信道复用技术

合集下载

无线wifi的信道复用方式

无线wifi的信道复用方式

无线wifi的信道复用方式无线WIFI的信道复用方式主要包括以下几种:1.频分复用(FDM):频分复用是将无线信号分成多个子信道,每个子信道可以承载不同的数据流。

在WIFI系统中,802.11a和802.11g采用了OFDM(正交频分复用)技术,将射频信号分成52个子信道,从而实现多个数据流的复用。

2.时分复用(TDM):时分复用是将时间分成若干个时间段,每个时间段可以分配给不同的用户使用。

在WIFI系统中,采用多路复用技术,如CDMA(码分多路复用)和OFDM(正交频分复用),在同一频段上实现多个用户的同时传输。

3.码分复用(CDM):码分复用是利用不同的编码方式将多个数据流分开,从而实现多路复用。

在WIFI系统中,采用CCK(互补编码)和QPSK(正交相移键控)等编码方式来实现多路复用。

4.空间复用:空间复用是通过多个天线或信号传输路径来实现多路复用。

在WIFI系统中,采用MIMO(多输入多输出)技术,通过多个天线同时发送和接收多个数据流,提高系统容量和覆盖范围。

5.动态信道分配(DCA):动态信道分配是一种自适应信道分配策略,根据无线环境的变化,动态地分配信道给各个接入点。

DCA技术可以有效避免信道干扰,提高系统性能。

6.信道捆绑(CB):信道捆绑是将多个相邻的信道绑定在一起,提高整体传输速率。

在802.11n协议中,采用频道捆绑技术,将多个5GHz信道捆绑在一起,实现更高的数据传输速率。

综上所述,无线WIFI的信道复用方式主要包括频分复用、时分复用、码分复用、空间复用、动态信道分配和信道捆绑等技术。

这些复用技术在WIFI系统中相互配合,实现多个用户的同时传输,提高系统容量和覆盖范围,满足日益增长的无线通信需求。

信道复用技术原理与特点

信道复用技术原理与特点

信道复用技术原理与特点信道复用是指多个用户或信号共享同一个通信信道资源的技术。

其主要目的是提高通信信道的利用率,降低通信系统的成本,并能满足多用户同时通信的需求。

信道复用技术包括时分复用(TDM)、频分复用(FDM)、码分复用(CDM)和波分复用(WDM)等。

1.时分复用(TDM):时分复用是将时间分割成若干个时隙,并按照一定的规则将不同用户或信号的信息依次放置在不同的时隙上。

时分复用可以灵活地分配时间资源,实现多用户的同时通信。

其特点包括:-灵活性高:可以根据不同用户的需求灵活分配不同的时隙。

-实时性强:时分复用能够保证用户间信息传输的实时性要求。

-设备成本低:由于时分复用只需要在时间维度上进行划分,不需要额外的设备。

-缺点是在一些时刻只能有一个用户传输数据,时间资源无法共享。

2.频分复用(FDM):频分复用是将通信频谱分成若干个子信道,每个子信道分配给不同的用户或信号进行传输。

通过频分复用,不同用户或信号之间的通信可以同时进行,而且各自不会干扰对方。

其特点包括:-带宽高效:频分复用能够充分利用通信频谱资源,提高频谱利用率。

-抗干扰性强:不同子信道之间相互隔离,不会干扰对方。

-灵活性低:频分复用分配的子信道数量是固定的,不能根据需求灵活调整。

3.码分复用(CDM):码分复用是利用不同的扩频码将通信信号进行扩频处理,然后在频域上进行叠加传输。

不同的扩频码使得不同用户或信号的信息彼此独立,可以通过解扩还原出原始信号。

其特点包括:-抗干扰性强:不同的扩频码使得不同用户的信号互相隔离,具有较强的抗干扰性。

-安全性高:码分复用可以通过加密扩频码来增强通信的安全性。

-复杂性高:码分复用需要进行频谱扩展和解扩处理,对系统硬件和算法要求较高。

4.波分复用(WDM):波分复用是将不同波长的光信号通过光复用器复用在同一光纤上进行传输。

不同的波长代表不同的光信号,可以实现多个用户或信号的同时传输。

-带宽大:波分复用利用不同波长的光信号在光纤中传输,可以实现大量数据的同时传输。

3.3信道复用技术

3.3信道复用技术

3
3.3.2 时分多路复用TDM
(1)是将线路用于传输的时间划分成若干个时间片 (2)每个用户分得一个时间片 (3)在其占有的时间片内,用户使用通信线路的全部带宽。
4
统计时分复用
原理:
将同步时分复用中时间 片的固定分配改为动 态分配。
• 在周期1里,C1和D1并没有 需要传输的数据,而同步 TDM中C1与D1在周期1里仍 分配到时间片,因此在这 两个时间片里带宽是浪费 的。
• 在统计TDM中,周期1里不 需为C1、D1分配时间片,明 显提高了带宽的利用率。
5
3.3.3 波分多路复用WDM
ü 实现在一根光纤中同时传输多种不同波长的光波信号,以达 到复用的目的。光载波间隔仅0.8或1.6nm, 目前已做到在一 根光纤上复用80~160个光载波信号.
ü 不同的波长用于不同的信道。每个信道的传输速率为 2.5Gb/s-1Tb/s
7
3.3.4 码分多路复用CDMA
Ø 所有用户占用相同的带宽,使用同一频率同时发送或接收 信号,各个用户的信号用各自不同的地址码序列来区分。
Ø 这个地址码序列是一个扩频编码,每个用户分配一个,以 区别不同的用户信号。
• 发送端可用不同的扩频编码分别向不同的接收端发送数 据,接收端用不同的扩频编码进行解码,就可得到不同发 送端送来的数据,实现多址通信。
3.3.1 频分多路复用FDM
v 线路的带宽(可用频带)按频率划分成若干段较小的带宽 的信道
v 各条信道中心频率不重合,每个信道之间相距一定的间隔 v 通过采用不同的载波频率进行实现:在每个信道上传输一
路信号
2
3.3.1 频分多路复用FDM
v 应用——载波电话通信系统 声音信号的有效频率范围为300-3400HZ,因而4KHZ的带宽 足以传送声音,并提供了一定的保护频带。 国际电话电报咨询委员会CCITT规定:将12条4KHZ话路复用 在60-108KHZ频带上,也可以复用在12-60KHZ频带上。

信道复用技术和分类

信道复用技术和分类

信道复用技术和分类
信道复用技术是一种将多个通信信号传输在同一物理信道上的技术。

它通过将不同的信号分配到不同的频率、时间或码上,从而实现在一个信道上同时传输多个独立的数据流。

1. 频分复用(Frequency Division Multiplexing,FDM):频分复用将不同的通信信号分配到不同的频率带宽上,然后通过调制和解调技术实现信号的传输与分离。

每个信号都占用一定的频率带宽,彼此之间不会相互干扰。

2. 时分复用(Time Division Multiplexing,TDM):时分复用将不同的通信信号按照时间划分的方式传输,在每个时间片上只传输一个信号。

通过快速切换不同的信号,使得多个信号在同一信道上进行传输。

接收端根据时间信息进行解调和分离。

3. 统计时分复用(Statistical Time Division Multiplexing,STDM):统计时分复用是一种动态的时分复用技术,根据信号的实际传输需要进行分配。

它可以根据不同信号的占用率动态地分配时间片,从而提高信道的利用率。

4. 波分复用(Wavelength Division Multiplexing,WDM):波分复用利用光纤通信中不同波长的光信号进行复用。

通过将不同波长的光信号同时传输在同一光纤中,可以实现高容量的光纤传输。

接收端通过光解复用器将不同波长的光信号分离出来。

以上是几种常见的信道复用技术和分类。

每种技术都具有自身的特点和适用场景,可以根据实际需求选择合适的信道复用技术来提高通信系统的容量和效率。

计算机网络-2-3-信道复用技术

计算机网络-2-3-信道复用技术

计算机⽹络-2-3-信道复⽤技术复⽤技术简单介绍image如图,在(a)图中,A1,B1,C1分别使⽤⼀个单独的信道和A2,B2,C2来进⾏通信,因此他们需要使⽤三个信道进⾏通信,但是呢,如果把它们在发送端上使⽤⼀个复⽤器,把这三个相互独⽴的信道“混合在⼀起”成为⼀个信道,这样呢,这三个就可以共享使⽤⼀个信道进⾏通信,在接收端使⽤⼀个分⽤器,把他们抽出来,分为把它们送到不同的接收端。

这就是所谓的信道复⽤技术。

信道复⽤可以分别频分复⽤和时分复⽤两⼤类。

下⾯我们就详细介绍这两种信道复⽤技术。

频分复⽤技术如图所⽰:⽤户在分到⼀定的频带后,在通信的⾃始⾄终都占⽤着这个信道资源,可见呢,不同的⽤户在同样的时间占⽤的是不同的信道资源。

在使⽤频分复⽤时,如果⽤户所占的带宽资源不变。

则当⽤户的数量增加时,服⽤后的信道的总带宽会⼤⼤增加。

时分复⽤技术将时间划分为⼀段段等长的时分复⽤帧,时分复⽤的⽤户在不同的时间招⽤不同的信道资源。

时分复⽤技术更利⽤于数字信号传输。

统计时分复⽤:是对时分复⽤的改进,它能够明显的提⾼信道的利⽤率。

如图:原理是将使⽤集中器连接4个低速的⽤户,然后把他们的数据通过⾼速线路发送到另⼀台远程计算机。

波分复⽤技术其实就是光的频分复⽤。

原理就是在⼀条光纤上搭载多条光波信号,这样就提出了光的波分复⽤这⼀名词。

由于现在⼀天光纤上能搭载越来越多的光型号,因此就⼜出现了密集波分复⽤这⼀名词。

如图,对于8路传输速率为2.5G/s的光载波,经过⼴的调制后,分别将波长变换到1550-1557nm,这8根波长经过光复⽤器,就会在⼀个光纤上传输。

,在⼀个光纤上总的传输速率为8X2.5G/s=20G/s。

但是光信号传输⼀定距离后会衰减,因此必须要对衰减的光信号进⾏放⼤才能继续传输。

因此呢,这就引出了⼀个光放⼤器的东西,现在的光放⼤器叫做掺饵光纤放⼤器。

这种放⼤器放⼤原理并不复杂,只是在1550nm波长附近有35nm的频带范围提供较均匀的增益。

物理层_信道复用技术CDM

物理层_信道复用技术CDM
(–1 –1 –1 +1 +1 –1 +1 +1)
码分多址CDMA
➢ 假定S站要发送信息的数据率为b bit/s,由亍每个比特要转换成m比特的码片序列, 因此S站发送的数据率提高到mb bit/s,同时S站所占用的频带宽度也提高到原来 数值的m倍。这种通信方式称为扩频(spread spectrum)通信。
➢ 在实用的系统中是使用伪随机码序列。
码片序列的正交关系
➢ 令向量 S 表示站 S 的码片向量,令 T 表示其他任何站的码片向量。 ➢ 两个丌同站的码片序列正交,就是向量 S 和T 的规格化内积(inner
product)都是 0:
S • T
1 m
m
S iTi
i1
0
公式2-1
【例】令向量 S 为(–1 –1 –1 +1 +1 –1 +1 +1),向量 T 为(–1 –1 +1 –1 +1 +1 +1 –1)。
➢ CDMA、蓝牙、WiFi技术基亍此与利方法。
码分多址CDMA
➢ CDMA可提高通话质量和数据传输的可靠性,减少干扰,增 大通信系统的容量(是使用全球秱动通信系统GSM的4~5 倍),降低手机的平均发射功率。
码分多址CDMA
➢ 1989年高通公司将用亍军事通信的CDMA技术应用亍商业手 机网络。
CDMA 的工作原理
假定有个X站要接收S站发送的数据,X站必须知道S站的码片序列。X站 使用得到的码片向量S不接收到的未知信号迚行求内积的计算。X站接收 到的未知信号是各个站发送的码片序列之和。
根据公式(2-1)和(2-2),再根据叠加原理,求内积得到的结果是: 所有其他站的信号都被过滤掉,而只剩下S站发送的信号。 当S站发送比特1时,在X站计算内积的结果是+1;

信道复用技术

信道复用技术

信道复用技术今晚学习下信道复用技术;为什么要采用信道复用技术呢我总结了一下原因:采用信道复用技术原因:1.通信线路架设费用较高,所以应该充分利用每个信道的容量,尽可能不重复建设通信线路;2.一个物理信道传输介质所具有的通信容量往往比它单次传输过程所需的容量要大,如果一个物理信道紧紧为单个通信过程服务,就会造成很多不必要的浪费;信道多路复用技术实现的基本原理把一个物理信道按一定的机制划分为多个互不干扰互不影响的逻辑信道,每个逻辑信道各自为一个通信过程服务,每个逻辑信道均占用物理信道的一部分通信容量;实现信道多路复用技术的关键发送端如何把多个不同通信过程的数据信号合成在一起送到信道上一并传输接收端如何把从信道上收到的复合信号中分离出属于不同通信过程的信号数据实现多路复用技术的核心设备多路复用器Multiplexer:在发送端根据某种约定的规则把多个低速低带宽的信号合成一个高速高带宽的信号;多路分配器Demultiplexer:在接收端根据同一规划把高速信号分解成多个低速信号;多路复用器和多路分配器统称为多路器MUX:在半双工和全双工通信系统中,参与多路复用的通信设备通过一定的接口连接到多路器上,利用多路器中的复用器和分配器实现数据的发送和接收;信道复用技术的类型:FDM技术:频分多路复用FDM:Frequency Division Multiplexing技术的适用领域采用频带传输技术的模拟通信系统,如:广播电视系统、有线电视系统、载波电话通信系统等;FDM技术的基本原理把物理信道的整个带宽按一定的原则划分为多个子频带,每个子频带用作一个逻辑信道传输一路数据信号,为避免相邻子频带之间的相互串扰影响,一般在两个相邻的子频带之间流出一部分空白频带保护频带;每个子频带的中心频率用作载波频率,使用一定的调制技术把需要传输的信号调制到指定的子频带载波中,再把所有调制过的信号合成在一起进行传输;接收端各路信号的区分:依赖于载波中心频率;此外,还有波分复用,码分复用,我就不在此深究了;。

信道复用技术原理与特点(频分、时分、波分、码分)

信道复用技术原理与特点(频分、时分、波分、码分)

信道复用技术原理与特点(频分、时分、波分、码分)信道复用技术是一种可以有效地利用有限的通信资源的技术,在不增加额外的通信资源情况下,可以同时传输多个用户的信号。

常见的信道复用技术有频分复用(FDM)、时分复用(TDM)、波分复用(WDM)和码分复用(CDM)。

频分复用(FDM)是通过将不同用户的信号分配到不同的频率带上来实现多用户通信的技术。

在发送端,将用户的信号通过滤波器分成不同的频率带,然后通过对应的频率载波进行调制并合并,形成复合信号进行发送;在接收端,将复合信号经过滤波器分离出不同的频率带,并经过解调得到原始信号。

频分复用技术的特点是传输速率高,抗干扰能力强,但需要分配固定频率资源,不适合业务量波动大的场景。

时分复用(TDM)是通过将不同用户的信号按时间片的方式交替发送来实现多用户通信的技术。

在发送端,用户的信号按照一定的顺序进行划分,并在各个时间片上按顺序传输;在接收端,根据时间片序号将信号进行解析并恢复出原始信号。

时分复用技术的特点是能够灵活适应业务量的变化,但对时钟同步要求较高。

波分复用(WDM)是通过将不同用户的信号分配到不同的波长上来实现多用户通信的技术。

在发送端,用户的信号经过不同波长的光载波进行调制并合并,形成复合光信号进行发送;在接收端,通过波分复用器将复合光信号分离成不同波长的单光信号,并进行解调得到原始信号。

波分复用技术的特点是传输容量大,对光纤链路的利用率高,但需要高精度的波长稳定光源和波分复用器。

码分复用(CDM)是通过将不同用户的信号编码成不同的码形信号,然后利用不同的码形信号进行调制并合并,形成复合信号进行发送,接收端利用解码器将复合信号解码还原出原始信号。

码分复用技术的特点是具有码分多址的优点,即多个用户共享同一频带,相互之间不会干扰,且能够提供较好的抗干扰性能。

但需要较高的处理能力和复杂的调制解调技术。

总之,不同的信道复用技术在应用场景和特点上略有差异,但都能够实现多用户共享有限通信资源的目的,提高通信系统的效率和容量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信道复用技术
今晚学习下信道复用技术。

为什么要采用信道复用技术呢?我总结了一下原因:
采用信道复用技术原因:
1.通信线路架设费用较高,所以应该充分利用每个信道的容量,尽可能不重复建
设通信线路。

2.一个物理信道(传输介质)所具有的通信容量往往比它单次传输过程所需的容量
要大,如果一个物理信道紧紧为单个通信过程服务,就会造成很多不必要的浪
费。

信道(多路)复用技术实现的基本原理
把一个物理信道按一定的机制划分为多个互不干扰互不影响
的逻辑信道,每个逻辑信道各自为一个通信过程服务,每个
逻辑信道均占用物理信道的一部分通信容量。

Ø实现信道多路复用技术的关键
Ø发送端如何把多个不同通信过程的数据(信号)合成在一起送到信道上一并传输
Ø接收端如何把从信道上收到的复合信号中分离出属于不同通信过程的信号(数据)
Ø实现多路复用技术的核心设备
Ø多路复用器(Multiplexer):在发送端根据某种约定的规则把多个低速(低带宽)的信号合成一个高速(高带宽)的信号;
Ø多路分配器(Demultiplexer):在接收端根据同一规划把高速信号分解成多个低速信号。

多路复用器和多路分配器统称为多路器(MUX):在半双工和全双工通信系统中,参与多路复用的通信设备通过一定的接口连接到多路器上,利用多路器中的复用器和分配器实现数据的发送和接收。

信道复用技术的类型:
FDM技术:
Ø频分多路复用(FDM:Frequency Division Multiplexing)技术的适用领域
Ø采用频带传输技术的模拟通信系统,如:广播电视系统、有线电视系统、载波电话通信系统等;
ØFDM技术的基本原理
Ø把物理信道的整个带宽按一定的原则划分为多个子频带,每个子频带用作一个逻辑信道传输一路数据信号,为避免相邻子频带之间的相互串扰影响,一般在两个相邻的子频带之间流出一部分空白频带(保护频带);每个子频带的中心频率用作载波频率,使用一定的调制技术把需要传输的信号调制到指定的子频带载波中,再把所有调制过的信号合成在一起进行传输。

接收端各路信号的区分:依赖于载波中心频率。

此外,还有波分复用,码分复用,我就不在此深究了。

相关文档
最新文档