华东师大版七年级数学上册《平行线》教案
华东师大版数学七年级上册5.2《平行线》参考教案

5.2 平行线1.平行线知识技能目标1、理解平行线的定义,掌握它的画法,培养学生画图的基本技能.2、理解平行公理及其推论.过程性目标1.通过观察和画平行线,感受平行线的实际意义,体验平行线的特征;2.探索“经过已知直线外一点,有且只有一条直线与已知直线平行”的结论,体会研究几何图形性质的方法.教学过程一.创设情境师:当我们去操场进行跳高训练时,你们有没有发现横杆在阳光的照射下,在地面上留下了它的影子,这影子和横杆有交点吗?生:影子和横杆没有交点.师:在我们的生活中,你还能找到类似的例子,在同一平面内两条直线没有交点吗(小组交流)?生:像黑板的上,下两条边,铺设的铁轨等.师:在同一平面内请学生画两条直线,看一看有几种情形(让学生自主探索获得结论)?生:在同一个平面内所画的两条直线只有两种情形:两条直线相交;两条直线不相交.师:我们把在同一个平面内不相交的两直线叫做平行线(parallel lines).如图,直线a与直线b互相平行,记作“a∥b”.二.探索归纳师:大家刚才已经画了没有交点的两条直线,那你能肯定将两直线向两方延长后永远没有交点吗?请同伴帮你检测一下(学生合作完成).师:你是用什么方法确定同学所画的两直线肯定是平行的呢(学生交流平行线的画法)?师:下面请大家观看一种画平行线的方法:按照图示方法,画一条直线b与已知直线a平行师:如果在直线a外有一个已知点P,那么经过点P可以画多少条直线与已知直线a平行?请动手画一画(学生之间相互交流、讨论后确定具体的画法).生:动手操作的结果表明,经过点P画一条直线与已知直线a平行.师:你能把这一现象总结出来吗?生A:经过直线a外点P只能画一条直线与已知直线a平行.生B:可以总结为:经过已知直线外一点,有且只有一条直线与已知直线平行.师:请大家试一试,画一条直线a,按下图所示的方法,画一条直线b与直线a平行,再向上推三角尺,画另一条直线c,也与直线a平行.你发现直线b 和直线c有什么关系?生:直线b和直线c是平行的!师:回答的非常好!这就是平行线公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三.实践应用1.观察如图所示的长方体后填空:(1)用符号表示下列两棱的位置关系:A1B1______AB, AA1______AB, A1D1_________C1D1 , AD______BC;(2)A1B1与BC所在的直线是两条不相交的直线,他们_____平行线(填“是”或“不是”),由此可知,只有在__________内,两条不相交的直线叫做平行线.2.根据下列语句,画出图形:(1) 过△ABC的顶点C,画MN∥AB;(2) 过△ABC的边AB的中点D,画平行于AC的直线,交BC于点E.(3) 模仿(1)、(2)两题,你也能提出一个问题让同桌试一试吗?四.交流反思师:通过我们一起探索,获得了有关平行线的知识,你能给我们讲讲对平行线的认识吗?.生:在同一平面内,两条不同直线的位置关系只有两种:相交或平行.师:请举出一些与平行线相关的实例.生:如图所示,不少国家、团体或公司的标志是由平行线、垂线构成的(同学间可以交流).师:希望大家在课后能够利用平行线、垂线设计图案.师:希望大家在课后能够利用平行线、垂线等设计出一些漂亮的图案来.五.检测反馈1.在同一平面内,与已知直线a平行的直线有_______条,而经过直线a外一点P,与已知直线a平行的直线有且只有______条.2.用平移三角尺的方法可以检验出图中共有平行线______对.3.利用平行线画一些图案,比一比谁画的美观.4.如图是一本书封面的图的框架,请临摹这个图案,并涂上适当的颜色.。
平行线的判定-华东师大版七年级数学上册教案

平行线的判定-华东师大版七年级数学上册教案1. 教学目标本节课主要教学目标如下:1.掌握什么是平行线;2.学习平行线的判定方法;3.理解平行线的性质。
2. 教学重难点教学重点教学难点平行线的判定平行线的性质3. 教学内容3.1 课堂导入引入平行线的概念,通过实物图片展示并解释。
3.2 平行线的定义1.若两条线段在同一平面内,且没有交点,那么这两条线段就是平行线;2.若两条直线在同一平面内,并且在同侧与第三条直线相交形成的内角相等,则这两条直线为平行线。
3.3 平行线的判定方法1.垂线判定法:若两条直线相交,其中一条直线上有一条垂线与另一条直线垂直,则这两条直线平行。
2.角平分线判定法:若两条直线与第三条直线的交点处所成四个角中,有相互对顶的两个角相等,则这两条直线平行。
3.同位角判定法:若两条直线被一条横线切割,并且同位角(即同侧相对的内角)相等,则这两条直线平行。
4.比例判定法:若两条直线段在同一直线上,且有一条与其中一条相交的直线段将它们分成的两个线段的比相等,则这两条直线平行。
3.4 平行线的性质1.平行线的夹角是相等的;2.平行线上的任意点到另外一条直线的距离相等;3.在一个三角形中,如果由三角形的一个顶点分别引三条平行线和与这三条平行线相交的另外两条不平行的直线,那么这些交点将这个三角形分成了三个对应成比例的三角形。
3.5 课堂小结通过适当的技巧,进行复习和归纳。
4. 教学方法1.提问法:通过引导学生思考,激发学生的学习兴趣;2.演示法:通过实物展示图片,使学生更加直观地理解知识点。
5. 教学评价教师应及时进行评价,包括问答题、实际计算题和应用题等,确保学生掌握了本节课教学内容。
6. 参考资料无。
7. 总结本节课主要讲解平行线的概念和判定方法,并通过实物图片展示、理论演示、问题解答等多种教学方法,让学生掌握了平行线的基本概念和判定方法。
同时,通过学习平行线的性质,学生将更加深入理解平行线的相关知识,为后续的学习奠定了坚实的基础。
华师大版七年级上册《平行线》教学设计

华师大版七年级上册《平行线》教学设计《华师大版七年级上册《平行线》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标知识与技能1、了解同位角、同旁内角的概念;2、会判断并会画平行线;3、熟悉平行线的性质;4、会判定平行线;过程与方法通过类比、观察、实验、猜想、验证、推理、交流等学习活动,进一步增强动手能力、合情推理能力。
在运用平行线的性质和判定方法解决问题的过程中,培养和发展逻辑思维能力和推理论证的表达能力。
情感态度与价值观感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系,学会用辩证的观点分析事物。
二、知识内容结构平行线是人们日常生活和生产实践中应用广泛的一种位置关系,本单元是在学生已经学习了角的相关知识的基础上进行学习的,在教学内容上起着承上启下的作用。
本单元包括四个专题:专题一:同位角;专题二:平行线和它的画法;专题三:平行线的性质;专题四:平行线的判定。
三、学生主要学习活动及评价本单元的学习将通过合作探究的方法,让学生测量、计算、旋转、平移、推理等探索定理的证明的不同思路和方法,运用定理解决较简单的问题;归纳、总结解决平行线问题的常用数学方法;进行适当的比较与讨论,渗透化归思想和数学建模思想,从而形成知识体系。
专题一:同位角学生活动1:用三角板画几条相交的直线,让学生据名称猜测哪些是同位角、内错角、同旁内角。
独立观察。
活动2:分小组交流自己观察的结果。
活动3:老师宣布正确的结果,然后让学生说一下这个概念的内容。
评价要点:学生是否会判断同位角、内错角、同旁内角,设计本专题需要评价的学习环节和学习成果。
专题二:平行线和它的画法学习活动:1、观察老师画的两条线的关系,并说一说。
2、老师给出平行线的概念。
3、学会试一试如何画平行线。
4、学画平行线。
评价要点:会画平行线专题三:平行线的性质学习活动:让学生观察并猜测图中同位角、内错角等的关系。
评价要点:平行线的性质专题四:平行线的判定学习活动:1、让学生观察两条线是否平行;2、小组交流讨论,如何证明两条线平行;3、点拨:平行线的性质;4、学生将两直线被第三条直线所截所形成的角进行测量;评价要点:会判断平行线。
平行线的性质-华东师大版七年级数学上册教案

平行线的性质-华东师大版七年级数学上册教案一、教学目标1.了解平行线的定义,掌握判定平行线的方法2.知晓平行线间的性质,尤其是错角相等和内错角和等于180度的性质3.能够熟练解决平行线的相关练习题目二、教学重点1.平行线的判定方法2.平行线间的错角相等和内错角和等于180度的性质三、教学难点平行线的性质的证明和应用四、教学内容及进度第一课时1. 导入•思考题:什么是平行线?他们之间有什么关系?•铺设两条平行线,介绍平行线的概念2. 教学•平行线的定义•判定平行线的方法:同旁内角、同旁外角3. 练习•答题讨论:利用同旁内角和同旁外角的知识,找出两组平行线和一组平行线的对应关系第二课时1. 导入•思考题:为什么两条平行线之间的距离永不变化?•用尺量出平行线的距离2. 教学•平行线的错角相等的性质及其证明•平行线的内错角和等于180度的性质及其证明3. 练习•练习题:利用平行线的性质,解决练习题目第三课时1. 导入•思考题:如何利用已知的平行线,证明另外的一组线是平行线?•列出几组线的示例,让学生尝试证明它们是否平行2. 教学•平行线的证明方法:即证明同旁内角或同旁外角相等3. 练习•练习题:给出几组线,让学生证明它们是否平行,并解决有关平行线的问题五、教学方法讲授、练习、小组讨论六、教学评估练习题、小组讨论、考试七、教学资料华东师大版七年级数学上册教材、黑板、白板、彩笔、尺、量角器等八、拓展阅读•平行线的应用:学习如何利用平行线处理有关线的问题•三角形的性质:认识三角形内角和等于180度的性质及其证明。
华东师大版七年级数学上册第五章《相交线与平行线》教案

华东师大版七年级数学上册第五章《相交线与平行线》教案5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第2课时教学目标【知识与能力】认识生活中的垂直现象,理解垂直定义,并能用符号表示.掌握垂线的性质,会过一点作已知直线的垂线.【过程与方法】经历垂线画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.【情感态度价值观】通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.教学重难点【教学重点】垂线、垂线段、点到直线的距离的概念.【教学难点】垂线的性质和点到直线的距离.课前准备无教学过程一、引入设计意图:通过设置问题,引发学生的思考,激发学生的学习兴趣,在回忆旧知识的同时,自然切入本节课所要学习的内容.教师提问学生:能在生活中找到互相垂直的直线吗?学生观察实例,这时教师可以问学生“是通过什么特征来确定它们是垂线的?”帮助学生回忆垂直的形象(小学已接触过垂直).二、做一做设计意图:通过让学生动手操作,加深对垂线的理解,明确垂线的不同画法,锻炼了学生的实际操作能力,开拓了他们的思维,积累了他们的数学活动经验.1.请学生作出两条互相垂直的直线教师鼓励学生用不同的方法画垂线,学生发现用三角尺、量角器都可以来画互相垂直的直线,然后让两位学生各自采用一种作图工具在黑板上演示作图过程.2.引入垂直符号表示通过以上画图过程,使学生明确两条直线相交只有一个交点,当相交所成的角中有一个角是直角时,则此时两条直线互相垂直,若直线AB与CD垂直,则用符号“⊥”表示,即“AB⊥CD”,从而引出垂直的符号表示及垂足的定义.3.在方格纸上画出互相垂直的两条直线,用量角器验证你画出的两条直线是否垂直,如果是,能试着说明一下原因吗?三、想一想设计意图:让学生自主探究,从而经历垂线的性质得出过程,体会到经过一点,有且只有一条直线与已知直线垂直,通过动手测量,从而让学生了解到“垂线段最短”,这样学生得到的知识印象更深,更符合学生对新知识学习的接受过程.1.过点A作l的垂线,你能作出多少条?教师不仅要引导学生运用三角尺,过直线外一点和直线上一点作已知直线的垂线,还要鼓励学生运用自己的语言描述所得的结论,培养学生有条理的表达能力.2.点到直线的距离让学生量取直线外一点到直线的若干个线段的长,比较这一点到直线的垂线段的长度的大小,从而引出点到直线的距离的概念,其性质“垂线段最短”.四、做一做设计意图:让学生做出三角形的高,从而进一步巩固点到直线的距离是这一点到直线的垂线段的长度.让学生分别画出三个三角形AB边上的高(三个三角形分别是锐角三角形,直角三角形,钝角三角形),教师在学生的画图过程中注意发现问题,进行针对性的指导.五、巩固练习设计意图:通过练习,让学生进一步理解垂直的定义,怎样过一点画已知直线的垂线,加深对本节知识的理解和应用,从而学以致用,从学到的知识解决问题.1.作一条直线l,在直线l上取一点A,在直线l外取一点B,分别经过点A、B,用三角尺或量角器作l的垂线.2.如图所示,在某村庄中有一条街道,在街道的一侧有一公共汽车站,为了方便村民坐车,村委会决定修一条马路直达车站,你能设计一种方案,使得公共汽车站到街道的路程最近吗?六、课堂小结小结:以下几个方面由学生自己总结:①垂线的定义及垂直的符号表示;②垂线的有关性质;③过一点作已知直线的垂线的方法.七、课后作业1.如图,O是直线AB上一点,∠AOD=53°,∠BOE=37°,则OD与OE的位置关系是什么?【答案】∠DOE=180°-∠AOD-∠BOE=90°,所以OD⊥OE.2.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm【答案】D5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征. 师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角. 学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第1课时教学目标【知识与能力】感受平行线的概念,理解平行公理,能作出已知直线的平行线.【过程与方法】通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.【情感态度价值观】丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.教学重难点【教学重点】平行线的概念和平行公理.【教学难点】用几何语言描述作图过程.课前准备无教学过程一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是( )A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段a∥e,线段b∥d,线段c∥f.2.已知:D是∠AOB内部一点,如图,过D作DE∥AO,作DF∥BO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且AB∥CD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.5.2 平行线第3课时教学目标【知识与能力】掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.【过程与方法】经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.【情感态度价值观】通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.教学重难点【教学重点】平行线的特征.【教学难点】平行线的特征与识别法的综合运用.课前准备无教学过程一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为∠1=∠2(已知),所以a∥b .(2)因为∠3=∠2(已知),所以a∥b .(3)因为∠2+∠4=180°(已知),所以a∥b .学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数. 学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,a∥b.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为AD∥BC(已知),所以∠B=∠1( );(2)因为AB∥CD(已知),所以∠D=∠1( );(3)因为AD∥BC(已知),所以∠C+∠D=180°( ).2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若AB∥CD,则正确的结论是( )A.∠1=∠2+∠3B.∠1=∠2=∠3C.∠1+∠2+∠3=180°D.∠1=∠2+∠3=180°【答案】A2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等), 又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠3(等量代换).。
华东师大初中数学七年级上册《4.8.1 平行线教案

4、8、1平行线 1 课时序号55 授课日期授课班级学生人数出席缺课学生课题4、8、1平行线课型新授课课标要求知道过直线外一点有且只有一条直线平行与已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
教学目标知识与技能认识平行线,初步了解平行线的性质,培养和发展学生的空间观念。
过程与方法会用三角板和直尺画平行线,培养学生集合操作的初步技能,并能对平行线的公理进行理解记忆。
情感态度与价值观渗透分类的思想忽然透过现象看本质。
内容分析教学重点对平行线的认识教学难点对平行线公理的理解及应用。
内容分析与整合本节课学习平行线与相交线构成了同一平面内两条直线的位置关系。
本节课是本章的重点。
学情分析教学方法讨论法、演示法教具(多媒体)课件教学环节与教学内容师生活动时间备注一、导入1、出示一组照片,让学生仔细观察这些物体上的线,它们有什么特点,仔细想一想。
2、从这些照片中抽出直线3、引入:这节课,我们来探究这里究竟有什么数学奥秘?二、新授1、对这些位置关系不同的线进行分类,说出理由。
2、持不同分类方法的同学进行辩论。
3、教师课件展示,说明看似不相交的一些情况,当延长线的两端时,就有可能相交,但是有些情况是无论怎么延长,两条直线都是不会相交的。
(板书:平行线)4、学生尝试概括:什么是平行线?5、归纳认识:初步揭示平行和相交的概念6、学生说说在生活中什么地方有平行线。
7、我们知道了平行线的一个特点,就是两条直线永不相交,那么是不是所有永不相交的两条直线都是平行线呢?出示长方体:8、出示平行线的完整概念:在同一个平面内不相交的两条直线叫做平行线。
练习:下面各图中哪些是平行线,哪些不是?三、巩固新知1、现在运用你的研究方法,看看这样平行的两条直线有什么特点。
2、学生用三角板,迅速在平行线间画垂直于两条平行线的垂线,看看在10秒中可以画多少条,而且要保证质量。
3、尺子测量一下,夹在平行线中的这些垂线段有什么特点?(相等)4、举例子说说,生活中的平行线间的距离是相等的吗?5、小结:两条平行线间的距离处处相等,这是平行线的一个重要性质,这一特性在生活中有广泛的应用。
华东师大版七年级数学上册教案:5.2.1平行线

课题平行线【学习目标】1.让学生理解在同一平面内的两条直线的地点关系只有订交和平行;2.让学生理解平行公义||,并会用直尺过直线外一点作已知直线的平行线;3.培育学生踊跃着手的能力||,并使其获得成功的愉悦感||,感觉数学与生活的亲密联系.【学习要点】平行线的定义、公义和推论.【学习难点】平行公义及推论的应用.行为提示:创建问题||,情境导入||,联合生活中的实质例子||,充足调换学生的踊跃性||,激发学生求知欲念.行为提示:让学生阅读教材||,试试达成“自学互研”的全部内容 ||,并合时给学生供给帮助||,率先做完的小组内互查||,大多数学生达成后||,进行小组沟通.学法指导: 1.同一平面内 ||,两条不重合的直线的地点关系有两种:订交或平行;2.找寻立体图形中的平行线||,要分不一样的平面||,不要遗漏;3 .在同一平面内||,关于平行和订交是指直线||,而线段的平行与订交要看它所在的直线能否订交或平行.情况导入生成问题问题: 1.简述一下 ||,同位角、内错角、同旁内角的特点.解:同位角在两条被截直线的同一方||,在截线的同一侧||,形如字母“F ”;内错角在两条被截直线的内部 ||,在截线的双侧内部交织||,形如字母“Z”;同旁内角在两条被截直线的内部||,在截线的同侧 ||,形如字母“U”或“n”.2.利用身旁的学惯用品||,同桌合作 ||,制作如下图的图形||,思虑回答:直线 a 绕着点 M 转动的过程中||,两条直线a、b 有如何的地点关系?答:订交或平行.自学互研生成能力知识模块一平行线的观点与表示阅读教材P169“做一做”从前的部分 ||,达成下边的内容.概括: (1)在同一平面内||,不订交的两条直线叫做平行线;(2)在同一平面内 ||,两条不重合的直线的地点关系只有两种:订交或平行.问题:假如没有“在同一平面内”||,不订交的两条直线平行吗?答:在立体图形中 ||,不必定平行.典范: 1.在同一平面内||,两条不重合的直线的交点个数有__0 或 1__个;2.在同一平面内有三条直线||,假如让此中两条且仅有两条平行||,那么它们 ( C )A .没有交点B .只有一个交点C.有两个交点 D .有三个交点仿例:直接写出图中的平行线.解: AB∥ EF∥ GH ∥CD||, AD∥ EH∥ FG ∥ BC||,AE∥ BF∥ CG∥ DH .变例:下边说法正确的选项是( C )A .在同一平面内||,两条不平行的线段订交B .在同一平面内||,不订交的两条线段是平行的C.两条射线或线段平行||,是指它们所在的直线平行D.一条直线有可能同时与两条订交直线平行知识模块二平行线的画法阅读教材 P169“做一做”~P170“试一试”从前的部分 ||,达成下边的内容.概括:用三角尺画平行线的方法:一放二移三过四画.即一放:一个三角尺与已知直线重合||,另一个三角板与这个三角板的一条边重合;二移:挪动与已知直线重合的三角板;三过:这个三角板过已知点;四画:画出这条直线.知识链接:1.垂线的性质:过一点作已知直线的垂线||,有且只有一条;2.垂线段最短;3.两条直线平行时没有交点||,不平行时只有一个交点.学法指导:能够绘图清除.行为提示:教师联合各组反应的疑难问题分派任务||,各组展现过程中||,教师指引其余组进行增补、纠错、释疑||,而后进行总结评分.展现目标:知识模块一展现要点在于让学生理解平行线的观点与表示方法||,特别注意“在同一平面内”这一条件;知识模块二展现要点在于让学生学会使用三角直尺画平行线的方法;知识模块三展现要点在于让学生掌握平行线的性质||,并会运用性质证明两条直线平行.典范:依据以下语句||,画出图形 ||,如图.(1)过△ ABC 的极点 A||,画 MN ∥BC ;(2)过△ ABC 的边 AC 的中点 D||,画平行于 AB 的直线 ||,交 BC 于点 E.解:如图.知识模块三平行线的性质阅读教材P170||,达成下边的内容.问题: 1.议论:在“情境导入”问题 2 中 ||, a 在转动的过程中 ||,能有几个地点使得 a 与 b 平行||,类比前方我们学过的“垂线的性质” ||,你能得出什么结论?答: 1 个 ||,结论:过直线外一点有且只有一条直线与已知直线平行.2.如图 ||,分别过点C、 D 画直线 AB 的平行线 ||,你画的两条直线平行吗?解:平行.概括:平行线的性质:(1)过直线外一点有且只有一条直线与已知直线平行;(2)假如两条直线都和第三条直线平行||,那么这两条直线也相互平行.几何符号语言:∵b∥ a||,c∥ a||,∴ b∥ c.典范:以下说法错误的选项是( B )A .若直线a∥ b||, c 与 a 订交 ||,则 b 与 c 也订交B .若直线 a 与 b 订交 ||, c 与 a 订交 ||,则 b∥ cC.若直线a∥b||, b∥ c||,则 a∥cD .若直线AB 与 CD 平行 ||,则 AB 上全部的点都在CD 的同侧仿例:在同一平面内的两条直线a、 b||,分别依据以下情况||,写出 a、 b 的地点关系:(1)假如它们没有公共点 ||,那么 __a∥ b__;(2)假如它们都平行于第三条直线 ||,那么 __a∥ b__;(3) 假如它们有且只有一个公共点||,那么 __a、b 订交 __;(4)过平面内的同一点分别画它们的平行线 ||,能画出两条 ||,则 __a、 b 订交 __||,若只好画出一条 ||,则 __a∥ b__;沟通展现生成新知1.各小组共同商讨“自学互研”部分||,将疑难问题板演到黑板上||,小组间就上述疑难问题相互释疑;2.组长率领组员参照展现方案||,分派好展现任务||,同时进行组内小展现||,将形成的展现方案在黑板长进行展现.知识模块一平行线的观点与表示知识模块二平行线的画法知识模块三平行线的性质检测反应达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反省查漏补缺1.收获: ________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
新华师大版七年级上册初中数学 5-2-2 平行线的判定 教案

第五章相交线与平行线5.2 平行线5.2.1 平行线的判定1.使学生通过学习能掌握运用同位角相等、内错角相等、同旁内角互补来说明两条直线平行;2.使学生通过对三种判定方法的学习,能灵活地利用平行线的三个识别方法解决问题.对三种判定方法的灵活运用.如何在不同情况下选择不同的方法.一、情境导入,激发兴趣1.经过直线外一点,有且只有条直线与这条直线平行.2.如图,直线a、b都与直线c相交,根据各个角的位置关系填空:(1)∠1与∠2是角;(2)∠3与∠2是角;(3)∠2与∠4是角.【教学说明】这些知识点都是本节课需要用到的,通过复习,帮助学生进行回忆,为本节课知识的探究打下基础.1.平行线的判定方法1(1)按要求作图:用直尺和三角板过点P做已知直线AB的平行线.画法:(2)画图过程中,什么角始终保持相等?(3)直线l1和l2位置关系如何?(4)根据以上探究,请你总结判定两条直线平行的方法?(5)小结归纳:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2,∴a∥b.【教学说明】学生边画图,边观察思考,总结发现的规律,主要从两个角的位置和大小关系上来进行探究,位置和大小的关系得出结果.教师要示范用符号语言表示这一判定方法,让学生了解几何说理的过程.2.平行线的判定方法2、3(1)如图,如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=180°,能得出a∥b吗?【答案】(1)∵∠2=∠3∠1=∠3(已知)∴∠1=∠2.∴a∥b.(同位角相等,两直线平行)你能用文字语言概括上面的结论吗?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言:∵∠2=∠3, ∴a∥b.(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)∴∠2=∠1 (同角的补角相等)∴a∥b. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?结论:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言:∵∠4+∠2=180°, ∴ a∥b.【教学说明】教师引导学生进行简单的推理,得出结论,然后再仿照方法一进行归纳,得出其它两个判定方法,同时渗透转化的数学思想.例1如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,直线a、b 平行吗?为什么?【教学说明】学生可能会将它转化为同位角相等来进行说明,教师要引导学生发现直接利用内错角相等来说明更简单.例2如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?【教学说明】让学生观察两个角的位置关系,再结合判定方法来进行说明.注意过程的规范性.例3在同一平面内,直线CD、EF均与直线AB垂直,D、F为垂足.试判断CD与EF是否平行.小结归纳:在同一平面内,垂直于同一条直线的两条直线平行.【教学说明】这个问题三种判定方法都可以使用,可以引导学生用不同的方法来进行证明.然后对得到的结论进行总结,形成新的判定方法.【教学说明】教师引导学生对本节课知识进行总结,加深印象.重点是如何将文字语言转化为几何语言,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.课本习题1.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行线》教案
教学目标
1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.
重点、难点
重点:探索和掌握平行公理及其推论.
难点:对平行线本质属性的理解,用几何语言描述图形的性质.
课前准备
分别将木条a、b与木条c钉在一起,做成图所示的教具.
c
b
教学过程
一.创设问题情境.
1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?
学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
2.教师演示教具.
顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c 木相交的位置?
3.教师组织学生交流并形成共识.
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A 点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都
a
C 没有交点.
c
b
a
二.平行线定义,表示法.
1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线.
直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.
2.同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.
三.画图、观察、归纳概括平行公理及平行公理推论.
1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?
本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行. 2.用直线和三角尺画平行线.
已知:直线a ,点B ,点C .
(1)过点B 画直线a 的平行线,能画几条?
(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?
3.通过观察画图、归纳平行公理及推论.
(1)由学生对照垂线的第一性质说出画图所得的结论.
(2)在学生充分交流后,教师板书.
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
(3)比较平行公理和垂线的第一条性质.
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
4.归纳平行公理推论.
(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)学生用三角尺与直尺用平推方验证b∥c.
(4)师生用数学语言表达这个结论,教师板书.
结果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c.
c
b
a
(5)简单应用.
练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.
四.作业.
1.课本练习.
2.选用课时作业设计.
课时作业设计
一.填空题.
1.在同一平面内,两条直线的位置关系有_________.
2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
二.判断题.
1.不相交的两条直线叫做平行线.( )
2.如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.( )
3.过一点有且只有一条直线平行于已知直线.( )
三.解答题.
1.读下列语句,并画出图形后判断.
(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.
(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.
2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.。