用尺规作三角形
2.6用尺规作三角形课件湘教版数学八年级上册

感悟新知
作法与图示如下:
作法 ①作线段BC=a ② 以点C 为圆心,以b 为半
径画弧,再以点B 为圆心, 以c 为半径画弧,两弧相 交于点A ③ 连接AB 和AC,则△ ABC 为所求作的三角形
图示
知1-讲
感悟新知
为所求作的等腰三角形
图示
知2-讲
感悟新知
知2-讲
特别解读
1. 作图依据:等腰三角形的三线合一. 2. 作图思路:运用“作一条线段等于已知线段”和
“作线段的垂直平分线”的基本作图方法.
感悟新知
知2-练
例2 已知线段m, 如图2.6-5, 求作△ ABC, 使AC=
BC,且AB=m,AB 边上的高CE= 1 m. 2
AB=a,AC=2a,∠ A= ∠α .
方法点拨 用尺规作图的一般步骤: 第一步:分析已知,确定求作类型. 第二步:确定作图思路. 第三步:依次叙述作图过程并作图. 第四步:下结论.
感悟新知
解:(1)作∠ MAN= ∠α ; (2)在射线AM,AN 上分别截取AB=a,AC=2a; (3)连接BC,则△ ABC 就是所求作的三角形, 如图2.6-15所示.
∠ α ,∠ ECB= ∠β ,BD 与CE 相交于点A,则△ ABC 为所求作的三角形
图示
知6-讲
感悟新知
知6-讲
特别解读 1. 作图依据:全等三角形的判定方法“ASA”. 2. 已知两个角和其中一个角的对边不能直接作三角
形,要将已知条件先转化为已知两个角和它们的 夹边,然后作三角形.
感悟新知
感悟新知
知识点 4 作一个角等于已知角
尺规作三角形的方法

尺规作三角形的方法
嘿,你知道不?尺规作三角形那可老神奇啦!先来说说步骤哈。
首先确定一条线段当三角形的一边,这就好比盖房子先打下一根坚实的柱子。
然后用圆规以线段的一个端点为圆心,任意长度为半径画弧。
接着以另一个端点为圆心,同样长度为半径画弧,两弧交点一确定,连接起来,这三角形的另外两条边不就有啦?这过程中,可得小心圆规别扎到手哇!那可是疼得要命呢!
说到安全性和稳定性,只要你操作得当,那是稳稳当当的。
圆规和直尺又不是啥危险物品,不像刀子啥的让人提心吊胆。
只要你不瞎折腾,能出啥事儿呢?
这尺规作三角形有啥用呢?在学习几何的时候,那可太有用啦!可以帮助你更好地理解三角形的性质。
就好比你有了一把神奇的钥匙,能打开几何世界的大门。
它的优势也不少呢,简单易操作,不用啥高科技设备。
你想想,要是没有圆规和直尺,那可咋整?
给你举个实际案例哈。
老师在课堂上让同学们用尺规作三角形,大家都做得可认真啦!不一会儿,一个个漂亮的三角形就出现在纸上。
这效果,那叫一个棒!
尺规作三角形就是这么牛!简单又实用,安全又稳定。
你还等啥,赶紧试试吧!。
《用尺规作三角形》教学课件

B
(3)在射线BD上截取线
段BA=c; B
C
D
AD C AC
(4)连接AC.△ABC就是所
求作的三角形.
B
C
将你所作的三角形与同伴作出 的三角形进行比较,它们全等吗? 为什么?
两边及它们的夹角对应相 等的两个三角形全等(SAS)
1. 已知三角形的两边及夹角,求作这个三角 形。
回顾刚才作三 边 角形的顺序
用尺规作三角形
1、尺规作图的工具是直尺和圆规
2、我们已经会用尺规作一条 线段等于已知线段、作一个角 等于已知角
作一个角等于已知角
已知:∠AOB,求作∠A′O′B′,使
∠A′O′B′=∠AOB
DA
D′ A′
O
C B O′
作法与提示:
C′ B′
(画径(径则(弧画23画4∠5))),弧弧A以以′过交,(,OCOD交为 O′1交′′A)圆于 为 O前为B做′做′圆心D弧圆射B点射为心′,于心线,线所任,于,DO交O′求′意OC′DC′O点C作A长BB长′点于′的为。为C角半。点半径。
c
请按照给出的作法作出相应的图形. 作法
(1)作 DAF .
A
(2)在射线AF上截取线段
AB=c;
A
(3)以B为顶点,以BA为一边,
作 ABE , BE交AD于点
C.则△ABC就是所求作的三角
形.
A
示范
D D
CD
F BF
BF
将你所作的三角形与同伴作 出的三角形进行比较,它们全等 吗?为什么?
夹 角
边
边
还有没有其
夹
他的作法?
角
边
已知:线段a, b, ∠α ,求作:△ABC, 使BC=a,AB= c, ∠ABC =∠α
《用尺规作三角形》三角形PPT优秀课件

b
c
求作:△ABC,使AB=c,AC=b,BC=a.
作法: (1)作一条线段BC=a;
(2)分别以B,C为圆心,以c,b的长为半径画弧 ,两弧交于点A;
B
(3)连接AB,AC,
△ABC就是所求作的三角形.
A C
连接中考
(2020•广州模拟)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE 上截取AD=BC,连接CD,并说明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)
a
b
α
课堂检测
作法: 1. 作∠MAN=∠α;
N C C'
aa
α
A
bB
M
2. 在射线AM上截取AB=b;
3. 以B为圆心,以a为半径画弧,交AN于点C, C ';
4. 连接BC,BC', △ABC和△ABC'就是所求作的三角形.
课堂检测
拓广探索题
如图,在△ABC中,BC=5厘米,AC=3厘米, AB=3.5厘米,∠B=36°,∠C=44°,请你选择 适当数据,画与△ABC全等的三角形(选择三个合适的条件画图,不写作法,但要从所画的三 角形中标出用到的数据)
N
E′
B bA
a D′ C
M
(3)连接AC,则△ABC为所求 作的三角形.
探究新知
2.已知三角形的两角及其夹边,求作这个三角形. 已知:∠α ,∠β ,线段c.
c
求作:△ABC,使∠A=∠α ,∠B= ∠β ,AB=c.
探究新知
请按照给出的作法作出相应的图形.
作法
(1)作 ∠DAF=∠α .
图形
2.如图所示,已知线段a,用尺规作出△ABC,使AB=a,
用尺规作三角形课件

用尺规作三角形
说一说
你已经学会用尺规作哪些图形?动手试一试.
会作一条线段等于已 知线段,会作线段的垂直 平分线,……
根据三角形全等的判定条件,已知三边、两 边及其夹角、两角及其夹边,都可以确定唯一的 一个三角形,从而我们可以根据这些条件用尺规 来作三角形.
已知三边作三角形. 已知线段a, b, c. 求作△ABC,使AB=c,BC=a,AC=b.
练习
1. 如图,一个机器零件上的两个孔的中心A,B已 定好,又知第三个孔的中心C距A点1.5m,距B 点1.8m. 如何找出C点的位置呢?
答:以点A为圆心,1.5cm为半 径画弧,再以点B为圆心, 1.8cm为半径画弧,两弧的交 点即为第三个孔的中心C.
2. 如图,已知线段a, b,求作等腰三角形,使它 的腰长等于线段a,底边长等于线段b.
练习
用尺规完成下列作图(只保留作图痕迹, 不要求写出作法).
1. 用尺规作一个角等于90°.
如图所示,
①在直线l上截取线段PA、PB,
使PA=PB; ②分别以点A、B为圆心,大于
PA的任意长度为半径画弧, 两弧相交于点C. ③连接CP,则∠CPA= ∠CPB= 90°.
2. 如图,已知线段a,b,求作一个直角三角形, 使它的两直角边分别为a和b.
如图所示,
a
①作∠MCN=90°.
b
②在射线CM上截取CA=a,
在射线CN上截取CB=b.
③连接AB,则△ABC就是所求作的三角形.
a b
中考 试题 例1
如图1,已知线段a、b、c,求作以a、b、c为边的三角形.
解 ①作一条线段AB=c. ②分别以A、B为圆心,以b、a为半径画弧, 两弧交于C点. ③连接AC、BC.则△ABC就是所求作的三角形.
26用尺规作三角形

D)
2.利用尺规不可作的直角三角形是( A .已知斜边及一条直角边 B .已知两条直角边 C .已知两锐角 D .已知一锐角及一直角边
C)
3.以下列线段为边能作三角形的是( ) A.2厘米、3厘米、5厘米 B.4厘米、4厘米、9厘米 C.1厘米、2厘米、 3厘米 D.2厘米、3厘米、4厘米
课堂小结
探究三
3.已知三角形的三边,求作这个三角形.
已知:线段a,b,c.
a
b
c
求作:△ABC,使AB=c,AC=b,BC=a.
(1)请写出作法并作出相应的图形.
(2)将你所作的三角形与同伴作出的三 角形进行比较,它们全等吗?为什么?
3.已知三角形的三条边,求作这个三角形。
已知:线段 a,b,c。
a
b
c
本节课你有什么收获?
1.学会了用尺规作三角形 2.进一步验证了全等三角形的条件.
布置作业 习题4.9
N
E′
B bA
a D′C
M
(3)连接AC 则△ABC为所求作的三角形
归纳小结
经过前面的实践,我们如何来分析作图题呢?
1. 假设所求作的图形已经作出,并在草 稿纸上作出草图; 2. 在草图上标出已给的边、角的对应位置, 由此确定作图的起始步骤。
你知道的常用作图语言有哪些呢? (1)作∠······=∠ ······;
段BA=c;
B
(4)连接 AC.△ ABC就是所
求作的三角形.
B
示范
C
D
AD C AC
C
将你所作的三角形与同伴作出 的三角形进行比较,它们全等吗? 为什么?
两边及它们的夹角对应相 等的两个三角形全等 (SAS)
7年级数学北师大版 下册教案第4章《用尺 规作三角形》

教学设计用尺规作三角形么办?边和角是三角形的基本元素,那么你能利用尺规做一个三角形与已知三角形全等吗?【做一做】已知三角形的两边及其夹角,求作这个三角形.已知:线段a, c, ∠α.a c求作:△ABC,使BC=a AB=c, ∠ABC=∠α.作法:(1)作一条线段BC=a;(2)以B为顶点,以BC为一边作∠DBC=∠α;(3)在射线BD上截取线段BA=c;(4)连接AC,△ABC就是所求作的三角形.将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?回顾刚才作三角形的顺序还有没有其他的作法?还有没有其他的作法?作法:____________________________________________ _____________________________________________________________________ ________________________________________________________________________ ____________________________将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?二、提炼概念利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“____SAS____”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“____ASA____”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“___SSS_____”.三、典例精讲例已知三角形的两角及其夹边,求作这个三角形. 已知:∠α,∠β,线段c(如图).αβ求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.作法与示范(1)作∠DAF=∠α;(2)在射线AF上截取线段AB=c;(3)以B为顶点,以BA为一边,作∠ABE=∠β,BE 交AD于点C.△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?试一试.已知三角形的三条边,求作这个三角形.已知:线段a,b,c (如图).a b c求作:△ABC,使AB=c,AC=b,BC=a. (1)请写出作法并作出相应的图形.作法与示范(1)作一条线段BC=a;(2)分别以B,C为圆心,以c,b为半径画弧,两弧交于A点;(3)连接AB,AC,△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?课堂检测四、巩固训练1.利用基本作图方法,不能作出唯一三角形的是(C)A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边2.如图,用尺规作出∠OBF=∠AOB,作图痕迹弧线MN是()A.以点B为圆心,OD长为半径的弧B.以点B为圆心,DC长为半径的弧C.以点E为圆心,OD长为半径的弧D.以点E为圆心,DC长为半径的弧D3.你能用尺规作一个直角三角形,使其两条直角边分别等于已知线段a,b吗?并写出作法。
用尺规作图画三角形的方法

用尺规作图画三角形的方法
三角形是一种常见的几何图形,它可以用来表达各种概念,可以用来构建形状、结构和物理实体,也可以被用来展示统计数据。
用尺规作图画三角形的方法可以用来创建几何图形,并且可以判断几何图形的性质,以及三角形的一些属性。
用尺规画三角形可以分为三步:
1.使用尺规以中心点为中心画一个圆,圆的半径就确定了三角形的高度,然后以圆为中心画出三条射线,假设射线A、B、C,A-C为60度,B-A为90度,C-B为90度,就已经完成了三角形的基本形状。
2.然后使用尺规根据基准线给每条射线依次画出三条边,射线A-B-C的边长分别为a、b、c,可以用任意一条边的长度表示三角形的边平行四边形的长度,例如a=5cm,b=3cm,c=4cm,那么三角形的面积就等于a*b/2,也就是5*3/2=7.5cm。
3.接下来就是要判断三角形的形状,如果a=b=c,则为等边三角形,如果a=b≠c,则为等腰三角形,如果a≠b≠c,则为一般三角形。
用尺规作图画三角形的方法很容易操作,先画一个圆,再画三条射线,然后再以基准线给每条射线依次画出三条边,并且判断出三角形的形状,就可以得出其边长及面积了。
加入现在要求我们在一个长方形的基准线上画一个三角形,那么我们首先要做的就是把长方形分成六段,每段的边长不一定相等,接着在六段上画出相应的射线,然后下一步就是给每个射线依次画出三条边,可以用任意一条边的长度表示三角形的边长,最后根据三个边
的长度来判断出三角形的形状。
以上就是用尺规作图画三角形的方法,只要熟悉其原理以及相应的步骤,就可以很快的将相应的几何图形画出来,掌握了这个方法,就可以轻松的创建几何图形,判断几何图形的性质,从而更好的展示统计数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以△ABC为所求作的三角形
已知:三角形的两角及它们 的夹边,求作 三角形
已知:∠α,∠β,线段c,
c β 求作:△ABC,使∠A=∠α,∠B=∠β,AB= c N K
α
倍 速 课 时 学 练
解:如图所示
C B
M
A
所以△ ABC 为所求作的三角形 (3) 作∠ K BA =∠ β α, c 作法 :(1) 作线段 AB= (2) 作∠ N A B =∠
Hale Waihona Puke 已知三角形的三边 求作三角形
已知:线段a,b,c
a b c
解:如图所示
A
求作:△ABC,使BC=a,AC=b,AB=c
作法
(1)做线段BC=a, (2)以C为圆心, b为半径画弧
倍 速 课 时 学 练
(3)以B为圆心, C为半径画弧 两弧相交于点A
B C M
(4)连接AB,AC
所以△ABC为所求作的三角形
已知三角形的两边及其夹 角,求作三角形
已知:线段a, b, ∠α ,求作:△ABC,使BC= a, E AB= c, ∠ABC =∠α b a a
解:如图所示 B
A E′ D′ C
N
D
作法 M (1)作∠MBN= ∠α
(3)连接AC
倍 速 课 时 学 练
(2)在射线B M上截取BC= 在射线B N上截取BA= b,