2018年高考全国1卷理科数学

合集下载

18年高考真题——理科数学(全国1卷)

18年高考真题——理科数学(全国1卷)

2018年普通高等学校招生全国统一考试数学(理)(全国I 卷)一.选择题(共12 小题,每小题 5 分,共60 分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.设1 iz 2i1 i,则| z|()(A)0 (B)12(C)1 (D) 22.已知集合 2A x | x x 2 0 ,则e R A ()(A )x| 1 x 2 (B)x| 1 x 2 (C)x| x 1 x | x 2 (D)x |x 1 x|x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如右饼图。

则下面结论中不正确的是()(A )新农村建设后,种植收入减少(B)新农村建设后,其他收入增加了一倍以上(C)新农村建设后,养殖收入增加了一倍(D)新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列a n 的前n项和,若3S3 S2 S4 ,a1 2,则a5 ()(A )12 (B)10 (C)10 (D)125.设函数 3 1 2f x x a x ax,若f x 为奇函数,则曲线y f x 在点0,0 处的切线方程为()(A)y 2x (B)y x (C)y 2x (D)y x 6.在ABC 中,AD 为BC 边上的中线, E 为AD 的中点,则EB ()(A )3 1AB AC (B)4 41 3AB AC (C)4 43 1AB AC (D)4 41 3AB AC4 47.已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为()(A )3 34 (B)2 33(C)3 24(D)328.设抛物线 C : 2 4y x 的焦点为F ,过点2,0 且斜率为23的直线与 C交于M , N 两点,则FM FN ()(A)5 (B)6 (C)7 (D)89.已知函数f xxe xln x x 0,g x f x x a 。

2018年高考数学试卷1(理科)

2018年高考数学试卷1(理科)

2018年高考试卷理科数学卷本试卷分选择题和非选择题两部分。

全卷共5页,总分值150分,考试时间120分钟。

第I 卷〔共50分〕注意事项:1.答题前,考生务必将自己的、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式:球的外表积公式 棱柱的体积公式24S R π= V Sh =球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项是符合题目要求的.1.〔原创〕设函数,0,(),0,x x f x x x ⎧≥⎪=⎨-<⎪⎩ 假设()(1)2f a f +-=,则a =〔 〕A .– 3B .±3C .– 1D .±12. 〔原创〕复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. 〔原创〕甲,乙两人分别独立参加某高校自主招生考试,假设甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43 B.119C.1D.894. 〔改编〕右面的程序框图输出的结果为〔 〕.62A .126B .254C .510D5. 〔改编〕已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题: ①//l m αβ⇒⊥;②//l m αβ⊥⇒;③//l m αβ⇒⊥ 其中假命题的个数为〔 〕.3A .2B .1C .0D6. 〔改编〕已知函数f (x )的图象如右图所示,则f (x )的解析式可能是〔 〕A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. 〔原创〕等差数列{}n a 的前n 项和为n S ,且满足548213510S a a -+=,则以下数中恒为常数的是( )A.8aB. 9SC. 17aD. 17S8. 〔改编〕已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,假设2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为〔 〕A .2B . 3C .2D .39. 〔原创〕已知,x y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4B.[]4,6C.[]5,8D. []6,710. 〔改编〕假设函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个第II 卷〔共100分〕二、填空题:本大题共7小题,每题4分,共28分。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国高考新课标1卷理科数学试题(解析版)

2018年全国高考新课标1卷理科数学试题(解析版)

高考真题高三数学2018 年普通高等学校招生全国统一考试新课标 1 卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1-i1.设z=1+i+2i ,则|z|=12A.0 B .C .1D . 2解析:选 C z= 1-i1+i+2i=-i+2i=i2.已知集合A={x|x 2-x-2>0} ,则?R A =R A =A.{x|-1<x<2} B .{x|-1 ≤x≤2} C .{x|x<-1} ∪{x|x>2} D .{x|x ≤-1} ∪{x|x ≥2} 解析:选 B A={x|x<-1 或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选 A4.设S n 为等差数列{a n} 的前n 项和,若3S3=S2+S4,a1=2,则a5=A.-12 B.-10 C.10 D.12解析:选∵3(3a1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax,若f(x) 为奇函数,则曲线y=f(x) 在点(0,0) 处的切线方程为A.y=-2x B.y=-x C.y=2x D.y=x解析:选 D ∵f(x) 为奇函数∴a=1 ∴f(x)=x 3+x f ′(x) =3x2+1 f ′(0)=1 故选 D→= 6.在ΔABC中,AD为BC边上的中线, E 为AD的中点,则EB3→- A.AB4 14→B.AC14→-AB34→C.AC34→+AB14→D.AC14→+AB3→AC4共7 页第1页高考真题高三数学→=- 1 →+B→D)=- 1→- 1→=- 1→-1→-A→B)= 3→- 1→解析:选A结合图形,EB (BA BA BC BA (AC AB AC2 2 4 2 4 4 47.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.2解析:选B所求最短路径即四份之一圆柱侧面展开图对角线的长28.设抛物线C:y =4x 的焦点为F,过点(–2,0)且斜率为23→→的直线与C交于M,N两点,则FM·FN=A.5 B.6 C.7 D.823 解析:选D F(1,0) ,MN方程为y=→=(0,2),FN→=(3,4) (x+2), 代入抛物线方程解得交点M(1,2),N(4,4), 则FM∴F→M·→F N=89.已知函数f(x)= e x,x ≤0x,x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g(x)存在 2 个零点,则 a 的取值范围是A.[ –1,0)B.[0 ,+∞)C.[ –1,+∞)D.[1 ,+∞)解析:选C g(x)=0 即f(x)=-x-a ,即y=f(x) 图象与直线y=-x-a 有2 个交点,结合y=f(x) 图象可知-a<1 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3解析:选A∵AC=3,AB=4,∴BC=5,∴1 3 1AC= AB=2 ,,2 2 21 5BC=2 2∴以AC和AB为直径的两个半圆面积之和为12×π×(32)1 252 2+ ×π×2 =π2 8∴以BC为直径的半圆面积与三角形ABC的面积之差为12×π×(5)22-1 25×3×4= π-6 ;2 8∴两个月牙形(图中阴影部分)的面积之和等于258258π-( π-6)=6= ΔABC面积∴p1=p22x- y 2 =1 ,O为坐标原点, F 为C的右焦点,过 F 的直线与 C 的两条渐近线的交点分别11.已知双曲线C:3为M、N.若ΔOMN为直角三角形,则|MN|=共7 页第2页高考真题高三数学32A.B.3 C.2 3 D.4解析:选 B 依题F(2,0), 曲线C的渐近线为y=±3x,MN 的斜率为3,方程为y= 3(x-2), 联立方程组解得33 M( ,-23),N(3, 3), ∴|MN|=3 212.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为3 34 A.B.2 33C.3 24D.32解析:选 A 如图正六边形与正方体每条棱缩成角相等。

2018高考数学全国1卷1(理科数学)

2018高考数学全国1卷1(理科数学)

2018年普通高等学校招生全国统一考试(全国I 卷理科数学)一、选择题:本体共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。

1.设i i Z +-=11+i 2,则Z =( )A .0B .21C .1D .22.已知集合A ={x |x 2-x -2<0,则∁R A =() A .{x |-1<x <2} B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x>2}D .{x |x ≤-1}∪{x |x ≥2}3.某地区经过一年得新农村建设,农村得经济收入增加了一倍,实现翻番,为更好地了解该地区农村得经济收入变化情况,统计了该地区新农村建设前后农村得经济收入构成比例,得到如下饼图:则下面结论中不正确得就是( )A .新农村建设后,种植收入减少B .新农村建设后,其她收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入得总与超过了经济收入得一半4.记n S 为等差数列{a n }得前n 项与4233S S S +=,若,21=a ,则=5a ( )A .-12B .-10C .10D .12 5.设函数()()ax x a x x f +-+=231,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处得切线方程为( )A .y = -2xB .y = -xC .y = 2xD .y = x6.在△ABC 中,AD 为BC 边上得中线,E 为AD 得中点,则→EB =( )A .43AB -41AC B .41AB -43ACC .43AB +41ACD .41AB +43AC 7.某圆柱得高为2,底面周长为16,其三视图如下图,圆柱表面上得点M 在正视图上得对应点为A ,圆柱表面上得点N 在左视图上得对应点为B ,则此圆柱侧面上,从M 到N 得路径中,最短路径得长度为( )A .172B .52C .3D .28.设抛物线C :y 2=4x 得焦点为F ,过点(-2,0)且斜率为32得直线与C 交于M ,N 两点,则=•→→FN FM ( )A .5B .6C .7D .89.已知函数()=x f ⎩⎨⎧≤.0,ln ,0, x x x e x ,()()a x x f x g ++=,若()x g 存在2个零点,则a 得取值范围就是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)10.下图来自古希腊数学家波克拉底研究得几何图形,此图由三个半圆构成,三个半圆得直径分别为直角三角形ABC 得斜边BC ,直角边AB ,AC ,△ABC 得三边所围成得区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自I ,Ⅱ,Ⅲ得概率分别记为321,,P P P ,则( )A .1P =2PB .1P =3PC .2P =3PD .1P =2P +3P11.已知双曲线C :1322=-y x ,O 为坐标原点,F 为C 得右焦点,过F 得直线与C 得两条渐近线得焦点分别为M ,N ,若△OMN 为直角三角形,则|MN |=( )A .23B .3C .32D .23 12.已知正方体得棱长为1,每条棱所在直线与平面α所成得角都相等,则α截此正方体所得截面面积得最大值为( )A .343B .332C .243D .23 二、填空题:本题共4小题,每小题5分,共20分。

2018高考数学全国1卷1(理科数学)(最新整理)

2018高考数学全国1卷1(理科数学)(最新整理)

2018年普通高等学校招生全国统一考试(全国I 卷理科数学)一、选择题:本体共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设+,则=()iiZ +-=11i 2Z A .0B .C .1D .2122.已知集合A ={x |x 2-x -2<0,则∁R A =()A .{x |-1<x <2}B .{x |-1≤x≤2}C .{x |x <-1}∪{x |x>2}D .{x |x≤-1}∪{x |x≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列{a n }的前n 项和,若,,则()n S 4233S S S +=21=a =5a A .-12B .-10C .10D .125.设函数,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线()()ax x a x x f +-+=231方程为()A .y = -2xB .y = -xC .y = 2xD .y = x6.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=()→EB A .-B .-43AB41AC 41AB43ACC .+D .+43AB41AC 41AB43AC7.某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则此圆柱侧面上,从M 到N 的路径中,最短路径的长度为()A .B .C .3D .2172528.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,32则()=∙→→FN FM A .5B .6C .7D .89.已知函数,,若存在2个零点,则a 的取()=x f ⎩⎨⎧≤.0,ln ,0, x x x e x ()()a x x f x g ++=()x g 值范围是()A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)10.下图来自古希腊数学家波克拉底研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,△ABC 的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自I ,Ⅱ,Ⅲ的概率分别记为,则()321,,P P P A .= B .= C .=D .=+1P 2P 1P 3P 2P 3P 1P 2P 3P11.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两1322=-y x 条渐近线的焦点分别为M ,N ,若△OMN 为直角三角形,则|MN |=()A .B .3C .D .23322312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A .B .C .D .34333224323二、填空题:本题共4小题,每小题5分,共20分。

2018年全国高考新课标1卷理科数学试题(解析版)

2018年全国高考新课标1卷理科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。

2018年全国1卷理科数学高考原题

2018年全国1卷理科数学高考原题

2018年普通高等学招生全国统一考试(全国1卷)理科数学一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|= ()A、0B、C、1D、2、已知集合A={x|x2-x-2>0},则A= ()A、{x|-1<x<2}B、{x|-1x2}C、{x|x<-1}∪{x|x>2}D、{x|x-1}∪{x|x2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:()A、新农村建设后,种植收入减少。

B、新农村建设后,其他收入增加了一倍以上。

C、新农村建设后,养殖收入增加了一倍。

D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

4、记Sn 为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5= ()A、-12B、-10C、10D、125、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:()A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD为BC边上的中线,E为AD的中点,则=()A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A、B、C、3D、28.设抛物线C:y²=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·= ()A.5B.6C.7D.89.已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试
全国Ⅰ卷 理科数学
一、
选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设i i
i
z 211++-=
,则=||z A.0 B.
2
1
C.1
D. 2
2.已知集合},02|{2
>--=x x x A 则=A C R A. }21|{<<-x x B. }21|{≤≤-x x
C. }2|{}1|{>-<x x x x
D. }2|{}1|{≥-≤x x x x
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列}{n a 的前n 项和.若,2,31423=+=a S S S 则=5a A.-12 B.-10 C.10 D.12
5.设函数.)1()(2
3ax x a x x f +-+=若)(x f 为奇函数,则曲线)(x f y =在点)0,0(处的切线方程为
A. x y 2-=
B. x y -=
C. x y 2=
D. x y = 6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB
60%
30%
6%
4% 种植收入
第三产业收入 其他收入
养殖收入
建设前经济收入构成比例 37%
30%
28%
5% 种植收入
养殖收入 其他收入
第三产业收入
建设后经济收入构成比例
A.
AC AB 4143- B. AC AB 4
341- C. AC AB 4143+ D. AC AB 4341+
7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A. 172 B. 52 C.3 D.2
8.设抛物线C :x y 42
=的焦点为F ,过点)0,2(-且斜率为
3
2
的直线与C 交于M ,N 两点,则=⋅FN FM
A.5
B.6
C.7
D.8
9.已知函数⎩⎨⎧>≤=,
0,ln ,
0,)(x x x e x f x .)()(a x x f x g ++=若)(x g 存在2个零点,则a 的取值
范围是
A. )0,1[-
B. ),0[+∞
C. ),1[+∞-
D. ),1[+∞ 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB,AC. ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,321p p p 则
A. 21p p =
B. 31p p =
C. 32p p =
D. 321p p p +=
11.已知曲线C :,13
22
=-y x O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N.若OMN ∆为直角三角形,则=||MN
A
B
A
B C
A.
2
3
B.3
C. 32
D.4 12.已知正方体的棱长为1,每条棱长所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A.
433 B. 332 C. 423 D. 2
3
二、填空题:本题共4小题,每小题5分,共20分.
13.若y x ,满足约束条件⎪⎩

⎨⎧≤≥+-≤--,0,01,
022y y x y x 则y x z 23+=的最大值为___________________.
14.记n S 为数列}{n a 的前n 项和.若,12+=n n a S 则=6S ___________________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法
共有_______________种.(用数字填写答案)
16.已知函数,2sin sin 2)(x x x f +=则)(x f 的最小值是___________________.
二、 解答题:共70分。

解答题应写出文字说明、证明过程或演算步骤。

第17~21题为
必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一) 必考题:共60分。

17.(12分) 在平面四边形ABCD 中,.5,2,45,90==︒=∠︒=∠BD AB A ADC (1) 求;cos ADB ∠ (2) 若,22=DC 求BC.
18.(12分)
如图,四边形ABCD 为正方形,E ,F 分别 为AD ,BC 的中点,以DF 为折痕把DFC ∆折 起,使点C 到达点P 的位置,且.BF PF ⊥ (1)证明:平面PEF ⊥平面ABFD ;
(2)求DP 与平面ABFD 所成角的正弦值.
19.(12分)
P
A E
D
C
F
B
设椭圆C :12
22
=+y x 的右焦点为F , 过F 的直线l 与C 交于A,B 两点, 点M 的坐标为)0,2(.
(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMB OMA ∠=∠.
20.(12分)
某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为
),10(<<p p 且各件产品是否为不合格品相互独立.
(1)记20件产品中恰有2件不合格品的概率为),(p f 求)(p f 的最大值点0p .
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX :
(ⅱ)以检测费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
21.(12分) 已知函数.ln 1
)(x a x x
x f +-=
(1)讨论)(x f 的单调性;
(2)若)(x f 存在两个极值点,,21x x 证明:
.2)
()(2
121-<--a x x x f x f
(二) 选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的
第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线1C 的方程为.2||+=x k y 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标极坐标方程为.03cos 22
=-+θρρ (1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.
23.[选修4-5:不等式选讲](10分) 已知.|1||1|)(--+=ax x x f
(1)当1=a 时,求不等式1)(>x f 的解集;
(2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值范围.。

相关文档
最新文档