算法通过构造超平面来进行分类,并且可以通过选择不同的核函数来适应不同的数据结构。

支持向量机算法的优点是准确率高、泛化能力强,但是它对于大规模数据的处理效果不如其他算法。

3. 决策树算法决策树算法是一种基于分类规则和特征选择的分类方法。

该算法通过构造树形结构来进行分类,将样本分割成不同的类别。

决策树算法的优点是易于理解和解释,对于噪声和缺失数据的处理也比较灵活。

但是当数据量较大时,决策树的效率会受到影响。

4. 最大熵算法最大熵算法是一种基于概率模型和最优化理论的分类方法。

它通过寻找最优的概率模型来进行分类,具有很好的稳定性和泛化能力。

最大熵算法的优点是可以处理多类别问题,并且对于使用样本标签信息和使用样本特征之间的性能差异有很好的适应性。

数据挖掘中的文本分类方法

数据挖掘中的文本分类方法

数据挖掘中的文本分类方法随着互联网时代的到来,大量的文本数据被产生和存储。

如何从这些海量的文本数据中提取有用的信息,成为了数据挖掘领域的一个重要研究方向。

文本分类作为数据挖掘的一个重要任务,旨在将文本数据自动分类到预定义的类别中。

本文将介绍数据挖掘中的文本分类方法,并探讨其应用和发展。

一、传统的文本分类方法在数据挖掘领域的早期,传统的文本分类方法主要基于统计和机器学习的技术。

其中,朴素贝叶斯分类器是一种常用的方法。

它基于贝叶斯定理,通过计算文本中每个词语出现的概率来进行分类。

此外,支持向量机、决策树等机器学习算法也被广泛应用于文本分类任务中。

这些方法在一定程度上能够实现文本分类的目标,但也存在一些问题。

例如,传统方法对于文本中的语义信息理解能力较弱,无法很好地处理词义的多样性和上下文的复杂关系。

二、基于深度学习的文本分类方法随着深度学习的兴起,基于深度学习的文本分类方法逐渐受到关注。

深度学习模型能够自动从大量的文本数据中学习特征表示,从而提高文本分类的准确性。

其中,卷积神经网络(CNN)和循环神经网络(RNN)是两种常用的深度学习模型。

卷积神经网络在图像处理领域取得了巨大成功,而在文本分类中也得到了广泛应用。

通过卷积操作,CNN能够捕捉文本中的局部特征,并通过池化操作对特征进行降维和组合。

这种方法能够有效地处理文本中的局部信息,并具有较好的分类性能。

循环神经网络是一种能够处理序列数据的神经网络模型。

在文本分类中,RNN 能够捕捉文本中的上下文信息,并通过长短期记忆(LSTM)或门控循环单元(GRU)等机制来解决长序列依赖的问题。

RNN在处理文本分类任务时能够更好地考虑词语之间的顺序关系,从而提高分类的准确性。

除了CNN和RNN,深度学习模型还有许多其他的变体和扩展,如注意力机制、Transformer等。

这些模型在文本分类中的应用不断推动着文本分类方法的发展。

三、文本分类方法的应用和发展文本分类方法在实际应用中具有广泛的应用前景。

文本分类中的特征提取和分类算法综述

文本分类中的特征提取和分类算法综述

文本分类中的特征提取和分类算法综述特征提取和分类算法是文本分类中非常重要的步骤,对于智能化应用和信息检索具有重要的意义。

本文将综述文本分类中常用的特征提取方法和分类算法,并对其优缺点进行分析和比较。

一、特征提取方法特征提取是将文本转化为计算机可识别的特征向量的过程。

下面介绍几种常用的特征提取方法:1. 词袋模型(Bag of Words):词袋模型将文本转换为一个包含词袋(词汇表)中所有单词的向量。

对于每个文档,词袋模型统计每个词在文档中的词频或词重。

这种方法简单有效,但忽略了文本中的语法和顺序信息。

2. N-gram模型:N-gram模型将文本分成N个连续的词组,统计每个词组的出现频率。

该方法考虑了词组的局部关系,能够捕捉文本中的一定的语序信息。

3.TF-IDF:TF-IDF(Term Frequency-Inverse Document Frequency)是一种基于词频和逆文档频率的特征提取方法。

它衡量了一个词在文档中的重要性,高频率出现且在整个语料库中稀有的词被认为具有较高的区分能力。

4.主题模型:主题模型通过对文档进行主题聚类,将文本转化为对应主题的概率分布向量。

主题模型可以提取文本中的语义信息,但参数估计较为困难。

5. Word2Vec:Word2Vec是一种基于神经网络的词嵌入模型,通过学习词的分布式表示。

Word2Vec可以捕捉词之间的语义相似性,提取更加丰富的特征。

二、分类算法分类算法是根据提取的特征向量对文本进行分类。

常用的分类算法包括:1.朴素贝叶斯分类器:朴素贝叶斯分类器基于贝叶斯定理和特征条件独立假设,计算每个类别的概率,并选择概率最大的类别作为分类结果。

朴素贝叶斯分类器简单高效,对于大规模数据集适用。

2.支持向量机:支持向量机通过寻找一个超平面,将不同类别的样本点分开。

它可以处理高维数据,具有较好的泛化性能。

3.决策树:决策树根据特征之间的关系构建一棵树型结构,通过比较特征值进行分类。

数据挖掘技术在文本挖掘中的使用教程

数据挖掘技术在文本挖掘中的使用教程

数据挖掘技术在文本挖掘中的使用教程随着互联网的迅猛发展,大量的文本数据涌现在各个领域。

如何从这些海量的文本数据中提取有用的信息,成为了一项具有挑战性的任务。

为解决这个问题,数据挖掘技术在文本挖掘中逐渐得到了广泛应用。

本文将介绍数据挖掘技术在文本挖掘中的基本概念和常用方法,帮助读者了解如何利用数据挖掘技术进行文本挖掘。

一、文本挖掘概述文本挖掘是指从大量的文本数据中自动地提取出有用的知识和信息。

它结合了信息检索、自然语言处理和数据挖掘等多个技术领域。

对于文本挖掘任务,常见的包括文本分类、文本聚类、情感分析等。

二、数据预处理在进行文本挖掘之前,需要对文本数据进行预处理。

主要包括以下几个步骤。

1. 文本清洗:去除文本中的HTML标签、特殊符号、停用词等,只保留有意义的内容。

2. 分词:将文本切分成一个个独立的词语,便于后续处理。

3. 去除低频词:去除在整个文本数据中出现频率较低的词语,可以减少噪音带来的影响。

4. 词性标注:为每个词语标注词性,可以方便后续的特征提取和分析。

三、特征提取对于文本数据,需要将其转化为机器学习算法能够处理的特征向量。

常见的特征提取方法有以下几种。

1. 词袋模型:将文本表示为一个词语的集合,忽略了词语的顺序和语法,只关注词语的出现与否。

2. TF-IDF:考虑了词语的出现频率和在整个文本数据中的重要程度,能够更好地表示词语的信息。

3. Word2Vec:利用神经网络方法将词语映射到一个连续的向量空间中,能够更好地表示词语的语义信息。

4. 主题模型:通过对文本进行聚类分析,将文本数据归纳为若干个主题,可以更好地求解文本分类和聚类问题。

四、文本分类文本分类是将文本归类到不同的类别中的过程。

常见的文本分类算法有以下几种。

1. 朴素贝叶斯:基于贝叶斯定理和特征条件独立假设,能够快速进行文本分类,但对特征之间的关联性要求较低。

2. 支持向量机:通过在特征空间中找到一个超平面,将不同的类别分开,能够处理高维空间的文本分类问题。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

聚类与分类算法在文本挖掘中的应用研究

聚类与分类算法在文本挖掘中的应用研究

聚类与分类算法在文本挖掘中的应用研究文本挖掘是数据挖掘的一个重要分支,旨在通过对大规模文本数据的分析和理解,发现其中隐藏的模式、关系和知识。

在文本挖掘中,聚类与分类算法是两个常用的技术,它们能够帮助我们对文本数据进行有效的组织、分类和预测。

本文将探讨聚类与分类算法在文本挖掘中的应用研究。

聚类算法是一种将相似的对象归为一类的技术。

在文本挖掘中,聚类算法主要应用于无监督学习的任务,即在没有事先给定类别标签的情况下,对文本进行自动的聚类分析。

目前,常用的聚类算法有K-means算法、层次聚类算法和密度聚类算法等。

K-means算法是一种基于距离的聚类算法,其思想是通过迭代计算,将文本样本划分为K个不同的聚类。

算法首先需要选择K个聚类中心,然后根据文本样本与聚类中心之间的距离,将样本分配到最近的聚类中心中。

随后,根据新的聚类分配情况,重新计算聚类中心的位置,直到满足停止条件为止。

K-means算法适用于大规模数据集和高维特征向量,在文本挖掘中常用于对新闻、社交媒体等文本数据进行聚类分析。

层次聚类算法是一种基于层次结构的聚类算法,其通过构建一个聚类层次树来组织文本对象。

该算法将每个对象视为一个初始聚类簇,然后逐步合并具有最小相似度的聚类簇,直到形成一个全局聚类簇。

层次聚类算法能够提供更加详细的聚类结果,适用于对文本数据进行细粒度的聚类分析。

密度聚类算法是一种基于密度的聚类算法,其根据文本对象的局部密度来进行聚类划分。

该算法首先分析文本数据的密度分布,并通过定义密度阈值来标记核心对象和噪声点。

随后,通过相邻点的连接,将核心对象聚集在一起,形成不同的聚类簇。

密度聚类算法对于具有复杂的聚类结构和噪声数据的情况下,表现出较好的聚类性能。

分类算法是一种通过训练样本的类别信息,为新的文本对象分配类别标签的技术。

在文本挖掘中,分类算法通常用于监督学习的任务,即在已知类别标签的情况下,对文本数据进行预测和分类。

常见的分类算法有朴素贝叶斯算法、支持向量机算法和决策树算法等。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法在数据挖掘领域,分类算法是一种重要的工具,它可以通过对数据进行判断和分类,帮助我们从大量的数据中发现有用的信息和模式。

本文将介绍数据挖掘中常用的分类算法,并探讨它们的原理和应用。

一、决策树算法决策树是一种基于树状结构的分类算法,它通过一系列的分裂规则将数据划分为不同的类别。

决策树算法的核心是选择最佳的分裂规则,使得划分后的子集纯度最高。

决策树算法的优点是易于理解和解释,同时对于处理各种类型的数据也比较灵活。

它在各个领域的应用广泛,包括医学诊断、金融风险评估等。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。

它通过计算给定特征下某个类别的概率来进行分类。

朴素贝叶斯算法的优点是计算效率高,同时对于处理大规模数据集也很有效。

它在文本分类、垃圾邮件过滤等领域有着广泛的应用。

三、支持向量机算法支持向量机算法是一种非常强大的分类算法,它通过构建超平面将不同类别的样本分开。

支持向量机算法的核心是选择最佳的超平面,使得间隔最大化。

支持向量机算法的优点是可以处理高维数据和非线性问题,并且具有很强的泛化能力。

它在图像识别、信用评估等领域被广泛应用。

四、神经网络算法神经网络算法是一种模拟人类神经系统运行方式的分类算法。

它通过一系列的神经元和连接权重进行信息处理和分类。

神经网络算法的优点是可以处理复杂的非线性关系,并且具有很强的容错能力。

它在语音识别、图像处理等领域有着广泛的应用。

五、K近邻算法K近邻算法是一种基于样本相似性的分类算法,它通过找到样本最近的K个邻居来进行分类。

K近邻算法的优点是简单易懂,并且对于处理多属性数据也比较有效。

它在推荐系统、社交网络分析等领域被广泛应用。

六、总结数据挖掘中的分类算法是帮助我们从大量数据中发现规律和模式的重要工具。

决策树、朴素贝叶斯、支持向量机、神经网络和K近邻算法都是常用的分类算法,每种算法都有自己的特点和适用场景。

在实际应用中,我们需要根据具体的问题和数据特点选择合适的分类算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘中的文本挖掘的分类算法综述摘要随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。

本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。

关键词:数据挖掘,文本挖掘,文本分类算法ABSTRACTWith the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work.KEYWORDS:data mining, text mining, text classification algorithms,KNN目录摘要 (1)ABSTRACT (1)目录 (1)第一章数据挖掘概述 (3)1.1 数据挖掘介绍 (3)1.2 数据挖掘常用方法 (4)1.3 数据挖掘的功能 (5)1.4 数据挖掘的主要问题 (5)第二章文本挖掘概述 (8)2.1 文本挖掘介绍 (8)2.1.1 文本挖掘的历史演化 (8)2.1.2文本挖掘的定义 (8)2.1.3文本挖掘的研究现状 (9)2.2 文本挖掘主要内容 (9)2.3 文本挖掘技术 (10)2.3.1 数据预处理技术 (10)2.3.2 数据挖掘分析技术 (11)2.4 文本挖掘热点难点问题 (12)第三章文本分类算法 (14)3.1 文本分类概述 (14)3.1.1 文本分类的研究现状 (14)3.1.2 文本分类模型 (15)3.1.3 文本分类面临的挑战 (17)3.1.4 文本分类亟需解决的问题 (18)3.2 常用文本分类算法 (18)3.2.1 文本分类中的特征选择方法 (19)3.3.2 支持向量机文本分类算法 (22)3.3.3 朴素贝叶斯文本分类算法 (23)第四章KNN文本分类算法研究 (27)4.1 KNN文本分类算法介绍 (27)4.2 基于统计的KNN文本分类算法研究 (27)4.3 基于LSA降维的KNN文本分类算法研究 (30)4.4 其他改进的KNN文本分类算法 (31)第五章文本挖掘应用 (34)5.1 数据挖掘应用 (34)5.1.1 数据挖掘解决的典型商业问题 (34)5.1.2 数据挖掘在市场营销的应用 (34)5.1.3 数据挖掘在企业危机管理中的应用 (35)5.2 文本挖掘应用 (37)5.3 文本分类应用 (37)第六章结论 (39)参考文献 (40)第一章数据挖掘概述1.1 数据挖掘介绍需要是发明之母。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。

获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等[1]。

数据挖掘出现于20世纪80年代后期,是数据库研究中一个很有应用价值的新领域,是一门交叉性学科,融合了人工智能、数据库技术、模式识别、机器学习、统计学和数据可视化等多个领域的理论和技术.数据挖掘作为一种技术,它的生命周期正处于沟坎阶段,需要时间和精力去研究、开发和逐步成熟,并最终为人们所接受。

20世纪80年代中期,数据仓库之父W.H.In-mon在《建立数据仓库》(Building the Data Warehouse)一书中定义了数据仓库的概念,随后又给出了更为精确的定义:数据仓库是在企业管理和决策中面向主题的、集成的、时变的以及非易失的数据集合。

与其他数据库应用不同的是,数据仓库更像一种过程—对分布在企业内部各处的业务数据的整合、加工和分析的过程。

传统的数据库管理系统(database management system,DBMS)的主要任务是联机事务处理(on-line transaction processing,OLTP);而数据仓库则是在数据分析和决策方面提供服务,这种系统被称为联机分析处理(on-line analytical processing,OLAP).OLAP的概念最早是由关系数据库之父E.F.Codd于1993年提出的。

当时,Codd认为OLTP已不能满足终端用户对数据库查询分析的需要,结构化查询语言(structured query language,SQL)对数据库进行的简单查询也不能满足用户分析的需求.用户的决策分析需要对关系数据库进行大量计算才能得到结果,因此Codd提出了多维数据库和多维分析的概念。

数据挖掘(Data Mining),就是从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。

数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。

知识发现过程以下三个阶段组成:(1) 数据准备,(2)数据挖掘,(3) 结果表达和解释。

数据挖掘可以与用户或知识库交互。

并非所有的信息发现任务都被视为数据挖掘。

例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。

尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。

数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。

一些其他领域也起到重要的支撑作用。

特别地,需要数据库系统提供有效的存储、索引和查询处理支持。

源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。

分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

因此,数据挖掘被信息产业界认为是数据库系统最重要的前沿之一,是信息产业最有前途的交叉学科。

1.2 数据挖掘常用方法利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。

(1) 分类。

分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。

它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。

(2) 回归分析。

回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。

它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

(3) 聚类。

聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。

它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。

(4) 关联规则。

关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。

在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。

(5) 特征。

特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。

相关文档
最新文档