2.2 《有理数与无理数》课件 苏科版 (1)

合集下载

有理数与无理数的门当户对原理(一)

有理数与无理数的门当户对原理(一)

有理数与无理数的门当户对原理(一)有理数与无理数的门当户对原理1. 引言•有理数与无理数是数学中常见的两种数,它们在数轴上存在着明显的差异。

•本文将从浅入深,逐步解释有理数与无理数的概念及其门当户对原理。

2. 有理数与无理数的定义•有理数是可以表示为两个整数的比值的数,例如: 1/2,3/4等。

•无理数是无法表示为两个整数比值的数,例如: π,√2等。

3. 有理数的门当户对原理•有理数之间的运算结果仍然是有理数,例如: 1/4 + 5/6 = 11/12。

•有理数与有理数的运算结果是有理数,例如: 3/4 × 2/3 = 1/2。

•有理数与有理数的运算结果有时是无理数,例如: √2 × √2 = 2。

4. 无理数的门当户对原理•无理数之间的运算结果一般仍然是无理数,例如: √2 + √3 = √2 + √3。

•无理数与无理数的运算结果有时是有理数,例如: √2 × √2 = 2。

•无理数与无理数的运算结果有时是无理数,例如: √2 × √3 = √6。

5. 有理数与无理数的门当户对原理实例解析•设有理数a = 3/4,无理数b = √2。

•当a与b进行加法运算时,结果为a + b = 3/4 + √2。

由定义可知,此结果是无理数。

•当a与b进行乘法运算时,结果为a × b = 3/4 × √2。

由定义可知,此结果是无理数。

6. 结论•有理数与有理数之间的运算结果,包括加法、乘法等,仍然保持在有理数范围内。

•有理数与无理数之间的运算结果,具有一定的不确定性,有可能是有理数,也有可能是无理数。

•无理数与无理数之间的运算结果,也具有一定的不确定性,有时是有理数,有时是无理数。

7. 总结•有理数与无理数的门当户对原理揭示了它们之间的运算特性。

•在实际问题中,我们需要根据具体的运算式及问题背景,判断运算结果的类型。

以上便是关于有理数与无理数的门当户对原理的相关解释。

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

七年级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 苏科版(2021年整理)

七年级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 苏科版(2021年整理)

七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册2.2 有理数与无理数什么是有理数?有理数分哪几类?素材(新版)苏科版的全部内容。

什么是有理数?有理数分哪几类?
难易度:★★★★
关键词:有理数分类
答案:
正整数、0、负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数。

分类如下:
有理数或有理数
【举一反三】
典例:把下列各数分别填入相应的括号里:
5,,-0.3,28,,+8,—19,3。

7,,0,—102,
正整数集合;负分数集合;
正有理数集合;整数集合
思路导引:正整数和正分数都是正有理数,正分数的前面添上“-”号就是负分数,因小数和分数可以互化,因此小数也叫分数;正整数的前面添上“—”号就是负整数;0既不是正数也不是负数。

标准答案:
正整数集合5,28,+8 ;
负分数集合-0.3,;
正有理数集合5,28,+8,3。

7, ;
整数集合5, 28,,+8,-19, 0,-102,。

《有理数》ppt课件1

《有理数》ppt课件1

合作 探究
探究有理数的分类(二)
1.在左图的有理数中, 正整数有:________; 负分数有:__________________;
www.dwe n xue.co m/ xq rj/ kl/ www.dwe n xue.co m/jd yj/ sg yj/ www.dwe n xue.co m/ xq rj/ng / /jdyj/zl yj/ /jdyj/w mjz/ /jdyj/y myj/ www.dwe n xue.co m/ xq rj/sg / www.dwe n xue.co m/ xq rj/shig e/ www.dwe n xue.co m/ xq rj/ yx/ www.dwe n xue.co m/ xq rj/jl/ www.dwe n xue.co m/jd yj/ aq yj/ www.dwe n xue.co m/ xq rj/g w/ /xqrj/j m/ www.dwe n xue.co m/ xq rj/sn/ www.dwe n xue.co m/ xq rj/ wl/ /qgrz/qgmw/ www.wen xue2.co m/site map. xml www.51mntp.co m/site map. xml www.91mntp.co m/site map. xml www.88qbxs /sitemap.xml /s itemap.x ml www.xunl eidytt.c om/sitemap.xml www.dwe n xue.co m/site map. xml / www.xunl eidytt.c om/ / www.buluj www.hsjxdz www.g uifeng mm. co m www.suqianruilei www.ahd16888.c om www.xi yuanji www.ngsmxcp.c om www.fzmr www.njxc www.wufei www.xinr www.furuida888. co m www.xsjs www.jxkfs www.myr www.lcmprd-lcd. co m www.xhys www.gzszxmy.c om www.rswdz888.c om www.chengxinshi www.hnhjj /a/232086793_100168755 /n e ws/17 169.ht ml www.zgys /news/5085.html /a/232089677_100159460 www.xdj /muying/seyn/jbyf/64519.html /ne ws/750 4.ht ml /ne ws/750 5.ht ml www.ah.chinane ws.co m/ne ws/ 2018/05 20/118 480.sht ml /a/232081863_100156378 www.hkj /xinwenzhongxin/ji ankangchanye/6600.html /a/232093535_100143832 www.yuer z /yuer/z x/6832.html www.hkj /xing yekuai xun/6601.html www.zgys /news/5097.html

七年级数学上册 2.2 有理数与无理数 有理数的分类中,对于小数是怎样分的,它属于哪类素材 (新版)苏科版

七年级数学上册 2.2 有理数与无理数 有理数的分类中,对于小数是怎样分的,它属于哪类素材 (新版)苏科版

有理数的分类中,对于小数是怎样分的,它属于哪类
难易度:★★
关键词:有理数
答案:
答案:整数和分数统称有理数;有限小数和循环小数都属于分数。

【举一反三】
典例:把下列各数填到相应的集合中.6,,-2, -3,0,189,-37,2.7,-1;分数集合:{ …},负整数集合:{ …}.
思路导引:认真掌握正数、负数、整数、分数的定义与特点,需要注意小数也是分数,应放在分数集合,这是学生容易出错的地方.按照有理数的分类填写:有理数整数分为正整数、负整数和0,非负数包括0和正数.
标准答案:小数是分数的一种表现形式,小数可化为分数,在中学有理数是只有整数和分
数,没有小数,所以小数是分数.分数集合:{ ,-3 ,2.7…};负整数集合{-2,-37,-1…}.。

苏科版七年级上册数学2.2有理数与无理数

苏科版七年级上册数学2.2有理数与无理数

2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。

初一数学第一章(正负数及有理数)PPT课件

初一数学第一章(正负数及有理数)PPT课件
练习题3
求$| -5 | + | 3 |$的值。
答案解析
根据绝对值的概念及性质,$| -5 | = 5$,$| 3 | = 3$。 因此,$| -5 | + | 3 | = 5 + 3 = 8$。
THANKS FOR WATCHING
感谢您的观看
体育比赛中的得分与失分
得分用正数表示,失分用负数表示。
科学实验中的误差表示
误差可以用正负数来表示,正误差表示结果偏高,负误差表示结果 偏低。
06 章节总结与回顾
重点知识点总结
正负数的概念及性质
正数是大于0的数,负数是小于0的数,0既不是正数也不 是负数。正负数具有相反的性质,如正数加负数等于两数 相减。
有理数的四则运算
有理数的加减乘除运算遵循一定的运算法则,如加法交换 律、结合律,乘法交换律、结合律和分配律等。
有理数的定义及分类
有理数是可以表示为两个整数之比的数,包括整数、分数 和十进制小数。有理数可分为正有理数、0和负有理数。
绝对值的概念及性质
绝对值是一个数到0的距离,用“| |”表示。正数和0的绝 对值是它本身,负数的绝对值是它的相反数。
在负数前面加上“-”号(负号), 如-3,-7等。
正负数大小比较
正数都大于0,负数都小于0,正数大 于一切负数。
大数减小数的结果大于0,小数减大 数的结果小于0。
在数轴上,右边的点表示的数比左边 的点表示的数大。
03 有理数基本概念
有理数定义
01
有理数是可以表示为两个整数之 比的数,其中分母不为0。
05 正负数及有理数在生活中 的应用
温度表示
温度计上的正负数
以0°C为基准,高于0°C为正,低于0°C为负。

第02讲 有理数与无理数(原卷版)-2021-2022学年秋季七年级数学基础学案(苏科版)

第02讲 有理数与无理数(原卷版)-2021-2022学年秋季七年级数学基础学案(苏科版)

第02讲 有理数与无理数素养目标1.理解有理数的意义和会对有理数进行分类.2.知道无理数是客观存在的,了解无理数的意义.3.会判断一个数是有理数还是无理数、4.经历数的扩充,在探索活动中感受数学的遇近思想,体会“无限”的过程,发 展数感.考点关注1.有理数、无理数的识别.(必考点)2.有理数、无理数的分类.(必考点)知识点1有理数的概念(重点;掌握)我们把能写成分数形式 mn (m ,n 是整数,n≠0)的数叫做有理数.如: 5 =5 1,−4=−4 1,0 = 01。

即我们学过的整数(正整数、负整数、零)都是有理数。

如: 0.3 =3 10,−3.11 = −311 100,0.333… =1 3,0.2666… =415. 即有限小数和无限循环小数都可以化为分数,它们都是有理数.例1(曲阜校级月考)①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的. 以上说法正确的个数是( )A .1B .2C .3D .4针对性训练1(2020·沈阳朝阳校级月考)在下列数中: − 1 3 ,11.1111,− 111,95.57,0,+2004,−2,1.1212212222,π。

非负整数有 ___________________ ,有理数有 ___________________ .知识点2有理数的分类(重点,掌握)根据有理数的概念,有理数可以进行如下的分类:1.按整数、分数的关系分类2.按正数、0、负数的关系分类例2(德州市德城区校级月考)①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称:③有理数是正整数、负整数、正分数、负分数的统称;④0不是自然数;⑤偶数包括正偶数、负偶数和零。

以上说法正确的有()A.1个B.2个C.3个D.4个针对性训练2下列说法:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤−π不仅是有理数,而且2是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧是分数;⑥237正数中没有最小的数,负数中没有最大的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们学过整数(正整数、负整数、零)
和分数(正分数、负分数).
正整数 整数 零 负整数
正分数 分数 负分数
所有的整数都可以表示为分母为1的分数,
m 我们把能写成分数形式 m、n是整数,且n 0 n 的数叫做有理数. 小学里学过的有限小数和循环小 数是有理数吗?
3 0.3 10
课堂小结:
谈谈你这一节课有哪些收获.
有限小数和无限循环小数属于分数.
有理数还可以分为:
有理数 零 负有理数 负整数
正分数
正有理数

正整数

负分数
是不是所有的数都是有理数呢? 将两个边长为1的小正方形,沿图中红线剪开,重新拼成 一个大正方形,它的面积为2.
aБайду номын сангаас
a
a
如果设它的边长为
a
a ,那么 a 2 2 . a是有理数吗?
正数集合: { 9.3 ,42,0.333 ,1.414 213 56,2π,3.303 003 000 3 , …} 1 负数集合:{ 6 , ,-0.33,-3.141 592 6, …} 6 正有理数集合:{ 9.3 ,42,0.333
,1.414 213 56, …}
1 6 , ,-0.33,-3.141 592 6, …} 负有理数集合:{ 6
无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值
是3.141 592 653 589…,π是无理数.
有理数
分数
整数


正整数 零
负整数
正分数 负分数
无理数 ——无限不循环小数
将下列各数填入相应的括号内:
1 6 , 9.3 , ,42,0,-0.33,0.333 ,1.414 213 56, 6 2π,3.303 003 000 3 ,-3.141 592 6.
因为 12 1, 22 4 ,所以
a 是大于1而小于2的数.
3 3 3 9 因为 2 ,所以 a 不是 2 . 2 2 4
4 4 16 2 ,所以 因为 3 3 9 5 5 25 因为 2 ,所以 3 3 9
4 a 不是 . 3
5 a 不是 3 .
事实上, a 不能化为分数的形式,a是一个无限不循环 小数,它的值是1.414 213 562 373
0.333 1 3
0 5 4 如: 5 , 4 ,0 等. 1 1 1
312 3.12 100 4 0.2666 15
有限小数和循环小数都可以化为分数,它 们都是有理数.
整数和分数统称为有理数.
有理数
分数
整数


正整数

负整数 正分数 负分数
相关文档
最新文档