中型载货汽车非断开式驱动桥半轴设计开题报告

合集下载

基于有限元中型货车半轴与桥壳的设计-开题报告

基于有限元中型货车半轴与桥壳的设计-开题报告
毕业设计(论文)开题报告
学生姓名 指导教师姓名
系部 职称
汽车与交通工程学 院
讲师
从事 专业
专业、班级 车辆工程 是否外聘 □是■否
题目名称
基于有限元中型货车半轴与桥壳的设计
一、 课题研究现状、选题目的和意义 1、 研究现状 近些年来,随着中重型货车在国际车市上凸显强劲的增长势头和市场占有率,随 Nhomakorabea中重型货车市
场的发展,作为四大总成之一的车桥也飞速的发展起来,所以国内外都对车桥行业投入了大量的人力 物力,国内市场过去,商用车整车企业的发展战略是车身必须自制,发动机立足或争取自制,而车桥 则一般采用社会资源。然而,随着近年商用车市场,特别是中、重型卡车市场竞争的加剧,为了在核 心总成上不受制于人,国内一汽、中国重汽等主要商用车企业要么投巨资、重兵布局发展自己的车桥 业务;要么积极主动与有关大型车桥生产企业建立长期战略联盟,以确保自己稳定的零部件供应。国 外市场,作为目前顶级的欧洲品牌的车桥代表了当今世界最高的设计水平,如戴姆勒-克莱斯勒公司 20 世纪90 年代末期开发的全新重型卡车ACTROS 系列VOLVO的FM FH系和SCANIA的第5代(4系列G级), 代表着技术变革的前沿MAN 的重型卡车TGA五十铃F系列等都代表着目前世界最高水平载货车车桥设 计水平。
2、选题目的和意义 中型货车在汽车行业中应用较广泛,而半轴与桥壳是中型货车重要的承载件和传力件。驱动桥壳 支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向也是经过桥 壳传到悬挂及车架或车厢上⋯。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设 计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷, 提高汽车行驶的平顺性和舒适性。其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱 动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮 传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于 主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要 求的前提下应尽可能便于制造,驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥 壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是 由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看 成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定 工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行 了计算和分析。 在我国传统的设计方式中以手工绘图或采用 AutoCAD 绘制二维平面图,做出成品进行试验为主, 无法满足快速设计的需求,造成产品开发周期长、设计成本高。利用 ANSYS 软件对桥壳进行分析校核, 能够大大提高设计的效率和质量,为中型货车的研发缩短了宝贵的时间。

重型货车驱动桥开题报告

重型货车驱动桥开题报告

重型货车驱动桥开题报告重型货车驱动桥开题报告一、引言重型货车作为运输行业的重要组成部分,承载着大量的货物运输任务。

而驱动桥作为重型货车的核心组成部分,直接影响着车辆的性能和稳定性。

本文旨在对重型货车驱动桥进行研究,探讨其结构、工作原理以及存在的问题,并提出改进方案。

二、重型货车驱动桥的结构和工作原理1. 驱动桥的结构重型货车驱动桥通常由驱动轴、差速器、行星齿轮机构等组成。

驱动轴负责将发动机的动力传递到车轮上,差速器则用于平衡车轮间的差异转速,行星齿轮机构则起到传递和放大动力的作用。

2. 驱动桥的工作原理在行驶过程中,发动机的动力通过传动系统传递到驱动轴上,驱动轴再将动力传递到车轮上,从而推动车辆前进。

差速器的作用是在转弯时平衡车轮间的差异转速,避免因内外侧车轮转速不同而导致的转向困难。

三、重型货车驱动桥存在的问题1. 动力传递效率低下由于重型货车的工作环境恶劣,驱动桥在长时间运行过程中容易受到磨损和疲劳,导致动力传递效率下降,造成能源浪费。

2. 车辆稳定性差重型货车驱动桥的结构和工作原理决定了其对车辆稳定性的影响。

在转弯时,差速器的作用不够灵活,容易导致车辆侧滑或失控。

四、改进方案1. 采用新材料为了提高驱动桥的耐磨性和抗疲劳性,可以考虑采用新型材料,如高强度钢、铝合金等,以增强驱动桥的承载能力和使用寿命。

2. 优化差速器设计通过改进差速器的结构和工作原理,提高其灵活性和响应速度,以减少车辆在转弯时的侧滑和失控现象,提高车辆的稳定性。

3. 引入智能控制系统通过引入智能控制系统,对驱动桥的工作状态进行实时监测和调整,以确保驱动桥的正常运行和最佳工作状态。

五、结论重型货车驱动桥作为车辆的核心组成部分,对车辆的性能和稳定性起着至关重要的作用。

然而,目前的驱动桥存在动力传递效率低下和车辆稳定性差等问题。

通过采用新材料、优化差速器设计以及引入智能控制系统等改进方案,可以有效提高驱动桥的性能和稳定性,进一步提升重型货车的运输效率和安全性。

驱动桥设计 开题报告

驱动桥设计 开题报告

驱动桥设计开题报告驱动桥设计开题报告一、引言在现代工程领域中,驱动桥是一种非常重要的机械装置,广泛应用于汽车、铁路和工业机械等领域。

驱动桥的设计对于机械系统的性能和可靠性具有重要影响。

本文将围绕驱动桥设计展开研究,探讨其设计原理、优化方法以及应用领域。

二、驱动桥设计原理驱动桥是用来传递动力和扭矩的重要部件,其设计原理主要包括传动比的选择、齿轮的设计和轴承的选型等。

在传动比的选择上,需要根据实际应用需求和驱动系统的特点来确定。

齿轮的设计则需要考虑到扭矩传递的可靠性和效率,同时还要考虑到齿轮的强度和耐久性。

轴承的选型则需要根据承载能力和运行环境来确定,以确保驱动桥的正常运行。

三、驱动桥设计的优化方法为了提高驱动桥的性能和可靠性,可以采用优化方法对其进行设计。

一种常用的优化方法是多目标优化,即在满足一定约束条件的前提下,通过调整设计变量,使得多个目标函数达到最优。

例如,在驱动桥设计中,可以将传动效率、扭矩传递能力和重量等作为目标函数,通过优化算法,找到最优的设计参数组合。

另外,还可以采用有限元分析、试验验证等方法,对驱动桥进行性能评估和验证,从而进一步优化设计。

四、驱动桥设计的应用领域驱动桥设计广泛应用于汽车、铁路和工业机械等领域。

在汽车领域,驱动桥是汽车动力传递的核心部件,直接影响汽车的行驶性能和燃油经济性。

在铁路领域,驱动桥是火车牵引系统的重要组成部分,对火车的运行速度和牵引力起到关键作用。

在工业机械领域,驱动桥广泛应用于各种传动装置中,如起重机、挖掘机等,用于传递动力和扭矩。

五、结论驱动桥设计是一项复杂而关键的任务,对于机械系统的性能和可靠性具有重要影响。

通过合理选择传动比、设计齿轮和选型轴承等,可以提高驱动桥的性能和可靠性。

同时,采用优化方法和验证手段,可以进一步优化设计和验证性能。

驱动桥设计的应用领域广泛,涉及汽车、铁路和工业机械等领域。

未来,随着技术的不断发展,驱动桥设计将面临更多的挑战和机遇,需要不断创新和改进。

驱动桥的设计开题报告

驱动桥的设计开题报告

驱动桥的设计开题报告驱动桥的设计开题报告摘要:驱动桥是机械传动系统中的重要组成部分,它通过传递动力和扭矩,将发动机的动力转化为车轮的驱动力。

本文旨在探讨驱动桥的设计原理、结构以及优化方法,以提高车辆的性能和驾驶体验。

1. 引言驱动桥作为汽车传动系统的核心组件之一,在车辆的动力传递和操控性能方面起着至关重要的作用。

随着汽车工业的发展,人们对驱动桥的要求也越来越高。

因此,设计一种高效可靠的驱动桥成为了研究的热点。

2. 驱动桥的基本原理驱动桥的基本原理是将发动机的动力通过传动轴传递给车轮,实现车辆的前进。

常见的驱动桥有前驱动桥、后驱动桥和全驱动桥。

前驱动桥主要用于前置发动机的前驱车辆,后驱动桥主要用于后置发动机的后驱车辆,而全驱动桥则将动力均匀地传递给四个车轮。

3. 驱动桥的结构驱动桥的结构包括驱动轴、差速器、齿轮传动系统等。

驱动轴负责传递动力和扭矩,差速器用于分配动力给左右车轮,并允许车轮在转弯时以不同速度旋转。

齿轮传动系统则通过齿轮的啮合传递动力。

4. 驱动桥的优化方法为了提高驱动桥的性能和驾驶体验,可以采取多种优化方法。

首先,可以通过优化齿轮传动系统的设计,减小传动损失,提高传动效率。

其次,可以采用轻量化的设计,降低车辆的整体重量,提高燃油经济性和操控性能。

此外,还可以通过改进差速器的设计,提高车辆的操控稳定性和抓地力。

5. 驱动桥的挑战与展望虽然驱动桥在汽车工业中起着重要作用,但也面临一些挑战。

例如,随着电动汽车的兴起,传统的驱动桥需要进行改进以适应电动汽车的特殊需求。

此外,环保和能源效率的要求也对驱动桥的设计提出了新的挑战。

未来,我们可以通过采用新材料、新技术和智能化控制系统等手段,进一步提升驱动桥的性能和可靠性。

结论:驱动桥作为汽车传动系统的重要组成部分,对车辆的性能和驾驶体验具有重要影响。

本文从驱动桥的设计原理、结构、优化方法以及挑战与展望等方面进行了探讨。

通过深入研究和不断创新,我们可以设计出更加高效可靠的驱动桥,推动汽车工业的发展。

【开题报告】汽车驱动桥设计开题报告

【开题报告】汽车驱动桥设计开题报告
3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。
综上所述,由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点:
毕业论文撰写提纲及实施计划
1.完成毕业论文的前期工作,包括论文材料整理和汇总 2011.3
2.对数据进行整理计算和分析 2011.4
3.绘制装配图纸 2011.5
4.完成毕业论文 2011.6
教师(导师组)意见:
签名:
年月日
审查小组意见:
审查小组负责人(签名):
年月日
备注:
1、要有5篇以上相关文章的阅读量。
(4) 与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。
单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。
由于我选用hw12型13吨级单后驱动桥,主减速比为5.833。所以此设计采用中央单级驱动桥再配以铸造整体式桥壳。
调研报告
通常驱动桥总成主要由驱动桥壳体、主减速器总成(含差速器)、轮边减速器总成、制动钳以及全浮式左右半轴等部分组成。
重型载货车驱动桥应当满足如下基本要求:选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性;外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求;齿轮及其他传动件工作平稳,噪声小;在各种载荷和转速工况下有较高的传动效率;具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性;与悬架导向机构运动协调。结构简单,加工工艺性好,制造容易,维修、调整方便。

驱动桥设计开题报告

驱动桥设计开题报告

驱动桥设计开题报告驱动桥设计开题报告一、引言驱动桥是指汽车或机械设备中的一种关键部件,它通过传递动力来驱动车辆或设备的轮胎或履带。

驱动桥的设计对于整个车辆或设备的性能和稳定性至关重要。

本文将探讨驱动桥设计的关键问题和挑战,并提出解决方案。

二、问题陈述在驱动桥设计中,需要考虑以下几个关键问题:1. 动力传递效率:驱动桥需要能够高效地将发动机的动力传递给车轮或履带,以确保车辆或设备的正常运行。

如何设计合理的传动装置,以最大程度地减少能量损失,是一个重要的问题。

2. 承载能力:驱动桥需要能够承受车辆或设备的负载,包括载重和行驶过程中的冲击力。

如何选择合适的材料和结构,以提高驱动桥的承载能力,是一个需要解决的难题。

3. 稳定性和操控性:驱动桥的设计对于车辆或设备的稳定性和操控性有着重要影响。

如何设计合理的悬挂系统和减震装置,以提高车辆或设备的稳定性和操控性,是一个需要研究的问题。

三、解决方案为了解决上述问题,我们提出以下解决方案:1. 优化传动装置:通过使用先进的传动技术,如液力变矩器、双离合器等,可以提高驱动桥的动力传递效率。

同时,合理选择传动比和齿轮比,可以降低能量损失,提高驱动效果。

2. 采用高强度材料:选择高强度材料作为驱动桥的主要构件,可以提高其承载能力。

同时,合理设计结构,增加强度和刚度,可以进一步提高驱动桥的承载能力。

3. 设计先进的悬挂系统:通过采用独立悬挂系统和可调节减震装置,可以提高车辆或设备的稳定性和操控性。

同时,合理布置悬挂点和减震器,可以减少车辆或设备在行驶过程中的颠簸和震动。

四、研究方法为了验证上述解决方案的有效性,我们将采用以下研究方法:1. 数值模拟:通过使用计算机辅助设计软件,对驱动桥的传动装置、结构和悬挂系统进行数值模拟。

通过模拟分析,可以评估不同设计方案的性能和稳定性。

2. 实验测试:通过制作驱动桥的样品,进行实验测试。

通过测试,可以验证数值模拟的结果,并进一步优化设计方案。

东风EQ1141货车后驱动桥设计开题报告 (89)

东风EQ1141货车后驱动桥设计开题报告 (89)

毕业设计(论文)开题报告题目:东风EQ1141货车后驱动桥设计图1断开式驱动桥非断开式驱动桥如图2所示。

由于结构简单,制造工艺性好,成本低,可靠性好,参考文献[1] 陈家瑞.汽车构造[M].吉林:人民交通出版社,2001[2] 余志生.汽车理论[M].清华大学:机械工业出版社,2001[3] 刘惟信.汽车设计[M].北京:清华大学出版社,2001[4] 张洪欣.汽车设计[M].北京:机械工业出版社,1999[5] Yan Yu,Xuefeng Zhao,Yan Shi,Jinping Ou.Design of a real-time overload monitoring system for bridges and roads base donstru ctural response.Measurement,V olume 46,Issue 1,January 2013[6] 王昆,何小柏,汪信远.课程设计手册[M].北京:高等教育出版社,2008[7] V.K.R. Kodur,M.Z. Naser.Importance factor for design of bridges against firehazard.Engineering Structures,V olume 54,September 2013[8] 吴宗泽.机械设计[M].北京:中央广播电视大学出版社,1998[9] 宋昭祥.机械制造基础[M].北京:机械工业出版社,1998[10] V.N.Nguyen,T.Matsuo,S.Inaba,T.Koumoto.Expermental analysis of vertical soil reaction and soil stress distribution under off-road tires.Joof Terramechanics,V olume 45,Issues 1–2,February–April 2008[11] 林宁.汽车设计[M].北京:机械工业出版社,1999[12] 吴植民.汽车构造[M].北京:人民交通出版社,1986[13] 张建中,何晓玲.机械设计课程设计[M].北京:高等教育出版社,2009[14] 汽车工程手册编辑委员会.汽车工程手册[M].北京:人民交通出版社,2001[15] 王秉华.汽车设计实用手册[M].黑龙江:黑龙江人民出版社,2005。

驱动桥的设计开题报告

驱动桥的设计开题报告

驱动桥的设计开题报告驱动桥的设计开题报告一、引言随着科技的不断发展,汽车作为人们生活中不可或缺的交通工具,其技术也在不断进步。

驱动桥作为汽车动力传输系统的关键部件之一,对汽车的性能和安全性起着重要作用。

本文将探讨驱动桥的设计问题,并提出一些可能的解决方案。

二、背景介绍驱动桥是汽车动力传输系统的核心组成部分,负责将发动机的动力传递到车轮上,驱动汽车前进。

在传统的内燃机汽车中,驱动桥通常由差速器、传动轴和齿轮组成。

而在电动汽车中,驱动桥则由电机、电控系统和传动装置构成。

三、问题陈述在驱动桥的设计中,存在以下几个关键问题需要解决:1. 动力传输效率:驱动桥的设计应该尽可能提高动力传输的效率,减少能量损失。

传统驱动桥中,差速器的设计对于动力传输效率有着重要影响。

如何在保证操控性的前提下,提高差速器的效率,是一个需要考虑的问题。

2. 车辆稳定性:驱动桥的设计对车辆的稳定性有着直接影响。

在高速行驶或转弯时,驱动桥应能够提供足够的牵引力,保证车辆的稳定性和操控性。

因此,如何优化驱动桥的结构和材料选择,以提高车辆的稳定性,是一个需要解决的问题。

3. 载荷承受能力:驱动桥需要承受来自发动机的巨大扭矩和车轮的载荷,因此其结构和材料选择需要满足一定的强度和耐久性要求。

如何设计出结构合理、强度高、重量轻的驱动桥,是一个需要解决的问题。

四、解决方案针对上述问题,我们提出以下可能的解决方案:1. 优化差速器设计:通过改进差速器的齿轮传动机构,减少传动损失,提高动力传输效率。

同时,可以采用先进的材料和制造工艺,提高差速器的耐久性和可靠性。

2. 采用电动驱动系统:电动驱动系统相比传统的内燃机驱动系统具有更高的效率和可调性。

通过电机和电控系统的优化设计,可以提供更好的动力输出和操控性能。

同时,电动驱动系统还可以实现能量回收和零排放,对环境友好。

3. 结构优化和材料选择:通过使用先进的材料和结构设计,可以提高驱动桥的强度和轻量化程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本 科 毕 业 设 计 开 题 报 告
题 目中型载货汽车非断开式驱动桥半轴设计
学生姓名xxxx学号xxxxx
所在院(系)机械工程学院
专业班级xx
指导教师xxxxxxxx
2014 年 03 月 12 日
题 目
一、选题的目的及研究意义
随着时代的发展,汽车的作用日益明显,已成了我们身边必不可少的工具。汽车的发展程度也成为衡量一个国家工业发展程度的重要标志。汽车不仅作为一种代步工具,同时它在运输业中也有非常重要的地位,特别是在一些短途运输中,因此,作为运输业的重要份子,对载重货车的快速发展的要求也越来越高。而驱动桥作为汽车传动系的重要组成部分,也必须是我们加以重视的。
(二)国外现状及发展趋势
在西欧,带轮边减速的双级主减速器后驱动桥只占整个产品的40%,且有呈下降趋势,在美国只占10%。其原因是这些地区的道路较好,采用单级减速双曲线螺旋锥齿轮副成本较低,故大部分均采用这种结构。国外汽车驱动桥已普遍采用限滑差速器《N一Pin牙嵌式或多片摩擦盘式》、湿式行车制动器等先进技术。限滑差速器大大减少了轮胎的磨损,而湿式行车制动器则提高了主机的安全性能,简化了维修工作。国内仅一部分车使用N。一Pin牙嵌式差速器。限滑差速器成本较高,因而在多数国产驱动桥上一直没有得到应用。目前向国内提供限滑差速器的制造商主要是美国TraCtech公司和德国采埃孚公司。美国Tractech公司在苏州的工厂即将建成投产,主要生产牙嵌式、多片摩擦盘式和比例扭矩(三周节)差速器(锁紧系数3.5)。国内如徐工、鼎盛天工等主机制造商等原来自制一部分牙嵌式差速器,后因质量不过关而放弃。
在具体工艺细节方面,我国和世界水平的差距还比较大,归根结底后桥的功用是承载和驱动。在这两方面,今年来出现了一些新的变化。另外,在结构方面,单级驱动桥的使用比例越来越高;技术方面,轻量化、舒适性的要求将逐步提高。总体而言,现在汽车向节能、环保、舒适等方面发展的趋势,要求车桥向轻量化、大扭矩、低噪声、宽速比、寿命长和低生产成本。目前,国内生产驱动桥的厂家较多,品种和规格也较齐全,其性能和质量基本上能够满足国产农业机械和工程机械的使用需求,呈现了明显的产业特点:由进口国外产品向国产化发展,由小作坊向正规化产业化发展,由低端产品向高端产品发展,由引进国外技术向自主研发发展。在技术方面,通过不断提高自身铸锻造技术及工艺水平来保证研发产品制造质量;通过利用先进科学的设计辅助手段来达到设计优化的目的;通过不断学习吸收国外先进的技术逐步实现技术与国际接轨的目标,从而提高产品的核心竞争力;通过运用先进的技术及方法来提高产品的性能,满足市场需求,推进机电一体化进程。
当前驱动桥的设计已经由以前依靠经验和借鉴进行设计逐步的向计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机模拟实验(CAS)发展,有限元法(FEM)等先进的计算分析技术也在车桥的设计过程中得到应用。当前车桥行业自主研发意识薄弱,产品革新长期停滞不前,导致车桥在设计上的依旧存在结构过于笨重以及设计分析方法落后等缺点。
[8] 储军,郑松林,冯金芝,等. 基于低幅锻炼载荷的累积强化效果模型 [J],机械工程学报,2011,47(16):30-34.
[9] 陈家瑞.汽车构造(第4版).[M].北京:机械工业出版社,2002.
[10] 中国机械工程学会热处理学会《热处理手册》编委会.热处理手册 第1卷[M].北京:机械工业出版社, 2001.
二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等
(一)国内现状及发展趋势
我国正在大力发展汽车产业,采用后轮驱动桥的汽车平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会很大的差别。如果变速器出了障碍,对于后轮驱动桥的汽车就不需要进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是坐在一起的。所以后轮驱动必然会使得乘车更加安舒适,从而带来可观的经济效益。
(2)采用先进的制造工艺技术并通过尺寸参数优化而得到新的轻量化结构;
(3)在碰撞、振动等动态过程中,对相关的尺寸参数进行优化并进行实验验证,从而得到相应的轻量化结构。
三、对本课题将要解决的主要问题及解决问题的思路与方法、拟采用的研究方法(技术路线)或设计(实验)方案进行说明
本课题主要解决的问题就是由于目前载重汽车大部分处于超载状态,再加上路况不好,导致后桥半轴常发生早期断裂。
国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。国内车桥长的差距主要体现在设计和研发能力上,目前有研发能力的车桥厂家还不多,一些厂家仅仅停留在组装阶段。实验设备也有差距,比如工程车和牵引车在行驶过程中,齿轮啮合接触区的形状是不同的,国外先进的实验设备能够模拟这种状态,而我国现在还在摸索中。
[4] 储军,徐洪慧,王有涛,基于低幅载荷累积强化效果的传动轴轻量化设计 [J],械设计与制造,2012(5):79-80.
[5]金祥曙;周晓军.汽车驱动桥半轴室内试验强化系数模型研究[J],汽车工程学报.
[6] 李光辉;张黎骅;谢天磊;肖玲.拖拉机后桥半轴壳模糊可靠性稳健优化设计[J].
[7]张桓奇,张毅.汽车超越滑行半轴离合器节能性分析[J]. 吉林大学学报(工学版). 2006(S1).
[11] 李泉华.热处理实用技术[M].北京:机械工业出版社,1999.
[12]张萌萌.基于知识工程的载重汽车驱动桥设计与分析系统研究2013[M].
[13]金祥曙;周晓军.汽车驱动桥半轴室内试验强化系数模型研究[M],2007.
[14]JongBoon Ooi,Xin Wang, ChingSeong Tan, Jee-Hou Ho and Ying Pio Lim.Modal and stress analysis of gear train design in portal axle usingfinite element modeling and simulation[J].Journal of Mechanical Science and Technology 26 (2) (2012) 575~589.
轻量化技术起源于上世纪70年代,经过数十年的发展,轻量化设计方法己有较大提升。当前对部件进行薄壁化、中空化、小型化和复合化是轻量化设计方法的主流,以形状优化为主的结构轻量化研宄主要可以分为三类:
(1)提出先进的设计理念,如拓扑优化或形状优化。通过有限元方法或边界元方法等新的优化算法,计算分析从而得到新的轻量化结构;
解决问题的方法
1.建立模型进行受力分析。
2.半轴结构和尺寸方面的改进设计。
研究方法
1;查阅相关资料文献,初步定位方向,通过分析可知,半轴杆部与法兰盘的圆弧连接处和两花键与杆部连接处都存在较大的应力集中,降低了半轴的疲劳强度。我们可通过合理增大圆弧连接处圆弧半径来降低有效应力集中系数Kσ,减缓应力集中,提高半轴的使用寿命。
五、毕业设计进程安排
2014.11.27-2015.02.28 收集相关资料,完成前期准备工作。
2015.03.01-2015.03.15 根据所收集的资料完成开题报告。
2015.03.16-2015.04.20 设计新型变径全空心半轴结构,以及与相关零件的配合。
2015.04.21-2015.02.09 用CAD绘制总设计图以及零件图。
汽车驱动桥在汽车的各种总成中是涵盖机械零件部件品种最多的总成。例如,驱动桥一般由半轴、主减速器、差速器、车轮传动装置和桥壳等组成,由此可见汽车驱动桥涉及的机械零部件及元件的制造也几乎要涉及到所有的现代机械制造工艺。
而半轴作为变速箱减速器与驱动轮之间传递扭矩的轴,在实际运转过程中,由于目前载重汽车大部分处于超载状态,再加上路况不好,后桥半轴常发生早期断裂,给汽车用户带来一定的经济损失,严重时会引起行车安全事故。因此可针对结构尺寸及热处理工艺两方面的技术改进以增加行车安全稳定性。此外,随着近年来油价上涨,汽车的运输成本也越来越高。因此在保证汽车动力性的前提下提高其燃油经济性也变得愈加重要。为了降低油耗不仅要在发动机的环节上节油,而且也需要从传动系中减少能量损失。这就必须要求在发动机的动力输出之后从发动机驱动桥传动轴这一动力输送环节中寻找减少能量在传递过程中的损失。在这一环节中发动机是动力的输出者也是整个机器的心脏,而驱动桥及输出轴则是将动力转化为能量的最终执行者。因此在发动机相同的情况下采用性能优良且与发动机匹配性比较高的驱动桥及驱动轴便成了有效的节油措施之一。
亚洲、非洲和南美国家则采用带轮边减速的双级主减速器的驱动桥,用于非道路和恶劣道路使用的车辆。因此可以得出结论:一个国家的道路愈差,则采用带轮边减速双级主减速器驱动桥愈多,反之,则愈少。国内有几个制造商生产比例扭矩差速器,但均为单周节,锁紧系数138,较三周节要小得多。徐州良羽传动机械有限公司在停车制动器(液压)上也做了一些工作,主要用于重型卡车产品,但国产此类产品的可靠性还有待提高。
[15] Lu X , Zheng S L. Strengthening and damaging under low-amplitude loads below the fatigue limit[J]. International Journal Of Fatigue, 2009, 31(2); 341-345.
2015.05.01-2015.05.31 撰写并完成毕业论文。
2015.06.01-2015.06.15 提交毕业论文,准备答辩。
六、指导教师意见
1.对开题报告的评语
2.对开题报告的意见及建议
指导教师(签名):
年 月 日
所在院(系)审查意见:
负责人签字(盖公章)
年 月 日
2:考虑设计新型变径全空心半轴结构:半轴应具有足够的扭转强度、抗拉强度,较高的疲劳强度和冲击韧性以及合理的动态特性来达到控制振动与噪声的目的。在周期性变化的扭矩载荷作用下,半轴可能在临界转速内发生共振,致使半轴出现扭转疲劳破坏。在保证半轴工作可靠的前提下,考虑设计新型变径全空心半轴结构,并充分考虑轴端花键和退刀槽处是半轴振动中的危险部位。在设计过程中应合理计算轴端花键齿根处和圆角过渡处的圆角大小。且新型半轴固有频率值应与实心半轴固有频率值相近可有效避免共振提升整车的舒适性。
相关文档
最新文档