差动变压器式位移传感器

合集下载

基于Simulink的差动变压器式角位移传感器(RVDT)建模与仿真

基于Simulink的差动变压器式角位移传感器(RVDT)建模与仿真

基于 Simulink的差动变压器式角位移传感器( RVDT)建模与仿真摘要为建立基于Simulink的差动变压器式角位移传感器的模型,并验证模型的正确性,本文对飞机上应用的差动变压器式角位移传感器的原理进行了深入分析,通过试验的方法得到了RVDT传感器的动态演化曲线,通过试验测试,获得了RVDT传感器的相关参数,利用所建模型进行了动态特性仿真和拟配分析。

结果表明:建立的Simulink模型与试验结果参数拟合,可体现RVDT传感器的静态特性和动态特性。

本文基于Simulink的差动变压器式角位移传感器(RVDT)建模方法,对于后续对RVDT传感器特性研究具有典型意义。

关键词传感器;RVDT;和值监控;建模中图法分类号 TP212.1;文献标志码 AModeling and Simulation of Differential Transformer Angular Displacement Sensor (RVDT) Based on SimulinkCAO Ruo-han1, DONG Zhen-yu2, LI Chao-chao 3,CHEN Yun-qiu 4(XiFei Design Department, AVIC Xi’an Aircraft Industr y (Group) Company Ltd. , Xi’an 710089,China)[Abstract] In order to establish the model of differential transformer angular displacement sensor based on Simulink and verify the correctness of the model, this paper analyzes the principle of differential transformer angular displacement sensor applied in aircraft, obtained the dynamic evolution curve of RVDT sensor through the test method, and obtains the relevant parameters of RVDT sensor through the test The dynamic characteristic simulation and matchinganalysis are carried out. The simulation results show that the static characteristics of the sensor can be fitted with the static characteristics of the sensor. In this paper, the modeling method of differential transformer angular displacement sensor (RVDT) based on Simulink is of typical significance for the subsequent research on the characteristics of RVDT sensor.[Key words] sensor; RVDT; sum value monitoring; modeling如果说飞机是人的躯体,那飞机上的各种传感器便是眼睛、耳朵和鼻子。

LVDT式位移传感器的原理

LVDT式位移传感器的原理

LVDT式位移传感器的原理Linearity Variable Differential Transducers简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性;随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大;差动变压器LVDT的原理比较简单;它就是在一个线圈骨架1上均匀绕制一个一次线圈2作励磁;再在两侧绕制两个二次线圈3与4,与线圈同轴放置一个铁芯5,通过测杆6与可移动的物体连接;线圈外侧还有一个磁罩7作屏蔽,如图1-1示;在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场;交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴当然也是线圈的中心轴分布并与铁芯对称的交变磁场;这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数;如果设计得当,两者可成为线性函数关系;将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1-Es2;这就是LVDT的简单工作原理如图1-2示;LVDT式位移传感器的原理二差动变压器式位移传感器LVDT为电磁感应原理,其结构示意见图一;图一:LVDT工作原理图采用环氧树脂,不锈钢等材料作为线圈骨架,用不同线径的漆包线在骨架上绕制线圈;与传统的电力变压器不同;LVDT是一种开磁路弱磁耦合的测量元件;在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压激励电压时,铁芯在线圈内移动就改变了空间磁场分布从而改变了初,次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁芯位置的不同,互感量也不同,刺激产生的感应电动势也不同,这样就将铁芯的位移量实际的铁芯是通过测杆与被测物保持相接触,也就是被测物体的位移量变成电压信号输出,由于两个次级线圈电压极性相反,所以传感器的输出是两个次级线圈电压之差,其电压差值与位移量成线性关系图二LVDT电原理图当铁芯处在线圈正中间位置时两次级线圈感应电压相等但相位相反,其电压差值为零,当铁芯往右移动时,右边的次级线圈感应的电压大于左边;两线圈输出的电压差值大小随铁芯位移而成线性变化第一象限的实线段部分,这是LVDT有效的测量范围一半;当铁芯继续往右移动时两级线圈输出电压的差值不与铁芯位移成线性关系,此为缓冲,非测量区虚线段;反之,当铁芯自线圈中间位置向左边移动亦然;零点两边的实线段一般是对称的测量范围,只不过两者都是交流信号而相位差180″;。

实验二 差动变压器式电感传感器的静态位移性能

实验二 差动变压器式电感传感器的静态位移性能

实验二差动变压器式电感传感器的静态位移性能一、实验目的1、通过实验,掌握差动变压器式电感传感器的基本工作原理。

二、实验原理差动变压器式电感传感器是利用感应电动势的方法,将物理量(如位移、压力、力等)转换为电信号的电子传感器。

差动变压器式电感传感器的基本组成为:主变压器、感应线圈和吸引式铁芯。

其中主变压器的主要作用是调制、解调信号,感应线圈是感应位移的探头,吸引式铁芯则用于传递感应力或位移作用。

当感应线圈产生了位移时,感应线圈中的磁通量随之变化,从而产生了感应电动势。

通过差动测量,可以得到感应线圈中的感应电动势。

差动变压器式电感传感器在运转中,其电感值随着位移的变化而变化。

最终,差动变压器式电感传感器可以将位移信号转化为电信号,并将转化后的电信号输出。

差动变压器式电感传感器相对于其他传感器的优势在于,其精确度比较高,线性度良好,同时具有较高的抗干扰能力和稳定性,适用于许多高精度位移测量场合。

三、实验器材与仪器2、数字万用表3、直流稳压电源4、温度控制器5、实验样品四、实验步骤1、连接实验装置:将差动变压器式电感传感器、数字万用表、直流稳压电源和温度控制器按照电路线路图连成一整个电路。

待连接完毕后,检查各个实验器材连接是否牢固且正确。

2、打开电源:将直流稳压电源和温度控制器的电源开关打开。

3、调节电源电压:调节直流稳压电源输出电压为3V并固定。

4、测量初始电压:将数字万用表的测量回路连接至差动变压器式电感传感器的输出端口,调节温度控制器以达到室温环境下的温度值。

在测定之前,需要先将应变计(或激光信号测试仪等测试仪器)分别置于初态位置和终态位置,然后测量出其初始电压值和终态电压值,并记录下来。

5、应变测试:通过手动控制实验样品位移并使实验样品进行定量的变化,此时差动测量器的输出电压值也会相应变化。

根据变化的大小,对应获取测量结果,并记录下差动测量器的输出电压值。

6、数据分析:在完成实验测量之后,需要对实验测量数据进行分析,并得到本次实验的相关结论。

动态自稳定高精度差动变压器式位移传感器设计

动态自稳定高精度差动变压器式位移传感器设计
笺藏囊参蠢 拳 篓 露 l 窃
嚣黪囊


度差 动变 A 文章编号 :10 — 8 X 2 1)6 0 0 — 3 0 6 8 3 (0 0 - 0 9 0 0
摘要 :本文根据 作者对数 控车床 转塔型 电动刀架 控制系统 的改进 实践 ,总结 设计 了全新控制 系统 , 彻底解 决刀架上 的刀位开 关的可 靠性和 控制板 电路 的可靠 性的问 题。该系 统经长期 实践验证 ,具有
法 ,实现无接触 高精度 测量 的一种装置 。
以直 螺管形差 动变压器 为例 ,直螺 管形差动 变压器 的结构如 图1( ) a 所示 。 由初级线 圈 L , 它
两 个 次 级 线 圈 L 、L 、插 入 线 圈 中 央 的 圆柱 形 铁 2 3
芯 T和非导磁 触杆 G 组成 。初级线 圈 L均 匀分
的基本结 构和工作 原理 。 差动变 压器式位 移传感 器的工作 原理 ,是利
用 次 级 线 圈 与 初 级 线 圈 的 互 感 量 随 线 圈 中 铁 芯 位 移 的 变 化 而 变 化 的 原 理 ,并 通 过 对 称 式 两 个 线
圈 以差 动 方 式连 接 ,以实 现 消 除静 态偏 差 的方
要的 ,最 理想 的负 反馈信 号是 铁芯在 最左侧 或者 最右侧
位 置 时 的输 出 电压 己 。 ^ 但 传 感 器 的 工 作 往 往 是 铁 芯 位 置 不 定 , 也 可 能 长 期 没 有 机 会 在 最 左 或 者 最 右 , 工 作 中也 可 能 不 允 许 出 现 在 最 左 或 者 最 右 , 所 以 ,铁 芯 在 最 左 侧 或 者 最 右 侧 位 置 时
芯的移动越敏 感 。误 差大小 与偏离标准 工作条件

差动变压器式位移传感器的原理

差动变压器式位移传感器的原理

差动变压器式位移传感器的原理“同学们,今天咱们来好好讲讲差动变压器式位移传感器的原理。

”我站在讲台上对学生们说道。

差动变压器式位移传感器是一种常用的测量位移的传感器。

它主要是基于变压器的原理来工作的。

想象一下,有一个初级线圈,就像一个中心轴一样,然后在它的两边对称地放置两个次级线圈。

当有一个可移动的铁芯在这个线圈中间移动时,就会引起磁场的变化。

比如说,我们有一个实际的例子,在工业生产中,需要精确测量某个部件的微小位移。

这时就可以用到差动变压器式位移传感器。

当部件发生位移时,铁芯也跟着移动,这就导致两个次级线圈中的感应电动势发生变化。

通过测量这个变化,我们就能知道位移的大小和方向。

这种传感器有很多优点。

首先,它的测量精度比较高,可以检测到非常微小的位移变化。

其次,它的线性度好,输出信号与位移之间的关系比较简单直接,容易处理和分析。

而且,它的稳定性也不错,在不同的环境条件下都能可靠地工作。

同学们可能会问,那它有没有什么局限性呢?当然有啦。

比如,它对磁场干扰比较敏感,如果周围有强磁场存在,可能会影响测量结果。

还有,它的测量范围相对来说不是特别大,对于一些非常大的位移可能不太适用。

为了让大家更好地理解,我们再来看一个例子。

在汽车制造中,为了确保汽车的质量和性能,需要对一些关键部件的位移进行精确测量。

比如发动机的活塞位移,就可以用差动变压器式位移传感器来监测。

这样就能及时发现问题,保证汽车的正常运行。

在实际应用中,我们还需要注意一些问题。

比如要正确安装传感器,保证铁芯的运动顺畅。

还要对传感器进行定期校准,以确保测量的准确性。

总之,差动变压器式位移传感器是一种非常重要的传感器,在很多领域都有着广泛的应用。

希望同学们通过今天的学习,能对它有更深入的了解。

浅谈差动变压器式传感器及其应用

浅谈差动变压器式传感器及其应用

浅谈差动变压器式传感器及其应用
差动变压器式传感器是一种常用的非接触式传感器,主要用于测量物理量的变化,如位移、压力、力等。

它是由一对相互独立的电路组成,其中一个电路作为输入电路,另一个电路作为输出电路。

差动电路根据输入电路和输出电路的电势差进行测量,从而得出物理量的变化。

差动变压器式传感器的工作原理是输入电路和输出电路同时作用于磁性芯,在信号输入时,由于输入和输出电路的磁场相互作用,使得电路的感应电压发生变化。

这种电压变化的量与输入信号成正比,所以可以通过变压器的变比关系来测量输入物理量的变化。

在实际应用中,差动变压器式传感器的适用范围广泛。

其主要应用在工业自动化、航空航天、科学研究等领域。

具体应用包括以下几个方面:
1.位移测量:差动变压器式传感器可以测量物体的位移,
例如用于汽车的制动离合器,以及用于机械手和机器人系统的控制。

2.压力测量:差动变压器式传感器可以测量液体和气体的
压力,例如用于工业管道和油井等。

3.力测量:差动变压器式传感器可以测量力的大小和方向,例如用于桥梁、建筑和机器等的结构分析。

4.温度测量:差动变压器式传感器可以测量物体的温度、热量、热电势等,例如用于工业加热和冷却系统的控制。

总的来说,差动变压器式传感器具有响应速度快、测量精度高、稳定性好、可靠性高等特点,使其在工程领域中应用广泛。

同时,随着科技的不断发展和创新,差动变压器式传感器也将不断发展和完善。

差动变压器式位移传感器lvdt设计原理

差动变压器式位移传感器lvdt设计原理

[8] ANALOG DEVICES. LVDTsignal conditioner AD598.一、引言差动变压器式传感器的特点是灵敏度高、分辨力大,能测出0.1um更小的机械位移变化;传感器的输出信号强,有利于信号的传输;重复性好,在一定位移范围内,输出特性的线性度好,并且比较稳定,因此广泛应用于压力、位移传感器的设计制造中,尤其在航空、航天等环境恶劣、环境温度高的压力测量方面,也得到了广泛的应用。

二、方案论证1.参数要求给定原始数据及技术要求1).最大输入位移为100mm2)灵敏度不小于80V/m3)非线性误差不大于10%4)零位误差不大于1mv5).电源为9v,400HZ6).最大尺寸结构为160mmX21mm2.方案讨论根据给定技术要求选择电感变换元件的类型及测量电路的形式,如图1所示图1、传感器的组成框图1)传感器电感变换元件类型的选择(1)测量范围小,如位移零点几微米至数百微米,且当线性范围也小时,常用E形或II形平膜硅钢片叠成的电感式传感器或差动变压器。

(2) 螺线管,常用于测量1mm以上至数百毫米的大位移,其线性范围也较大。

2)测量电路的选择测量电路主要依据选定的电感变换器的种类、用途、灵敏度、精度及输出形式等技术要求来确定。

3.螺管型差动变压器的工作原理差动输出电动势为。

所以,差动变压器输出电动势为两副边线圈互感之差的函数。

螺管型差动变压器结构复杂,常用二节式、三节式、一节式的灵敏度高,但三节式的零点较好。

差动变压器的工作原理类似变压器的作用原理。

这种类型的传感器主要包括有衔铁、一次绕组和二次绕组等。

一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。

由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。

图2为三节式螺管型差动变压器的示意图。

图2 三节式差动变压器的结构形式三.螺管型差动变压器的参数计算现以三节式螺管型差动变压器式传感器为例来说明参数的设计计算方法,其结构如图3。

差动变压器式位移传感器的设计与实现

差动变压器式位移传感器的设计与实现
J u n lo W u n En n e i g I tt e o r a f ha gi e r n nsiut
ቤተ መጻሕፍቲ ባይዱ
Vol 2 N 0. 3 4
De e e 0l c mb r 2 l
差 动 变 压 器 式位 移 传 感 器 的设 计 与 实现
陈 贞 李 晓虹 张 键
所示 , 由一个 初级 线 圈、 个 次级 线 圈 、 自 由移 它 两 可
动的杆状铁 芯、 心线 圈骨架、 壳等部 件组成 。 空 外
L T工作 过程 中, 心 的运 动 不 能超 出线 圈的线 VD 铁
应 变式 、 电感 式 、 差动 变压 器式 、 涡流 式 、 尔等 位移 霍
传 感器 来检 测 , 的位 移 常 用 感应 同步 器 、 栅 、 大 光 容
确定 , 因此 AD 9 5 8既 可驱 动 高 达 2 V、 率 范 围 为 4 频
2 Hz 0k 0  ̄2 Hz的 L T 原 边 线 圈 , 可 接 受 最低 VD 又 为 1 0mV 的次 级 输 入 , 以 适 用 于许 多不 同类 型 0 所 的 L VDT。 除 此 之 外 还 有 输 出 放 大 器 和 接 收 L DT 次 级 输 出 的两 个 正 弦 信 号 的输 出 级 、 法 V 除 器、 滤波 器及其 输 出放大 器 。在 A 9 D5 8芯 片 的除法
以获得一 个 与 铁 芯 位 移 成 线 性 函数 关 系 的特 征 曲 线 。当铁 芯处 于两 个 二 次 线 圈 中 间位 置 时 , 两个 次 级线 圈产 生 的感应 电 动 势相 等 , 一E 一0 输 E一 。 ,
1 差 动 变压 器 式位 移 传 感 器
( I VDT) 的工 作 原 理 及 特 点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书传感器课程设计Course-Design of Sensor——差动变压器式位移传感器学院名称:机械工程学院专业班级:学生姓名:学号:指导教师姓名:指导教师职称:教授2012年 01月目录第一章绪论 (1)1.1 概述 (1)1.2 设计任务 (1)第二章方案论证及选择 (3)2.1 方案论证 (3)2.2 原理简述 (4)第三章差动变压器 (5)3.1 传感器结构 (5)3.2 工作原理 (5)第四章单元电路的分析 (6)4.1 差动放大电路 (6)4.2 移相电路 (9)4.3 相敏检波电路 (10)4.4 低通滤波电路 (11)第五章电路测试及波形 (14)5.1 各电路波形 (14)5.2 位移测量数据拟合 (17)第六章心得体会 (18)第七章参考文献 (19)第八章参考文献 (19)第一章绪论1.1 概述当今时代是信息时代,在工业和科技领域信息主要是通过测量获得,在现代生产中,物质和能量在信息流指挥和控制下运动。

测控技术正成为现代生产生活中乃至高科技领域中一项必不可少的基础技术。

测控系统主要是传感器,测量放大电路和执行机构三个部分组成,而在测控系统中测量变换电路是最灵活的部分。

它的选取往往改变了整个系统性能的优劣。

所以,学习并领悟测控技术就显得十分重要了,《测试技术》是我们测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的方方面面问题也应该是本专业学生的基本素质,也鉴于这些要求,做一些测控方面的课程设计就会让我们加深对传感器技术的理解和运用,也正是因为对一些实际问题的研究,才能使我们成为真正意义上的测控技术性人才,下面就以本次才课程设计题目——差动变压器式位移传感器——做比较详细的分析。

1.2 设计任务设计要求:掌握差动变压器式位移传感器的结构,工作原理。

分析各部分电路的作用及工作原理,特别是相敏检波电路的作用,观察分析各部分的波形,给出测试结果。

第二章方案论证及选择2.1 方案论证差动传感器输出的是0~40mvVp-p的正弦信号,第一是比较微弱的,第二不能用直流表测量,因为这样不能反应位移的正负。

因此必须对这些信号进行放大处理后才能送入后续电路,至于是什么样的处理电路,就必须考虑对位移方向的鉴别问题了,可以选择相敏检波电路,也就因此排除了对象为不敏感的包络检波电路,实现了相敏检波电路后按设计任务的要求必须化成直流信号,可以还必须对解调信号进行直流放大和低通滤波,只有这样才能得到调制信号的变化情况,这样也就可以接数显部分进行显示了。

我们必须明白对传感器激磁电压的选择是有要求的,首先它的频率必须够高一般选择3KHz~10MHz,其次它的电压要达到相应的幅值,交流一般在20V以上(因为设计要求的是正弦激励信号)而相敏检波电路的参考信号一般要将高频的信号处理为方波信号,这样可以更稳定,利于提高检波的精度;但若采用相加式的相敏检波电路就可以直接利用激励信号作为检波的参考信号而且幅值也达到要求,这样就可以省略方波段的电路,利于生产效益的提高。

2.2 原理简述由RC振荡器提供激磁电压及通过移相器后给相敏检波电路的参考电压信号,传感器工作后输出0-40mVp-p的微弱正弦信号。

考虑到抑制共模信号,因此用差动放大电路进行放大,再将放大后的调幅信号用相加式相敏检波电路进行解调以实现对相位的鉴别以判别位移的方向,最后用低通滤波器实现对解调的直流信号的放大及滤除高频信号,输出接显示器。

用示波器接输入输出端以观察信号波形。

(其中Wd , Wa 为电桥所构成的零点残余电压补偿电路,实际实验时已将其忽略。

另外,根据实验电路产生直流信号影响有用直流信号,可考虑在相敏检波电路与低通滤波器之间连接一个适当电容,以滤去干扰直流信号)。

第三章差动变压器3.1 传感器结构3.2 工作原理差动变压器主要是由一个线框和一个铁芯组成,在线框上绕有一组初级线圈作为输入线圈(或称一次线圈),在同一线框上另绕两组次级线圈作为输出线圈(或称二次线圈),并在线框中央圆柱孔中放入铁芯,当初级线圈加以适当频率的电压激励时,根据变压器作用原理,在两个次级线圈中就会产生感应电势,当铁芯向右或向左移动时,在两个次级线圈内所感应的电势一个增加一个减少。

如果输出接成反向串联,则传感器的输出电压u等于两个次级线圈的电势差,因为两个次级线圈做得一样,因此,当铁芯在中央位置时,传感器的电压u为0,当铁芯移动时,传感器的输出电压u就随铁芯位移x成线性的增加。

如果以适当的方法测量u,就可以得到与x成比例的线性读数。

这就是差动变压器式传感器的工作原理。

第四章单元电路的分析4.1 差动放大电路差动放大器是一种零点漂移十分微小的直流放大器,它常作为直流放大器的前置级,用以放大微小的直流信号或缓慢变化的交流信号。

上图是一种差动放大器电路,R1=R2=R3=R4=51K,R5=6.6K,R6=2K,R1=510K,R2=10K,通频带0~10kHz,增益1~100倍,可接成同相,反相,差动结构。

如果输入信号接在7,8两点,这是放大器处于双端输入的差动状态。

如果输入接在8与地之间,而7接地,这是差动放大器处于单端输入的反相状态。

把输入信号接在7与地之间,而8接地,差动放大器处于单端输入的同相状态。

差动放大器实现的功能是将信号放大。

其需要的主要芯片是1AC156M OP07CP。

OP07的功能介绍:OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

OP07的开环增益比通用型运算放大器112dB(typ)高,但GB积与转换速率却比通用型小,全功率(full power)响应频率并不高。

其特点是:超低偏移: 150μV最大;低输入偏置电流: 1.8nA ;低失调电压漂移: 0.5μV/℃ ;超稳定时间: 2μV/month最大;高电源电压范围:±3V至±22VOP07的外型图片如图4所示:图4为1AC156M OP07CP的管脚图;其中各管脚的连接为:1 VOS2 -IN3 +IN4 V-5 NC6 OUT7 V+ 8 VCS图5 其管脚图及内部结构如图5、图6所示。

图6是1AC156M 0P07CP内部结构图;OP07CP运算放大器的电气特性型名输入失调电压Type(max)偏移电压/(Uv/oC)type(max)输入偏置电流/nAType(max)转换速率/(V/us)ryp开环增益/d BtypOP07CP60(150)0.7(2.5) 2.0(12)0.61124.2 移相电路移相器一种用以调节交流电压相位的装置。

移相器一般是多相的,其结构如图所示。

它和一台被旋转的绕线式三相异步电动机相似。

通常定子绕组作为原绕组,转子绕组为副绕组。

在移相器的转子转轴上装有一套蜗轮蜗杆。

转动蜗轮蜗杆,能使移相器的转子相对于定子在一定范围内转动。

当定子上的原绕组接三相交流电源后,气隙里产生的旋转磁场将在原、副绕组中分别感应出电动势E1和E2。

其大小与各绕组的有效匝数成正比,而相位决定于原、副绕组轴线之间的相对位置。

例如原、副绕组轴线在空间位置上彼此相差α电角度,忽略它们的漏阻抗电压降,可以得到原、副边电压的关系为U1≈-E1式中n sr是原、副边绕组的变比。

改变转子的位置,可以改变副边电压相对于原边电压的相位,但输出电压的大小不变。

4.3 相敏检波电路相敏检波器使检波电路具有判别信号相位和选频的能力。

上图所示为由施密特开关电路及运放组成的相敏检波电路的原理。

图中Ui入信号端,8交流参考电压输入端,Uo信号输出端,5直流参考电压输入端。

当5,8端输入控制电压信号时,通过差动电压的作用使VD和J处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。

放大器及VD组成整流电路,将输入的正弦波转换成方波,使相敏检波器中的电子开关能正常工作。

当信号输入接相敏检波器输入端Ui,直流稳压电源接相敏检波器 5 端,改变5端参考电压的极性,当参考电压为正时,输入与输出同相,当参考电压为负的时,输入与输出反相。

相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。

包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。

第二,包络检波电路本身不具有区分不同载波频率的信号的能力。

对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。

为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。

相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。

对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

如果输入信号us为与参考信号uc(或Uc)同频信号,但有一定相位差,这时输出电压uo=Usm/2cos∮,即输出信号随相位差∮的余弦而变化。

由于在输入信号与参考信号同频但有一定相位差时,输出信号的大小与相位差有确定的函数关系,可以根据输出信号的大小确定相位差的值,相敏检波电路的这一特性称为鉴相特性。

4.4 低通滤波电路从0到转折频率f之间称为通频带幅频特性平直。

低通滤波器可以使信号中低于频率f的成分几乎不受衰减的通过,而高于频率f的成分受到极大的衰减。

如图 2.11所示,R2,R3,W1,W2,C1,C2,C3组成的虑波器。

在低频段,由于C1,C2的容抗非常大,输入信号经过R2,R3,W1直接传到放大器,电压传输系数同样约等于1;在高频段,由于C1,C2容抗非常大小,输入信号经过C1,C2传到放大器,电压传输系数同样约等于1;只有当信号频率f等于它的特征频率时,阻抗非常大,电压传输系数约等于0。

R1,R5组成的比例放大器,通带电压增益A0等于比例放大器的电压增益AVF,即A0=AVF=1+R5/R1=2。

R6,C4组成RC滤波器,其传递函数为H(w)=1/(1+j2πfτ),式中f=1/2πR6C4为转折频率,在f<1/2πR6C4时,信号不衰减通过。

称为一阶低通滤波器。

顾名思义,所谓滤波器就是能够过滤波动信号的器具,在电子线路中,滤波器的作用是从具有各种不同频率成分的信号中,取出具有特定频率成分的信号。

相关文档
最新文档