2017-2018学年西藏林芝一中汉语班高二上学期期末数学试题(解析版)
西藏林芝市2017_2018学年高二数学上学期期末考试试题文2017122901100

西藏林芝市 2017-2018学年高二数学上学期期末考试试题 文一、选择题(本大题共 12小题,每小题 5分,共 60分)x22y1.椭圆1,以下选项正确的是()25 16A.a 5,b 4,c 3B. a 4,b5,c 3 C. a 3,b 5,c 4 D. a5,b 3,c 42.抛物线 y 2 12x 的焦点坐标是( ) A. (3, 0) B. (3, 0) C. (0,3) D. (0, 3)y x 3 2x (1,1)3.曲线在处的切线方程为( )A . x y 20 B . x y 20 C . x y 20 D . x y 20 4.已知命题 p :3 3 5,命题 q :6 3,则下列说法正确的是( )A. p q 为真, p q 为假B. p q 为假, p 为假C. p q 为真, q 为假D. p q 为假, p 为真 5. x 2 15y 215 化为标准方程,正确的是 ()x yy222A.B.C.D.y21 x21x 21y 21x 21x 21151515x 215 y 2 16. 已知集合 A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件x22y7.已知双曲线1,以下说法错误的是()102A .焦点在 x 轴上B .b2 C . c 23 D. 焦点在 y 轴上18.设函数 f x,则=( )( )f (2) x11 A . 4B.C .D .4449.已知抛物线的顶点在原点,准线方程是 y 4 ,则该抛物线的标准方程为( )A.x 216y B.y 216xC.y 2 16xD.x 216y10.函数y3sin x4cos x的导数是()A.3cos x4s in xB.3cos x4s in xC.3cos x4s in xD.3cos x4s in x11.已知椭圆x y22(m0)的左焦点为F4,0,则m ()21125mA.9B.4C.3D.212.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值- 1 -D.若函数的最值在区间内部取得,则一定是极值.二、填空题(本大题共4小题,每小题5分,共20分)13.若p:“平行四边形一定是菱形”,则“非p”为命题.(填真或假)x22y14.如果椭圆1上一点P到焦点F的距离等于10,那么点P到另一个焦点F的距12 14436离是.15. 写出焦点在y轴上,a6,b35的双曲线的标准方程.16. 如果p:x2,q:x24,那么p是q的.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)三、解答题(本大题共6小题,共70分,解答应写出文字说明,演算步骤或证明过程)。
2017-2018学年西藏林芝高二上期末数学试卷(理科)(有答案)-(新课标人教版)AlPnlH

2017-2018学年西藏林芝高二(上)期末数学试卷(理科)一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.无关命题2.(5分)“若x2=1,则x=1”的否命题为()A.若x2≠1,则x=1 B.若x2=1,则x≠1 C.若x2≠1,则x≠1 D.若x≠1,则x2≠1 3.(5分)设x∈R,则“x=1”是“x3=x”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)对于命题p和q,下列结论中正确的是()A.p真,则p∧q一定真B.p假,则p∧q不一定假C.p∧q真,则p一定真D.p∧q假,则p一定假5.(5分)命题“平行四边形的对角线相等且互相平分”是()A.简单命题B.“p或q”形式的复合命题C.“p且q”形式的复合命题 D.“非p”形式的复合命题6.(5分)下列语句是特称命题的是()A.整数n是2和5的倍数B.存在整数n,使n能被11整除C.若3x﹣7=0,则x= D.∀x∈M,p(x)7.(5分)下列命题中,是真命题的是()A.每个偶函数的图象都与y轴相交B.∀x∈R,x2>0C.∃x0∈R,x02≤0D.存在一条直线与两个相交平面都垂直8.(5分)a=6,c=1的椭圆的标准方程是()A.+B.+=1C.+=1 D.以上都不对9.(5分)设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4 B.5 C.8 D.1010.(5分)下列曲线中离心率为的是()A.B.C.D.11.(5分)抛物线y=﹣的焦点坐标是()A.(0,)B.(,0)C.(0,﹣2)D.(﹣2,0)12.(5分)若=(2x,1,3),=(1,﹣2y,9),如果与为共线向量,则()A.x=1,y=1 B.x=,y=﹣C.x=,y=﹣D.x=﹣,y=二、填空题(每小题5分,共4小题,总计:20分)13.(5分)“a=2”是“直线ax+2y=0与直线x+y=1平行”的条件.14.(5分)命题p:6是12的约数,命题q:6是24的约数,则“p∨q”形式的命题是.15.(5分)命题p:“∃x∈R,x2+1<0”的否定是.16.(5分)已知椭圆+=1的焦点在x轴上,则实数m的取值范围是.三、解答题(共6小题,总计:70分,17-21题每题12分,22题10分)17.(12分)把命题“平行于同一条直线的两条直线平行”改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题,判断它们的真假.18.(12分)已知椭圆的两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.试求该椭圆的方程.19.(12分)已知椭圆+=1,求椭圆的长轴和短轴的长及顶点坐标、焦点坐标和离心率.20.(12分)已知双曲线﹣=1(a>0,b>0)的离心率e=,过点A(0,﹣b)和点B(a,0)的直线与原点的距离为,求此双曲线的方程.21.(12分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.22.(10分)已知向量=(4,﹣2,﹣4),=(6,﹣3,2).求:(1)•;(2)||;(3)||;(4)(2+3)•(﹣2).2017-2018学年西藏林芝高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.无关命题【解答】解:命题“矩形的两条对角线相等”的条件是矩形,结论是两条对角线相等,命题“两条对角线相等的四边形是矩形”是命题“矩形的两条对角线相等”的条件与结论的交换,故选:A.2.(5分)“若x2=1,则x=1”的否命题为()A.若x2≠1,则x=1 B.若x2=1,则x≠1 C.若x2≠1,则x≠1 D.若x≠1,则x2≠1【解答】解:同时否定条件和结论即得命题的否命题,即若x2≠1,则x≠1,故选:C3.(5分)设x∈R,则“x=1”是“x3=x”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:因为x3=x,解得x=0,1,﹣1,显然条件的集合小,结论表示的集合大,由集合的包含关系,我们不难得到“x=1”是“x3=x”的充分不必要条件故选A4.(5分)对于命题p和q,下列结论中正确的是()A.p真,则p∧q一定真B.p假,则p∧q不一定假C.p∧q真,则p一定真D.p∧q假,则p一定假【解答】解:p∧q真,则p,q都为真命题,则p一定真,故C正确,故选:C5.(5分)命题“平行四边形的对角线相等且互相平分”是()A.简单命题B.“p或q”形式的复合命题C.“p且q”形式的复合命题 D.“非p”形式的复合命题【解答】解:命题“平行四边形的对角线相等且互相平分”等价为命题“平行四边形的对角线相等”且“平行四边形的对角线互相平分”,即“p且q”形式的复合命题,故选:C6.(5分)下列语句是特称命题的是()A.整数n是2和5的倍数B.存在整数n,使n能被11整除C.若3x﹣7=0,则x= D.∀x∈M,p(x)【解答】解:对于A,不能判断真假,不是命题.对于C,是若p则q式命题.对于D,是全称命题.对于B,命题:存在整数n,使n能被11整除,含有特称量词”存在”,故B是特称命题,故选:B.7.(5分)下列命题中,是真命题的是()A.每个偶函数的图象都与y轴相交B.∀x∈R,x2>0C.∃x0∈R,x02≤0D.存在一条直线与两个相交平面都垂直【解答】解:对于A,利用y=是偶函数,与y轴没有交点,所以A不正确;对于B,如果x=0,则x2=0,所以B不正确;对于C,∃x0∈R,x02≤0,利用x=0时,不等式成立,所以C正确;对于D,一条直线与两个平面都垂直,所以两个平面平行,所以D不正确;故选:C.8.(5分)a=6,c=1的椭圆的标准方程是()A.+B.+=1C.+=1 D.以上都不对【解答】解:由a=6,c=1,得b2=a2﹣c2=36﹣1=35,∴所求椭圆的标准方程为:或.故选:D.9.(5分)设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4 B.5 C.8 D.10【解答】解:由椭圆的第一定义知|PF1|+|PF2|=2a=10,故选D.10.(5分)下列曲线中离心率为的是()A.B.C.D.【解答】解:选项A中a=,b=2,c==,e=排除.选项B中a=2,c=,则e=符合题意选项C中a=2,c=,则e=不符合题意选项D中a=2,c=则e=,不符合题意故选B11.(5分)抛物线y=﹣的焦点坐标是()A.(0,)B.(,0)C.(0,﹣2)D.(﹣2,0)【解答】解:抛物线方程化为标准方程为:x2=﹣8y∴2p=8,∴=2∵抛物线开口向下∴抛物线y=﹣x2的焦点坐标为(0,﹣2)故选:C.12.(5分)若=(2x,1,3),=(1,﹣2y,9),如果与为共线向量,则()A.x=1,y=1 B.x=,y=﹣C.x=,y=﹣D.x=﹣,y=【解答】解:∵=(2x,1,3)与=(1,﹣2y,9)共线,故有==.∴x=,y=﹣.故选C.二、填空题(每小题5分,共4小题,总计:20分)13.(5分)“a=2”是“直线ax+2y=0与直线x+y=1平行”的充要条件.【解答】解:若“a=2”成立,则两直线x+y=0与直线x+y=1平行;反之,当“直线ax+2y=0与直线x+y=1平行”成立时,可得a=2;所以“a=2”是“直线ax+2y=0与直线x+y=1平行”的充要条件,故答案为:充要.14.(5分)命题p:6是12的约数,命题q:6是24的约数,则“p∨q”形式的命题是6是12或24的约数.【解答】解:根据p∨q的定义得p∨q形式的命题是:6是12或24的约数,故答案为:6是12或24的约数.15.(5分)命题p:“∃x∈R,x2+1<0”的否定是∀x∈R,x2+1≥0.【解答】解:命题为特称命题,则命题的否定为:∀x∈R,x2+1≥0,故答案为:∀x∈R,x2+1≥016.(5分)已知椭圆+=1的焦点在x轴上,则实数m的取值范围是(﹣3,0)∪(0,3).【解答】解:已知椭圆+=1的焦点在x轴上,可得:9>m2≠0,解得:m∈(﹣3,0)∪(0,3).则实数m的取值范围是(﹣3,0)∪(0,3).故答案为:(﹣3,0)∪(0,3).三、解答题(共6小题,总计:70分,17-21题每题12分,22题10分)17.(12分)把命题“平行于同一条直线的两条直线平行”改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题,判断它们的真假.【解答】解:原命题:若两条直线平行于同一条直线,则这两条直线平行.真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线.真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行.真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线.真命题.18.(12分)已知椭圆的两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.试求该椭圆的方程.【解答】解:由题意知2c=8,2a=12,∴a=6,c=4.∴b2=a2﹣c2=36﹣16=20.∵椭圆的焦点在坐标轴上,两焦点的中点为坐标原点,∴椭圆的方程是标准的.当椭圆的焦点在x轴上时,椭圆的方程为+=1;当椭圆的焦点在y轴上时,椭圆的方程为+=1.19.(12分)已知椭圆+=1,求椭圆的长轴和短轴的长及顶点坐标、焦点坐标和离心率.【解答】解:椭圆+=1,可得椭圆的长轴长为10,短轴长为8,四个顶点的坐标分别为A1(﹣4,0),A2(4,0),B1(0,5),B2(0,﹣5).焦点坐标F1(0,3),F2(0,﹣3),c=3,离心率e=.20.(12分)已知双曲线﹣=1(a>0,b>0)的离心率e=,过点A(0,﹣b)和点B(a,0)的直线与原点的距离为,求此双曲线的方程.【解答】解:直线AB的方程为:+=1,即bx﹣ay﹣ab=0,根据原点到此直线的距离为,得=,即4a2b2=3(a2+b2).①又e=,即e2=1+=.②解①②组成的方程组,得a2=3,b2=1;所以双曲线方程为﹣y2=1.21.(12分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.【解答】解:(1)抛物线过点(﹣3,2),则其开口向左或开口向上,若其开口向左,设其方程为y2=﹣2px,将(﹣3,2)代入方程可得:22=﹣2p×(﹣3),解得,p=,此时其标准方程为:y2=﹣x,若其开口向上,设其方程为x2=2py,将(﹣3,2)代入方程可得:(﹣3)2=2p×2,解得,p=,此时其标准方程为:x2=y,综合可得,抛物线的方程为:或;(2)直线l:x﹣2y﹣4=0与坐标轴交点为(4,0)和(0,﹣2).则所求抛物线的焦点为(4,0)或(0,﹣2),若其焦点为(4,0),则其方程为y2=16x,若其焦点为(0,﹣2),则其方程为x2=﹣8y,∴抛物线的方程为:y2=16x或x2=﹣8y.22.(10分)已知向量=(4,﹣2,﹣4),=(6,﹣3,2).求:(1)•;(2)||;(3)||;(4)(2+3)•(﹣2).【解答】解:(1)向量=(4,﹣2,﹣4),=(6,﹣3,2).•=4×6+(﹣2)×(﹣3)+(﹣4)×2=22;(2)||==6;(3)||==7;(4)(2+3)•(﹣2)=22+3•﹣4•﹣62=2×62﹣22﹣6×72=﹣244.。
西藏林芝地区高二数学上学期期末考试试题

西藏林芝地区2017-2018学年高二数学上学期期末考试试题(考试时间:120分钟满分:150分)第I 卷 选择题(满分60分)一、选择题(共12小题,每题5分,满分60分)1.命题p:x=2;命题q:方程(1)(2)0x x --=,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列对上面二个命题判断真假正确的是( )。
A. 假、真B.真、假C.假、假D.真、真3.若抛物线的准线方程为7x =-,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x 4. 已知椭圆2212516x y +=上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5D .75.双曲线22221x y a b-=的两条渐近线互相垂直,那么该双曲线的离心率是( ) A .2 B. 3 C. 2 D.326. 已知实轴长是6,焦距是10的双曲线的标准方程是( ) A.221916x y -=和221169y x -= B. 221916x y -=和221916y x -= C. 221169x y -=和221916y x -= D. 2212516x y -=和2212516y x -= 7. 与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是()A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 8. 已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( )A.0oB.45oC.90oD.180o9. 已知向量a=(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )A . 1B . 51C . 53D . 57 10.空间直角坐标系中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位置关系是 ( )1(0),2x R x x x ∀∈≠+≥A .平行 B .垂直C .相交但不垂直D .无法确定11.三棱锥A BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( )A .2B .-2C .23-D .23 (第11题)12. 如右图,过抛物线y 2=2px(p>0)的焦点F 的直线,分别交抛物线的准线l 、y 轴、抛物线于A ,B ,C 三点,若AB →=3BC →,那么直线AF 的斜率是( )A.3-B.3-C.22- D.-1 (第12题) 第II 卷 非选择题(满分90分)二、填空题(共4空,每空5分,满分20分)13. 已知命题P :则P ⌝ =14. 若向量a =(2,-2,5),b =(-1,-1,1),则|a -2b|=________15. 过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB|=________.16. 如图,四棱锥P ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD所成的角θ的正弦值为________.(提示:坐标G三、简答题(满分70分)将必要步骤写到答题卡上 17.(10分)已知向量a=(1,2,3),b =(1,0,1),c=a -2bd=m a-b ,求实数m 的值使得(1)c ⊥d , (2)c ∥d2213y x -=22033⎛⎫ ⎪⎝⎭,,18.(12分)给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.19.(12分) 已知椭圆m x y y x +==+及直线1422。
西藏林芝地区高二上学期数学期末考试试卷

西藏林芝地区高二上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 8 题;共 16 分)1. (2 分) 已知全集 U=R,集合 A={x|x<-2 或 x>3},B={x|x2-3x-4 0},则集合()A.B.C.D.2. (2 分) (2018 高一下·四川月考) 在等差数列 ()中,已知A . 38B . 39C . 41D . 423. (2 分) 椭圆 9x2+y2=36 的短轴长为( )A.2B.4C.6D . 12,则4. (2 分) (2016 高三上·大庆期中) “φ= ”是“函数 y=sin(x+2φ)是偶函数”的( )A . 充要条件第 1 页 共 12 页B . 充分不必要条件 C . 必要不充分条件 D . 既不充分又不必要条件5. (2 分) (2020·普陀模拟) 若直线 : 最大值为( )经过第一象限内的点,则 的A. B.C.D. 6.(2 分)(2017 高一上·新丰月考) 已知 A.5 B . -5 C.6 D . -6满足,则的值为( )7. (2 分) 椭圆 A . x-2y=0 B . 2x+y-10=0 C . 2x-y-2=0 D . x+2y-8=0的一条弦被平分,那么这条弦所在的直线方程是 ( )8.(2 分)(2019 高一下·佛山月考) 设数列 前 项和为 ,已知,第 2 页 共 12 页则等于( )A.B.C.D.二、 多选题 (共 4 题;共 12 分)9. (3 分) (2019 高二上·烟台期中) 下列说法正确的是( ).A.若,,则的最大值为 4B.若 C.若,则函数 ,的最大值为-1 ,则 的最小值为 1D . 函数的最小值为 910. (3 分) (2020 高二上·徐州期末) 给出下列四个命题,其中正确的是( )A.B.C.使得D.,使得11. (3 分) (2020 高二上·徐州期末) 给出下列命题,其中不正确的命题为( )A.若 =,则必有 A 与 C 重合,B 与 D 重合,AB 与 CD 为同一线段;B.若,则是钝角;第 3 页 共 12 页C . 若 为直线 l 的方向向量,则 (λ∈R)也是 l 的方向向量;D . 非零向量满足 与 , 与 , 与 都是共面向量,则必共面.12. (3 分) (2020 高二上·徐州期末) 已知双曲线的左、右两个顶点分别是 A1,A2,左、右两个焦点分别是 F1,F2,P 是双曲线上异于 A1,A2 的任意一点,给出下列命题,其中是真命题的有( )A.B . 直线 C . 使得的斜率之积等于定值 为等腰三角形的点 有且仅有 8 个D.的面积为三、 填空题 (共 4 题;共 4 分)13. (1 分) (2019 高二下·上海月考) 以双曲线 ________.的焦点为顶点,顶点为焦点的椭圆方程为14. (1 分) (2017 高二下·沈阳期末) 研究问题:“已知关于 的不等式的解集为,解关于 的不等式”,有如下解法:由,令,所以不等式的解集为,类比上述解法,已知关于 的不等式解集为,则关于 的不等式的解集为________.,则 的15. (1 分) 数列……的一个通项公式为________16. (1 分) 设数列 满足,四、 解答题 (共 6 题;共 65 分),,则数列 的前 n 项和为________.17. (5 分) 已知 实数 m 的取值范围.,,若是 的必要而不充分条件,求第 4 页 共 12 页18. (10 分) (2016 高二上·南阳期中) 已知数列{an}的前 n 项和为 Sn , 且 an 是 Sn 与 2 的等差中项,数 列{bn}中,b1=1,点 P(bn , bn+1)在直线 x﹣y+2=0 上.(1) 求 a1 和 a2 的值; (2) 求数列{an},{bn}的通项 an 和 bn; (3) 设 cn=an•bn,求数列{cn}的前 n 项和 Tn. 19. (10 分) 已知:已知函数 f(x)=﹣ x3+ x2+2ax, (1) 若 a=1,求 f(x)的极值; (2) 当 0<a<2 时,f(x)在[1,4]上的最小值为﹣ ,求 f(x)在该区间上的最大值. 20. (15 分) 如图,已知 AB⊥平面 ACD,DE⊥平面 ACD,△ACD 为等边三角形,AD=DE=2AB=2,F 为 CD 的中点.(1) 求证:AF⊥平面 CDE; (2) 求证:AF∥平面 BCE; (3) 求四棱锥 C﹣ABED 的体积. 21. (10 分) (2018·浙江) 如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上存在不同的两 点 A , B 满足 PA , PB 的中点均在 C 上.第 5 页 共 12 页(Ⅰ)设 AB 中点为 M , 证明:PM 垂直于 y 轴;(Ⅱ)若 P 是半椭圆 x2+ =1(x<0)上的动点,求△PAB 面积的取值范围.22. (15 分) (2018 高一下·大同期末) 已知数列 ,的前 项和,且,又满足 对任意,, 为数列都成立(1) 求数列 的通项公式;(2) 设,证明 为等比数列;(3) 求数列的前 项和 .第 6 页 共 12 页一、 单选题 (共 8 题;共 16 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、二、 多选题 (共 4 题;共 12 分)9-1、 10-1、 11-1、 12-1、三、 填空题 (共 4 题;共 4 分)13-1、 14-1、参考答案第 7 页 共 12 页15-1、 16-1、四、 解答题 (共 6 题;共 65 分)17-1、 18-1、18-2、第 8 页 共 12 页18-3、 19-1、19-2、第 9 页 共 12 页20-1、 20-2、20-3、第 10 页 共 12 页21-1、22-1、22-2、22-3、。
20172018学年西藏林芝一中汉语班高二(上)期末数学试卷

2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4 B.(x+3)2+(y﹣1)2=4 C.(x+1)2+(y+1)2=4 D.(x﹣1)2+(y﹣1)2=44.(3分)已知函数,则f[f(2)]=()A.0 B.1 C.2 D.35.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:x123f (x) 6.1 2.9﹣3.5那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2) C.(2,3) D.(3,+∞)6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0 B.x﹣2y+1=0 C.x+2y+1=0 D.x+y﹣1=07.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1) D.(2,2)8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0 B.2x﹣y+1=0 C.2x+y+1=0 D.2x+y﹣1=09.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3 B.﹣1 C.1 D.310.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm212.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是.14.(5分)若一个球的体积为36π,则它的表面积为.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是.16.(5分)下列说法正确的是.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.三、简答题(满分44分)17.(6分)计算:﹣3.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}【解答】解:∵全集U={0,1,2,3,4},M={0,1,2},∴C U M={3,4}.∵N={2,3},∴(C U M)∩N={3}.故选B.2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台【解答】解:如图(1)三视图复原的几何体是放倒的三棱柱;(2)三视图复原的几何体是四棱锥;(3)三视图复原的几何体是圆锥;(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4 B.(x+3)2+(y﹣1)2=4 C.(x+1)2+(y+1)2=4 D.(x﹣1)2+(y﹣1)2=4【解答】解:圆心一定在AB的中垂线上,AB的中垂线方程是y=x,排除A,B 选项;圆心在直线x+y﹣2=0上验证D选项,不成立.故选D.4.(3分)已知函数,则f[f(2)]=()A.0 B.1 C.2 D.3【解答】解:∵x=2>1,∴f(x)=﹣x+3=﹣2+3=1,∵1≤1,∴f[f(x)]=x+1=1+1=2,即f[f(x)]=2,故选C.5.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:x123f (x) 6.1 2.9﹣3.5那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2) C.(2,3) D.(3,+∞)【解答】解:由于f(2)>0,f(3)<0,根据函数零点的存在定理可知故函数f (x)在区间(2,3)内一定有零点,其他区间不好判断.故选c.6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0 B.x﹣2y+1=0 C.x+2y+1=0 D.x+y﹣1=0【解答】解:∵直线2x+y+1=0的斜率为k1=﹣2∴与直线2x+y+1=0垂直的直线斜率k2==对照A、B、C、D各项,只有B项的斜率等于故选:B7.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1) D.(2,2)【解答】解:令2x+3=1,求得x=﹣1,y=3,故函数y=3+log a(2x+3)的图象必经过定点P的坐标(﹣1,3),故选:A.8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0 B.2x﹣y+1=0 C.2x+y+1=0 D.2x+y﹣1=0【解答】解:因为圆的方程为x2+y2﹣2x+6y+8=0,所以圆心坐标(1,﹣3),代入选项可知C正确.故选:C.9.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3 B.﹣1 C.1 D.3【解答】解:f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,∴f(1)=f(﹣1)=2•(﹣1)2﹣(﹣1)=2+1=3,故选:D10.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【解答】解:将圆的方程化为标准方程得:(x﹣1)2+(y﹣)2=,∴圆心(1,),半径r=,∵圆心到直线3x+4y﹣5=0的距离d==0<=r,则直线与圆相交且直线过圆心.故选D11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2【解答】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B12.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以f(0)=0,故①对;因为奇函数的图象关于原点对称,所以f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;故②对;因为奇函数的图象关于原点对称,所以f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为增函数;故③错;对于④,设x<0,则﹣x>0,因为x>0时,f(x)=x2﹣2x,所以f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,因为f(x)是定义在R上的奇函数,所以f(x)=﹣x2﹣2x,故④对;所以正确的命题有①②④,故选C.二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是[4.+∞).【解答】解:由已知可得,解不等式可得{x|x≥4}故答案为:[4,+∞)14.(5分)若一个球的体积为36π,则它的表面积为36π.【解答】解:因为球的体积为36π,所以球的半径:=3,球的表面积:4π×32=36π,故答案为:36π.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是y=x ﹣6.【解答】解:与y轴相交成60°角的直线倾斜角为30°或150°.可得斜率为tan30°或tan150°.即.可得方程为:y=x﹣6.故答案为:y=x﹣6.16.(5分)下列说法正确的是③④.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.【解答】解:对于①,x>0时,有3x>2x,x=0时,有3x=2x,x<0时,有3x<2x,故错,对于②,若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N,错;对于③,∵|x|≥0,且函数y=2t,在t≥0时递减,∴的最大值为1,正确;对于④,在同一坐标系中,y=2x与=2﹣x的图象关于y轴对称,正确.故答案为:③④三、简答题(满分44分)17.(6分)计算:﹣3.【解答】解:﹣3==4﹣4=0.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.【解答】解:由得:,即直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点为(,),过交点与直线2x+y﹣3=0平行的直线方程为2(x﹣)+(y﹣)=0,即26x+13y﹣47=0.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.【解答】解:①若B≠∅,∵B⊆A,∴,解得2≤m≤3;若B=∅,满足B⊆A,则:m+1>2m﹣1,解得m<2;∴实数m的取值范围是(﹣∞,3];②若B=∅时,满足A∩B=∅,则:m+1>2m﹣1,解得m<2;若B≠∅时,满足m≥2,且m+1>5或2m﹣1<﹣2,解得m>4或m<﹣,此时取m>4;综上,实数m的取值范围是(﹣∞,2)∪(4,+∞).20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.【解答】解:设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=25,可得:圆心是(4,﹣3)、半径r=5.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.【解答】解:圆O:x2+y2﹣10x﹣10y=0的圆心为(5,5),半径为5;圆C:x2+y2﹣6x+2y﹣40=0的圆心为(3,﹣1),半径为5,由圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0得方程可得直线AB的方程为:x+3y﹣10=0.圆心C(3,﹣1)到直线x+3y﹣10=0的距离为d=.∴AB=2=4.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.【解答】解:(1)∵函数.∴由x2﹣1≠0,得x≠±1,∴函数的定义域为{x∈R|x≠±1}…(4分)(2)函数在(1,+∞)上单调递减.…(6分)证明:任取x1,x2∈(1,+∞),设x1<x2,则△x=x2﹣x1>0,…(8分)∵x1>1,x2>1,∴.又x1<x2,∴x1﹣x2<0,∴△y<0.∴函数在(1,+∞)上单调递减.…(12分)。
西藏林芝地区2017-2018学年高二语文上学期期末考试试题(汉文班)

西藏林芝地区2017-2018学年高二语文上学期期末考试试题(汉文班)(满分:150分考试时间:150分钟)第Ⅰ卷阅读题(69分)一、现代文阅读(36分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。
儒家的创始人孔子,其政治伦理思想可以概括为“仁学”。
“仁”学的主体内容是“己所不欲,勿施于人”的“忠恕”思想和“君君、臣臣、父父、子子”的“正名”思想。
关于“仁”学的基础,《论语·学而》说:“君子务本,本立而道生。
孝悌也者,其为仁之本与!”可见,孔子视孝悌之亲情为其政治伦理思想的基础。
孝悌通过“能取近譬”,将爱父母、爱兄弟、爱妻子扩展为爱君主、爱国家及爱一切人。
的确,从人伦关系的角度来看,亲情无疑是人之生存的基本条件,由亲情、爱情、友情,推而广之到一切道德情感,从而构成“仁学”政治伦理思想的依据。
休谟的同情原理也认为,父子间的同情是最易发生的。
黑格尔一方面认为修身是成为抽象的人的基本条件,“正是这种反省与意识,使一个人真正地走向了主体阶段”,另一方面认为实现抽象的人的理念必须要在伦理阶段,而“在伦理的阶段,最自然、最直接的便是家庭”,同样看到了亲情在政治伦理实现过程中所起到的基础作用。
然而,不同于西方思想家以基督教为背景的平等地“爱一切人”,孔子的“推己及人”,其对象是有限制的。
仁爱等道德品质是区分小人和君子的标准,是“君子”(有德有位者)的专有物,小人(无德无位者)则往往与仁爱背道而驰。
正是在此基础上,孔子对于道德情感的适用对象给出了较为明晰的界定,仁爱不仅包括爱“好人”,即爱“君子”,而且也包括恶“恶人”,即恶“小人”。
孟子继承和发展了孔子的政治伦理思想,创立了“义”学。
孟子“义”学的主体是“不学而能”之“良能”、“不虑而知”之“良知”的性善思想和“先立乎其大”、“养吾浩然之气”之“求放心”的道德修养思想。
如果说孔子仁爱思想的根据——亲情,是一种事实根据的话,即通过客观描述父子之间的亲情来推衍人与人之间的道德感情,那么,孟子所言“仁,人之安宅也;义,人之正路也”的仁义思想的根据——性善,便是一种价值根据,即通过对人性进行善恶评价来引导道德主体自我实现其先天的性善。
西藏林芝地区第一中学2016-2017学年高二上学期第二次学段(期末)考试数学(理)试题 含答案
林芝市第一中学2016—2017学年第一学期第二学段考试高二年级理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项 中,只有一项是最符合题目要求的。
)1.复数3)12(i-(i是虚数单位)的虚部是( )A .2-B .i 2-C .2D .i 2 2.下列命题是真命题的为( ) A .若33b a =,则b a =B .若b a =,则b a =C .若b a >,则ba11< D .若12=a ,则1=a3..设i 是虚数单位,若复数满足)1()1(i i z -=+,则复数z 的模=z( )A .1-B .1 C .2 D .2 4.设双曲线)0(12222>>=-b a b y a x 的渐近线方程为33y x =,则该双曲线的离心率为( )A .223 B .2 C .332 D .25.命题“存在2,>∈o x o R x ”的否定是( ) A .不存在02,>∈ox oR x B .存在02,≥∈ox oR x C .对任意的02,≤∈xR x D .对任意的02,>∈xR x6.曲线191622=-y x 与曲线191622=--+ay a x ()90<<a 有( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等7.下面四个条件中,使ba >成立的充分而不必要的条件是( )A .1+>b aB .1->b aC .22b a >D .33b a>8。
抛物线yx =2上的点到直线834=-+y x 的距离的最小值是( )A .1522 B .1528 C .2215 D .28159.设1>a ,则双曲线1)1(2222=+-a y a x 的离心率e的取值范围( )A .)2,2(B .)5,2(C .)5,2(D .)5,2(10.椭圆C 的中心在原点,焦点在x 轴上,离心率等于12,且它的一个顶点恰好是抛物线2x=的焦点,则椭圆C 的标准方程为( )A.22142x y +=B 。
2017-2018年西藏林芝一中汉语班高二上学期期末数学试卷与解析
2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4B.(x+3)2+(y﹣1)2=4C.(x+1)2+(y+1)2=4D.(x﹣1)2+(y﹣1)2=44.(3分)已知函数,则f[f(2)]=()A.0B.1C.2D.35.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2)C.(2,3)D.(3,+∞)6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0B.x﹣2y+1=0C.x+2y+1=0D.x+y﹣1=0 7.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1)D.(2,2)8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0B.2x﹣y+1=0C.2x+y+1=0D.2x+y﹣1=0 9.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3B.﹣1C.1D.310.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2 12.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个B.2个C.3个D.4个二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是.14.(5分)若一个球的体积为36π,则它的表面积为.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是.16.(5分)下列说法正确的是.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.三、简答题(满分44分)17.(6分)计算:﹣3.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}【解答】解:∵全集U={0,1,2,3,4},M={0,1,2},∴C U M={3,4}.∵N={2,3},∴(C U M)∩N={3}.故选:B.2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台【解答】解:如图(1)三视图复原的几何体是放倒的三棱柱;(2)三视图复原的几何体是四棱锥;(3)三视图复原的几何体是圆锥;(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选:C.3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4B.(x+3)2+(y﹣1)2=4C.(x+1)2+(y+1)2=4D.(x﹣1)2+(y﹣1)2=4【解答】解:圆心一定在AB的中垂线上,AB的中垂线方程是y=x,排除A,B 选项;圆心在直线x+y﹣2=0上验证D选项,不成立.故选:D.4.(3分)已知函数,则f[f(2)]=()A.0B.1C.2D.3【解答】解:∵x=2>1,∴f(x)=﹣x+3=﹣2+3=1,∵1≤1,∴f[f(x)]=x+1=1+1=2,即f[f(x)]=2,故选:C.5.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2)C.(2,3)D.(3,+∞)【解答】解:由于f(2)>0,f(3)<0,根据函数零点的存在定理可知故函数f (x)在区间(2,3)内一定有零点,其他区间不好判断.故选:C.6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0B.x﹣2y+1=0C.x+2y+1=0D.x+y﹣1=0【解答】解:∵直线2x+y+1=0的斜率为k1=﹣2∴与直线2x+y+1=0垂直的直线斜率k2==对照A、B、C、D各项,只有B项的斜率等于故选:B.7.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1)D.(2,2)【解答】解:令2x+3=1,求得x=﹣1,y=3,故函数y=3+log a(2x+3)的图象必经过定点P的坐标(﹣1,3),故选:A.8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0B.2x﹣y+1=0C.2x+y+1=0D.2x+y﹣1=0【解答】解:因为圆的方程为x2+y2﹣2x+6y+8=0,所以圆心坐标(1,﹣3),代入选项可知C正确.故选:C.9.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3B.﹣1C.1D.3【解答】解:f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,∴f(1)=f(﹣1)=2•(﹣1)2﹣(﹣1)=2+1=3,故选:D.10.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【解答】解:将圆的方程化为标准方程得:(x﹣1)2+(y﹣)2=,∴圆心(1,),半径r=,∵圆心到直线3x+4y﹣5=0的距离d==0<=r,则直线与圆相交且直线过圆心.故选:D.11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2【解答】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选:B.12.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个B.2个C.3个D.4个【解答】解:因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以f(0)=0,故①对;因为奇函数的图象关于原点对称,所以f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;故②对;因为奇函数的图象关于原点对称,所以f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为增函数;故③错;对于④,设x<0,则﹣x>0,因为x>0时,f(x)=x2﹣2x,所以f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,因为f(x)是定义在R上的奇函数,所以f(x)=﹣x2﹣2x,故④对;所以正确的命题有①②④,故选:C.二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是[4.+∞).【解答】解:由已知可得,解不等式可得{x|x≥4}故答案为:[4,+∞)14.(5分)若一个球的体积为36π,则它的表面积为36π.【解答】解:因为球的体积为36π,所以球的半径:=3,球的表面积:4π×32=36π,故答案为:36π.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是y=x ﹣6.【解答】解:与y轴相交成60°角的直线倾斜角为30°或150°.可得斜率为tan30°或tan150°.即.可得方程为:y=x﹣6.故答案为:y=x﹣6.16.(5分)下列说法正确的是③④.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.【解答】解:对于①,x>0时,有3x>2x,x=0时,有3x=2x,x<0时,有3x<2x,故错,对于②,若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N,错;对于③,∵|x|≥0,且函数y=2t,在t≥0时递减,∴的最大值为1,正确;对于④,在同一坐标系中,y=2x与=2﹣x的图象关于y轴对称,正确.故答案为:③④三、简答题(满分44分)17.(6分)计算:﹣3.【解答】解:﹣3==4﹣4=0.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.【解答】解:由得:,即直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点为(,),过交点与直线2x+y﹣3=0平行的直线方程为2(x﹣)+(y﹣)=0,即26x+13y﹣47=0.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.【解答】解:①若B≠∅,∵B⊆A,∴,解得2≤m≤3;若B=∅,满足B⊆A,则:m+1>2m﹣1,解得m<2;∴实数m的取值范围是(﹣∞,3];②若B=∅时,满足A∩B=∅,则:m+1>2m﹣1,解得m<2;若B≠∅时,满足m≥2,且m+1>5或2m﹣1<﹣2,解得m>4或m<﹣,此时取m>4;综上,实数m的取值范围是(﹣∞,2)∪(4,+∞).20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.【解答】解:设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=25,可得:圆心是(4,﹣3)、半径r=5.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.【解答】解:圆O:x2+y2﹣10x﹣10y=0的圆心为(5,5),半径为5;圆C:x2+y2﹣6x+2y﹣40=0的圆心为(3,﹣1),半径为5,由圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0得方程可得直线AB的方程为:x+3y﹣10=0.圆心C(3,﹣1)到直线x+3y﹣10=0的距离为d=.∴AB=2=4.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.【解答】解:(1)∵函数.∴由x2﹣1≠0,得x≠±1,∴函数的定义域为{x∈R|x≠±1}…(4分)(2)函数在(1,+∞)上单调递减.…(6分)证明:任取x1,x2∈(1,+∞),设x1<x2,则△x=x 2﹣x 1>0,…(8分)∵x 1>1,x 2>1, ∴.又x 1<x 2,∴x 1﹣x 2<0,∴△y <0. ∴函数在(1,+∞)上单调递减.…(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 yxo()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
西藏林芝地区第一中学2015_2016学年高二数学上学期期末试卷理(含解析)
2015-2016学年西藏林芝一中高二(上)期末数学试卷(理科)一、选择题(共12小题,每题3分满分36分在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.顶点在原点,且过点(﹣4,4)的抛物线的标准方程是( ) A .y 2=﹣4x B .x 2=4yC .y 2=﹣4x 或x 2=4y D .y 2=4x 或x 2=﹣4y2.以下四组向量中,互相平行的有( )组.(1)=(1,2,1),=(1,﹣2,3);(2)=(8,4,﹣6),=(4,2,﹣3);(3)=(0,1,﹣1),=(0,﹣3,3);(4)=(﹣3,2,0),=(4,﹣3,3).A .一B .二C .三D .四3.若平面α的法向量为=(3,2,1),平面β的法向量为=(2,0,﹣1),则平面α与β夹角的余弦是( )A .B .C .D .﹣4.“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件. A .必要非充分 B .充分非必要 C .充要 D .既非充分又非必要6.在正方体ABCD﹣A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为()A.B. C.D.7.已知两定点F1(5,0),F2(﹣5,0),曲线上的点P到F1、F2的距离之差的绝对值是6,则该曲线的方程为()A.B.C.D.8.已知直线l过点P(1,0,﹣1),平行于向量,平面α过直线l与点M(1,2,3),则平面α的法向量不可能是()A.(1,﹣4,2)B. C.D.(0,﹣1,1)9.命题“若a<b,则a+c<b+c”的逆否命题是()A.若a+c<b+c,则a>b B.若a+c>b+c,则a>bC.若a+c≥b+c,则a≥b D.若a+c<b+c,则a≥b10.已知椭圆,长轴在y轴上,若焦距为4,则m等于()A.4 B.5 C.7 D.811.以下有四种说法,其中正确说法的个数为()(1)“m是实数”是“m是有理数”的充分不必要条件;(2)“a>b”是“a2>b2”的充要条件;(3)“x=3”是“x2﹣2x﹣3=0”的必要不充分条件;(4)“A∩B=B”是“A=∅”的必要不充分条件.A.0个B.1个C.2个D.3个12.双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.二、填空(共6小题,每小题3分,满分18分)13.请你任意写出一个全称命题;其否定命题为.14.已知向量=(0,﹣1,1),=(4,1,0),|λ+|=且λ>0,则λ= .15.已知点M(1,﹣1,2),直线AB过原点O,且平行于向量(0,2,1),则点M到直线AB的距离为.16.动点P到点(3,0)的距离比它到直线x=﹣2的距离大1,则点P的轨迹方程为.17.命题“存在一个偶数是素数”的否定为.18.已知椭圆x2+4y2=16,直线AB过点 P(2,﹣1),且与椭圆交于A、B两点,若直线AB的斜率是,则|AB|的值为.三、解答题(本大题共4小题,共46分)解答时应写出文字说明、证明过程或演算步19.请你用逻辑联结词“且”、“或”、“非”构造三个命题,并说出它们的真假,不必证明.20.已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在x 轴上,求椭圆的标准方程.21.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.22.已知椭圆的焦点在x轴上,短轴长为4,离心率为.(1)求椭圆的标准方程;(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且,求直线l的方程.2015-2016学年西藏林芝一中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每题3分满分36分在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.顶点在原点,且过点(﹣4,4)的抛物线的标准方程是()A.y2=﹣4x B.x2=4yC.y2=﹣4x或x2=4y D.y2=4x或x2=﹣4y【考点】抛物线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】依题意,设抛物线的标准方程为x2=2py(p>0)或y2=﹣2px(p>0),将点(﹣4,4)的坐标代入抛物线的标准方程,求得p即可.【解答】解:∵抛物线的顶点在原点,且过点(﹣4,4),∴设抛物线的标准方程为x2=2py(p>0)或y2=﹣2px(p>0),将点(﹣4,4)的坐标代入抛物线的标准方程x2=2py(p>0)得:16=8p,∴p=2,∴此时抛物线的标准方程为x2=4y;将点(﹣4,4)的坐标代入抛物线的标准方程y2=﹣2px(p>0),同理可得p=2,∴此时抛物线的标准方程为y2=﹣4x.综上可知,顶点在原点,且过点(﹣4,4)的抛物线的标准方程是x2=4y或y2=﹣4x.故选C.【点评】本题考查抛物线的标准方程,得到所求抛物线标准方程的类型是关键,考查待定系数法,属于中档题.2.以下四组向量中,互相平行的有()组.(1)=(1,2,1),=(1,﹣2,3);(2)=(8,4,﹣6),=(4,2,﹣3);(3)=(0,1,﹣1),=(0,﹣3,3);(4)=(﹣3,2,0),=(4,﹣3,3).A .一B .二C .三D .四 【考点】共线向量与共面向量. 【专题】空间向量及应用.【分析】若与平行,则存在实数λ使得.验证即可.【解答】解:若与平行,则存在实数λ使得.经过验证:只有(2)=2,(3),两组满足条件.故选:B .【点评】本题考查了向量共线定理,属于基础题.3.若平面α的法向量为=(3,2,1),平面β的法向量为=(2,0,﹣1),则平面α与β夹角的余弦是( )A .B .C .D .﹣【考点】数量积表示两个向量的夹角. 【专题】计算题;平面向量及应用.【分析】根据向量与的坐标,分别算出、的模和与的数量积,然后用向量的夹角公式算出它们夹角的余弦值,再根据两个平面所成角与它们法向量夹角之间的关系,可得本题的夹角余弦之值.【解答】解:∵,,∴||==,||==•=3×2+2×0+1×(﹣1)=5因此,向量与的夹角θ满足cos θ===又∵向量、分别为平面α和平面β的法向量∴平面α与β夹角等于向量、的夹角,故平面α与β夹角的余弦值等于故选:A【点评】本题给出两个平面法向量的坐标形式,求两个平面夹角的余弦之值,着重考查了利用数量积求两向量的夹角和平面的法向量的性质等知识,属于基础题.4.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】通过sin2α=解出α的值,然后判断充要条件即可.【解答】解:∵sin2α=,∴或,故“”是“”的充分不必要条件.故选A.【点评】本题主要考查了命题的必要条件,充分条件与充要条件的判断,较为简单,要求掌握好判断的方法.5.“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件.A.必要非充分B.充分非必要C.充要 D.既非充分又非必要【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论.【解答】解:根据线面垂直的定义可知,直线l与平面α内任意一条条直线都垂直,当直线l与平面α内无数条直线都垂直时,直线l与平面α垂直不一定成立,∴“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要不充分条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的定义是解决本题的关键,注意“无数条”和“任意条”的区别.6.在正方体ABCD﹣A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为()A.B. C.D.【考点】空间中直线与直线之间的位置关系.【专题】压轴题.【分析】在正方体、长方体中往往可以建立空间直角坐标系,利用向量法解决问题.【解答】解:如图,以D为坐标系原点,AB为单位长,DA,DC,DD1分别为x,y,z轴建立坐标系,易见,,所以===,故选B.【点评】本题考查空间两直线夹角的求法.7.已知两定点F1(5,0),F2(﹣5,0),曲线上的点P到F1、F2的距离之差的绝对值是6,则该曲线的方程为()A.B.C.D.【考点】双曲线的定义.【专题】计算题.【分析】利用双曲线的定义判断出动点的轨迹;利用双曲线中三参数的关系求出b,写出双曲线的方程.【解答】解:据双曲线的定义知,P的轨迹是以F1(5,0),F2(﹣5,0)为焦点,以实轴长为6的双曲线.所以c=5,a=3b2=c2﹣a2=16,所以双曲线的方程为:故选A.【点评】本题考查双曲线的定义:要注意定义中“差的绝对值”且“差的绝对值”要小于两定点间的距离.注意双曲线中三参数的关系.8.已知直线l过点P(1,0,﹣1),平行于向量,平面α过直线l与点M(1,2,3),则平面α的法向量不可能是()A.(1,﹣4,2)B. C.D.(0,﹣1,1)【考点】平面的法向量.【专题】计算题.【分析】由题意可知,所求法向量比垂直于向量,和向量,即数量积需都为0,验证即可.【解答】解:由题意可知,所研究平面的法向量垂直于向量,和向量,而=(1,2,3)﹣(1,0,﹣1)=(0,2,4),选项A,(2,1,1)•(1,﹣4,2)=0,(0,2,4)•(1,﹣4,2)=0满足垂直,故正确;选项B,(2,1,1)•(,﹣1,)=0,(0,2,4)•(,﹣1,)=0满足垂直,故正确;选项C,(2,1,1)•(﹣,1,)=0,(0,2,4)•(﹣,1,)=0满足垂直,故正确;选项D,(2,1,1)•(0,﹣1,1)=0,但(0,2,4)•(0,﹣1,1)≠0,故错误.故选D【点评】本题考查平面的法向量,涉及数量积的运算,属基础题.9.命题“若a<b,则a+c<b+c”的逆否命题是()A.若a+c<b+c,则a>b B.若a+c>b+c,则a>bC.若a+c≥b+c,则a≥b D.若a+c<b+c,则a≥b【考点】四种命题间的逆否关系.【专题】规律型.【分析】把所给的命题看做一个原命题,写出这个命题的逆否命题是题设和结论否定并且要交换位置,得到结果.【解答】解:把“若a<b,则a+c<b+c”看做原命题,它的逆否命题是题设和结论否定并且要交换位置,∴它的逆否命题是:“若a+c≥b+c,则a≥b”,故选C.【点评】本题考查求一个命题的逆否命题,实际上把一个命题看做原命题是根据需要来确定的,所有的命题都可以看做原命题,写出它的其他三个命题.属基础题.10.已知椭圆,长轴在y轴上,若焦距为4,则m等于()A.4 B.5 C.7 D.8【考点】椭圆的简单性质.【专题】计算题.【分析】先把椭圆方程转换成标准方程,进而根据焦距求得m.【解答】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.11.以下有四种说法,其中正确说法的个数为()(1)“m是实数”是“m是有理数”的充分不必要条件;(2)“a>b”是“a2>b2”的充要条件;(3)“x=3”是“x2﹣2x﹣3=0”的必要不充分条件;(4)“A∩B=B”是“A=∅”的必要不充分条件.A.0个B.1个C.2个D.3个【考点】充要条件.【专题】综合题.【分析】依次分析命题,“m是实数”m可能是无理数,故“m是有理数”错,(1)错;a>b>0⇒a2>b2,反之则不成立,故(2)错误;x2﹣2x﹣3=0⇒x=3或﹣1,不一定x=3,故(3)错;由A=φ,有:A∩B=∅,不能得出A∩B=B,故(4)错误;综合可得答案.【解答】解:,“m是实数”m可能是无理数,故“m是有理数”错,(1)错;a>b>0⇒a2>b2,反之则不成立,故(2)错误;x2﹣2x﹣3=0⇒x=3或﹣1,不一定x=3,故(3)错;由A=φ,有:A∩B=∅,不能得出A∩B=B,故(4)错误.四种说法,其中正确说法的个数为:0故选A.【点评】本题考查必要条件、充分条件、充要条件的判断,解题时要认真审题,仔细解答,注意避免不必要错误的发生.12.双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题.【分析】先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.【解答】解:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选B.【点评】本题主要考查了双曲线的简单性质,属基础题.二、填空(共6小题,每小题3分,满分18分)13.请你任意写出一个全称命题任意实数的平方都大于等于0 ;其否定命题为存在实数的平方小于0 .【考点】全称命题;命题的否定.【专题】计算题;简易逻辑.【分析】写出一个全称命题,确定出其否命题即可.【解答】解:全称命题为:任意实数的平方都大于等于0;其否命题为:存在实数的平方小于0.故答案为:任意实数的平方都大于等于0;存在实数的平方小于0【点评】此题考查了全称命题,以及命题的否定,熟练掌握全称命题及否命题的定义是解本题的关键.14.已知向量=(0,﹣1,1),=(4,1,0),|λ+|=且λ>0,则λ= 3 .【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据所给的向量坐标写出要求模的向量坐标,用求模长的公式写出关于变量λ的方程,解方程即可,解题过程中注意对于变量的限制,把不合题意的结果去掉.【解答】解:∵ =(0,﹣1,1),=(4,1,0),∴λ+=(4,1﹣λ,λ),∴16+(λ﹣1)2+λ2=29(λ>0),∴λ=3,故答案为:3.【点评】向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的.15.已知点M(1,﹣1,2),直线AB过原点O,且平行于向量(0,2,1),则点M到直线AB的距离为.【考点】点到直线的距离公式.【专题】直线与圆.【分析】由已知得=(1,﹣1,2),OM⊥AB,由此能求出点M到直线AB的距离.【解答】解:∵点M(1,﹣1,2),直线AB过原点O,且平行于向量(0,2,1),∴=(1,﹣1,2),∴=0,∴OM⊥AB,∴点M到直线AB的距离为||,∴点M到直线AB的距离||==.故答案为:.【点评】本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.16.动点P到点(3,0)的距离比它到直线x=﹣2的距离大1,则点P的轨迹方程为y2=12x .【考点】抛物线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】根据题意,得到点P到点(3,0)的距离等于它到直线x=﹣3的距离,由抛物线的定义可得P的轨迹是以(3,0)为焦点、x=﹣3为准线的抛物线,由抛物线的标准方程与基本概念,即可算出点P的轨迹方程.【解答】解:∵动点P到点(3,0)的距离比它到直线x=﹣2的距离大1,∴将直线x=﹣2向左平移1个单位,得到直线x=﹣3,可得点P到点(3,0)的距离等于它到直线x=﹣3的距离.因此,点P的轨迹是以(3,0)为焦点、x=﹣3为准线的抛物线,设抛物线的方程为y2=2px(p>0),可得=3,得2p=12∴抛物线的方程为y2=12x,即为点P的轨迹方程.故答案为:y2=12x【点评】本题给出满足条件的动点P,求点P的轨迹方程.着重考查了抛物线的定义与标准方程、动点轨迹方程的求法等知识,属于基础题.17.命题“存在一个偶数是素数”的否定为所有偶数都不是素数.【考点】命题的否定.【专题】简易逻辑.【分析】通过特称命题的否定是全称命题写出结果即可.【解答】解:∵特称命题的否定是全称命题,∴命题“存在一个偶数是素数”的否定为:所有偶数都不是素数.故答案为:所有偶数都不是素数.【点评】本题考查命题的否定,注意命题的否定形式,量词的变化.18.已知椭圆x2+4y2=16,直线AB过点 P(2,﹣1),且与椭圆交于A、B两点,若直线AB的斜率是,则|AB|的值为2.【考点】直线与圆锥曲线的关系.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由椭圆x2+4y2=16,直线AB过点 P(2,﹣1),且与椭圆交于A、B两点,直线AB的斜率是,导出直线AB的方程为x﹣2y﹣4=0.联立,能够求出|AB|.【解答】解:∵椭圆x2+4y2=16,直线AB过点 P(2,﹣1),且与椭圆交于A、B两点,直线AB的斜率是,∴直线AB的方程为y+1=(x﹣2),即x﹣2y﹣4=0.联立,消去x,得y2+2y=0,设A(x1,y1),B(x2,y2),解得,,∴|AB|==2.故答案为:2.【点评】本题考查弦长公式的应用,是基础题,具体涉及到椭圆的简单性质、直线方程等知识点,解题时要注意等价转化思想的合理运用.三、解答题(本大题共4小题,共46分)解答时应写出文字说明、证明过程或演算步19.请你用逻辑联结词“且”、“或”、“非”构造三个命题,并说出它们的真假,不必证明.【考点】复合命题.【专题】对应思想;综合法;简易逻辑.【分析】写出含有逻辑联结词“或,且,非”的命题即可.【解答】解:(1)100是10的倍数并且是5的倍数,是真命题,中间使用了逻辑联结词“且”,(2)方程x2﹣9=0的解是x=3或x=﹣3,是真命题,中间使用了逻辑联结词“或”,(3)方程x2﹣9=0的解不是x=2,是假命题,中间使用了逻辑联结词“非”.【点评】题主要考查逻辑联结词的应用,比较基础.20.已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在x 轴上,求椭圆的标准方程.【考点】圆锥曲线的共同特征.【专题】计算题.【分析】先求出双曲线的焦点及离心率,根据已知条件求出椭圆的离心率及焦距,利用椭圆的三个参数的关系,求出椭圆中的三个参数,求出椭圆的方程.【解答】解:设所求椭圆方程为,其离心率为e,焦距为2c,双曲线的焦距为2c1,离心率为e1,则有:c12=4+12=16,c1=4∴∴,即①又b=c1=4 ②a2=b2+c2③由①、②、③可得a2=25∴所求椭圆方程为【点评】本题考查椭圆双曲线的标准方程,以及简单性质的应用,用待定系数法求出椭圆标准方程是解题的关键.21.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.【考点】用空间向量求直线间的夹角、距离;用向量证明平行.【分析】方法一:(1)取OB中点E,连接ME,NE,证明平面MNE∥平面OCD,方法是两个平面内相交直线互相平行得到,从而的到MN∥平面OCD;(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP菱形的对角相等得到∠ABC=∠ADC=,利用菱形边长等于1得到DP=,而MD利用勾股定理求得等于,在直角三角形中,利用三角函数定义求出即可.(3)AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD,又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,求出距离可得.方法二:(1)分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,分别表示出A,B,O,M,N 的坐标,求出,,的坐标表示.设平面OCD的法向量为=(x,y,z),则,解得,∴MN∥平面OCD(2)设AB与MD所成的角为θ,表示出和,利用a•b=|a||b|cosα求出叫即可.(3)设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由,得.所以点B到平面OCD的距离为.【解答】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.22.已知椭圆的焦点在x轴上,短轴长为4,离心率为.(1)求椭圆的标准方程;(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且,求直线l的方程.【考点】直线与圆锥曲线的关系;直线的一般式方程;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)由短轴长可得b值,由离心率为可得=,结合a2=b2+c2即可求得a值,即可得出椭圆的方程;(2)设直线方程为:y=k(x+1),联立方程组消掉y得到x的二次方程,设M(x1,y1),N(x2,y2),由韦达定理及弦长公式即可表示弦长|MN|,最后利用弦长建立等式,即可求出直线l的方程.【解答】解:(1),椭圆的标准方程:(2)由题意知,直线l的斜率存在,所以设直线方程为:y=k(x+1),,联立得:(5k2+4)x2+10k2x+5k2﹣20=0,∴,则:==,∵,∴即:即:,所以,k=±1,所以直线方程为:y=x+1或y=﹣x﹣1.【点评】本题考查直线与圆锥曲线的位置关系及椭圆方程的求解,弦长公式及韦达定理是解决该类题目的基础知识,要熟练掌握.。
最新精选精选西藏林芝高二上期末数学试卷(理科)(附答案解析)-(新课标人教版)(已审阅)
2017-2019学年西藏林芝高二(上)期末数学试卷(理科)一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.无关命题2.(5分)“若x2=1,则x=1”的否命题为()A.若x2≠1,则x=1 B.若x2=1,则x≠1 C.若x2≠1,则x≠1 D.若x≠1,则x2≠1 3.(5分)设x∈R,则“x=1”是“x3=x”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)对于命题p和q,下列结论中正确的是()A.p真,则p∧q一定真B.p假,则p∧q不一定假C.p∧q真,则p一定真D.p∧q假,则p一定假5.(5分)命题“平行四边形的对角线相等且互相平分”是()A.简单命题B.“p或q”形式的复合命题C.“p且q”形式的复合命题 D.“非p”形式的复合命题6.(5分)下列语句是特称命题的是()A.整数n是2和5的倍数B.存在整数n,使n能被11整除C.若3x﹣7=0,则x= D.∀x∈M,p(x)7.(5分)下列命题中,是真命题的是()A.每个偶函数的图象都与y轴相交B.∀x∈R,x2>0C.∃x0∈R,x02≤0D.存在一条直线与两个相交平面都垂直8.(5分)a=6,c=1的椭圆的标准方程是()A.+B.+=1C.+=1 D.以上都不对9.(5分)设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4 B.5 C.8 D.1010.(5分)下列曲线中离心率为的是()A.B.C.D.11.(5分)抛物线y=﹣的焦点坐标是()A.(0,)B.(,0)C.(0,﹣2)D.(﹣2,0)12.(5分)若=(2x,1,3),=(1,﹣2y,9),如果与为共线向量,则()A.x=1,y=1 B.x=,y=﹣C.x=,y=﹣D.x=﹣,y=二、填空题(每小题5分,共4小题,总计:20分)13.(5分)“a=2”是“直线ax+2y=0与直线x+y=1平行”的条件.14.(5分)命题p:6是12的约数,命题q:6是24的约数,则“p∨q”形式的命题是.15.(5分)命题p:“∃x∈R,x2+1<0”的否定是.16.(5分)已知椭圆+=1的焦点在x轴上,则实数m的取值范围是.三、解答题(共6小题,总计:70分,17-21题每题12分,22题10分)17.(12分)把命题“平行于同一条直线的两条直线平行”改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题,判断它们的真假.18.(12分)已知椭圆的两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.试求该椭圆的方程.19.(12分)已知椭圆+=1,求椭圆的长轴和短轴的长及顶点坐标、焦点坐标和离心率.20.(12分)已知双曲线﹣=1(a>0,b>0)的离心率e=,过点A(0,﹣b)和点B(a,0)的直线与原点的距离为,求此双曲线的方程.21.(12分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.22.(10分)已知向量=(4,﹣2,﹣4),=(6,﹣3,2).求:(1)•;(2)||;(3)||;(4)(2+3)•(﹣2).2017-2019学年西藏林芝高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.无关命题【解答】解:命题“矩形的两条对角线相等”的条件是矩形,结论是两条对角线相等,命题“两条对角线相等的四边形是矩形”是命题“矩形的两条对角线相等”的条件与结论的交换,故选:A.2.(5分)“若x2=1,则x=1”的否命题为()A.若x2≠1,则x=1 B.若x2=1,则x≠1 C.若x2≠1,则x≠1 D.若x≠1,则x2≠1【解答】解:同时否定条件和结论即得命题的否命题,即若x2≠1,则x≠1,故选:C3.(5分)设x∈R,则“x=1”是“x3=x”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:因为x3=x,解得x=0,1,﹣1,显然条件的集合小,结论表示的集合大,由集合的包含关系,我们不难得到“x=1”是“x3=x”的充分不必要条件故选A4.(5分)对于命题p和q,下列结论中正确的是()A.p真,则p∧q一定真B.p假,则p∧q不一定假C.p∧q真,则p一定真D.p∧q假,则p一定假【解答】解:p∧q真,则p,q都为真命题,则p一定真,故C正确,故选:C5.(5分)命题“平行四边形的对角线相等且互相平分”是()A.简单命题B.“p或q”形式的复合命题C.“p且q”形式的复合命题 D.“非p”形式的复合命题【解答】解:命题“平行四边形的对角线相等且互相平分”等价为命题“平行四边形的对角线相等”且“平行四边形的对角线互相平分”,即“p且q”形式的复合命题,故选:C6.(5分)下列语句是特称命题的是()A.整数n是2和5的倍数B.存在整数n,使n能被11整除C.若3x﹣7=0,则x= D.∀x∈M,p(x)【解答】解:对于A,不能判断真假,不是命题.对于C,是若p则q式命题.对于D,是全称命题.对于B,命题:存在整数n,使n能被11整除,含有特称量词”存在”,故B是特称命题,故选:B.7.(5分)下列命题中,是真命题的是()A.每个偶函数的图象都与y轴相交B.∀x∈R,x2>0C.∃x0∈R,x02≤0D.存在一条直线与两个相交平面都垂直【解答】解:对于A,利用y=是偶函数,与y轴没有交点,所以A不正确;对于B,如果x=0,则x2=0,所以B不正确;对于C,∃x0∈R,x02≤0,利用x=0时,不等式成立,所以C正确;对于D,一条直线与两个平面都垂直,所以两个平面平行,所以D不正确;故选:C.8.(5分)a=6,c=1的椭圆的标准方程是()A.+B.+=1C.+=1 D.以上都不对【解答】解:由a=6,c=1,得b2=a2﹣c2=36﹣1=35,∴所求椭圆的标准方程为:或.故选:D.9.(5分)设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4 B.5 C.8 D.10【解答】解:由椭圆的第一定义知|PF1|+|PF2|=2a=10,故选D.10.(5分)下列曲线中离心率为的是()A.B.C.D.【解答】解:选项A中a=,b=2,c==,e=排除.选项B中a=2,c=,则e=符合题意选项C中a=2,c=,则e=不符合题意选项D中a=2,c=则e=,不符合题意故选B11.(5分)抛物线y=﹣的焦点坐标是()A.(0,)B.(,0)C.(0,﹣2)D.(﹣2,0)【解答】解:抛物线方程化为标准方程为:x2=﹣8y∴2p=8,∴=2∵抛物线开口向下∴抛物线y=﹣x2的焦点坐标为(0,﹣2)故选:C.12.(5分)若=(2x,1,3),=(1,﹣2y,9),如果与为共线向量,则()A.x=1,y=1 B.x=,y=﹣C.x=,y=﹣D.x=﹣,y=【解答】解:∵=(2x,1,3)与=(1,﹣2y,9)共线,故有==.∴x=,y=﹣.故选C.二、填空题(每小题5分,共4小题,总计:20分)13.(5分)“a=2”是“直线ax+2y=0与直线x+y=1平行”的充要条件.【解答】解:若“a=2”成立,则两直线x+y=0与直线x+y=1平行;反之,当“直线ax+2y=0与直线x+y=1平行”成立时,可得a=2;所以“a=2”是“直线ax+2y=0与直线x+y=1平行”的充要条件,故答案为:充要.14.(5分)命题p:6是12的约数,命题q:6是24的约数,则“p∨q”形式的命题是6是12或24的约数.【解答】解:根据p∨q的定义得p∨q形式的命题是:6是12或24的约数,故答案为:6是12或24的约数.15.(5分)命题p:“∃x∈R,x2+1<0”的否定是∀x∈R,x2+1≥0.【解答】解:命题为特称命题,则命题的否定为:∀x∈R,x2+1≥0,故答案为:∀x∈R,x2+1≥016.(5分)已知椭圆+=1的焦点在x轴上,则实数m的取值范围是(﹣3,0)∪(0,3).【解答】解:已知椭圆+=1的焦点在x轴上,可得:9>m2≠0,解得:m∈(﹣3,0)∪(0,3).则实数m的取值范围是(﹣3,0)∪(0,3).故答案为:(﹣3,0)∪(0,3).三、解答题(共6小题,总计:70分,17-21题每题12分,22题10分)17.(12分)把命题“平行于同一条直线的两条直线平行”改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题,判断它们的真假.【解答】解:原命题:若两条直线平行于同一条直线,则这两条直线平行.真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线.真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行.真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线.真命题.18.(12分)已知椭圆的两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.试求该椭圆的方程.【解答】解:由题意知2c=8,2a=12,∴a=6,c=4.∴b2=a2﹣c2=36﹣16=20.∵椭圆的焦点在坐标轴上,两焦点的中点为坐标原点,∴椭圆的方程是标准的.当椭圆的焦点在x轴上时,椭圆的方程为+=1;当椭圆的焦点在y轴上时,椭圆的方程为+=1.19.(12分)已知椭圆+=1,求椭圆的长轴和短轴的长及顶点坐标、焦点坐标和离心率.【解答】解:椭圆+=1,可得椭圆的长轴长为10,短轴长为8,四个顶点的坐标分别为A1(﹣4,0),A2(4,0),B1(0,5),B2(0,﹣5).焦点坐标F1(0,3),F2(0,﹣3),c=3,离心率e=.20.(12分)已知双曲线﹣=1(a>0,b>0)的离心率e=,过点A(0,﹣b)和点B(a,0)的直线与原点的距离为,求此双曲线的方程.【解答】解:直线AB的方程为:+=1,即bx﹣ay﹣ab=0,根据原点到此直线的距离为,得=,即4a2b2=3(a2+b2).①又e=,即e2=1+=.②解①②组成的方程组,得a2=3,b2=1;所以双曲线方程为﹣y2=1.21.(12分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.【解答】解:(1)抛物线过点(﹣3,2),则其开口向左或开口向上,若其开口向左,设其方程为y2=﹣2px,将(﹣3,2)代入方程可得:22=﹣2p×(﹣3),解得,p=,此时其标准方程为:y2=﹣x,若其开口向上,设其方程为x2=2py,将(﹣3,2)代入方程可得:(﹣3)2=2p×2,解得,p=,此时其标准方程为:x2=y,综合可得,抛物线的方程为:或;(2)直线l:x﹣2y﹣4=0与坐标轴交点为(4,0)和(0,﹣2).则所求抛物线的焦点为(4,0)或(0,﹣2),若其焦点为(4,0),则其方程为y2=16x,若其焦点为(0,﹣2),则其方程为x2=﹣8y,∴抛物线的方程为:y2=16x或x2=﹣8y.22.(10分)已知向量=(4,﹣2,﹣4),=(6,﹣3,2).求:(1)•;(2)||;(3)||;(4)(2+3)•(﹣2).【解答】解:(1)向量=(4,﹣2,﹣4),=(6,﹣3,2).•=4×6+(﹣2)×(﹣3)+(﹣4)×2=22;(2)||==6;(3)||==7;(4)(2+3)•(﹣2)=22+3•﹣4•﹣62=2×62﹣22﹣6×72=﹣244.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4 B.(x+3)2+(y﹣1)2=4 C.(x+1)2+(y+1)2=4 D.(x﹣1)2+(y﹣1)2=44.(3分)已知函数,则f[f(2)]=()A.0 B.1 C.2 D.35.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2) C.(2,3) D.(3,+∞)6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0 B.x﹣2y+1=0 C.x+2y+1=0 D.x+y﹣1=07.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1) D.(2,2)8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0 B.2x﹣y+1=0 C.2x+y+1=0 D.2x+y﹣1=09.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3 B.﹣1 C.1 D.310.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πc m2D.20πcm212.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是.14.(5分)若一个球的体积为36π,则它的表面积为.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是.16.(5分)下列说法正确的是.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.三、简答题(满分44分)17.(6分)计算:﹣3.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.2017-2018学年西藏林芝一中汉语班高二(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每题3分,满分36分)1.(3分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}【分析】本题思路较为清晰,欲求(C U M)∩N,先求M的补集,再与N求交集.【解答】解:∵全集U={0,1,2,3,4},M={0,1,2},∴C U M={3,4}.∵N={2,3},∴(C U M)∩N={3}.故选B.【点评】本题考查了交、并、补集的混合运算,是基础题.2.(3分)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台【分析】三视图复原,判断4个几何体的形状特征,然后确定选项.【解答】解:如图(1)三视图复原的几何体是放倒的三棱柱;(2)三视图复原的几何体是四棱锥;(3)三视图复原的几何体是圆锥;(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.【点评】本题考查简单几何体的三视图,考查视图能力,是基础题.3.(3分)过点A (1,﹣1)、B (﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4 B.(x+3)2+(y﹣1)2=4 C.(x+1)2+(y+1)2=4 D.(x﹣1)2+(y﹣1)2=4【分析】先求AB的中垂线方程,它和直线x+y﹣2=0的交点是圆心坐标,再求半径,可得方程.【解答】解:圆心一定在AB的中垂线上,AB的中垂线方程是y=x,排除A,B 选项;圆心在直线x+y﹣2=0上验证D选项,不成立.故选D.【点评】本题解答灵活,符合选择题的解法,本题考查了求圆的方程的方法.是基础题目.4.(3分)已知函数,则f[f(2)]=()A.0 B.1 C.2 D.3【分析】根据x=2>1符合f(x)=﹣x+3,代入求出f(x),因为f(x)=1≤1,符合f(x)=x+1,代入求出即可.【解答】解:∵x=2>1,∴f(x)=﹣x+3=﹣2+3=1,∵1≤1,∴f[f(x)]=x+1=1+1=2,即f[f(x)]=2,故选C.【点评】本题考查了分段函数的应用,注意:要看x的取值在x>1范围内还是x≤1范围内,再代入相应的函数解析式中,求出即可.5.(3分)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)一定存在零点的区间是()A.(﹣∞,1)B.(1,2) C.(2,3) D.(3,+∞)【分析】利用函数零点的存在定理进行函数零点所在区间的判断,关键要判断函数在相应区间端点函数值的符号,如果端点函数值异号,则函数在该区间有零点.【解答】解:由于f(2)>0,f(3)<0,根据函数零点的存在定理可知故函数f (x)在区间(2,3)内一定有零点,其他区间不好判断.故选c.【点评】本题考查函数零点的判断方法,关键要弄准函数零点的存在定理,把握好函数在哪个区间的端点函数值异号.6.(3分)下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0 B.x﹣2y+1=0 C.x+2y+1=0 D.x+y﹣1=0【分析】将直线化成斜截式,易得已知直线的斜率k1=﹣2,因此与已知直线垂直的直线斜率k2==.由此对照各个选项,即可得到本题答案.【解答】解:∵直线2x+y+1=0的斜率为k1=﹣2∴与直线2x+y+1=0垂直的直线斜率k2==对照A、B、C、D各项,只有B项的斜率等于故选:B【点评】本题给出已知直线,求与其垂直的一条直线,着重考查了直线的基本量与基本形式、直线的相互关系等知识,属于基础题.7.(3分)函数y=3+log a(2x+3)的图象必经过定点P的坐标为()A.(﹣1,3)B.(﹣1,4)C.(0,1) D.(2,2)【分析】令对数的真数等于1,求得x、y的值,即为定点P的坐标.【解答】解:令2x+3=1,求得x=﹣1,y=3,故函数y=3+log a(2x+3)的图象必经过定点P的坐标(﹣1,3),故选:A.【点评】本题主要考查对数函数的图象经过定点问题,属于基础题.8.(3分)已知圆的方程为x2+y2﹣2x+6y+8=0,那么通过圆心的一条直线方程是()A.2x﹣y﹣1=0 B.2x﹣y+1=0 C.2x+y+1=0 D.2x+y﹣1=0【分析】求出圆的圆心坐标,验证选项即可.【解答】解:因为圆的方程为x2+y2﹣2x+6y+8=0,所以圆心坐标(1,﹣3),代入选项可知C正确.故选:C.【点评】本题考查圆的一般方程,点的坐标适合直线方程;也可认为直线系问题,是基础题.9.(3分)设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,则f(1)等于()A.﹣3 B.﹣1 C.1 D.3【分析】根据函数奇偶性的性质进行转化求解即可.【解答】解:f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2﹣x,∴f(1)=f(﹣1)=2•(﹣1)2﹣(﹣1)=2+1=3,故选:D【点评】本题主要考查函数值的计算,根据函数奇偶性的性质进行转化是解决本题的关键.10.(3分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【分析】将圆方程化为标准方程,找出圆心坐标与半径r,利用点到直线的距离公式求出圆心到已知直线的距离d为0,小于半径,可得出直线与圆相交,且直线过圆心.【解答】解:将圆的方程化为标准方程得:(x﹣1)2+(y﹣)2=,∴圆心(1,),半径r=,∵圆心到直线3x+4y﹣5=0的距离d==0<=r,则直线与圆相交且直线过圆心.故选D【点评】此题考查了直线与圆的位置关系,直线与圆的位置关系由d与r大小来确定(d为圆心到直线的距离,r为圆的半径),当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.11.(3分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm2【分析】由题意正方体的外接球的直径就是正方体的对角线长,求出正方体的对角线长,即可求出球的表面积.【解答】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B【点评】本题是基础题,考查正方体的外接球的不面积的求法,解题的根据是正方体的对角线就是外接球的直径,考查计算能力,空间想象能力.12.(3分)函数f(x)是定义在R上的奇函数,下列命题()①f(0)=0;②若f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0时,f(x)=x2﹣2x,则x<0时,f(x)=﹣x2﹣2x其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个【分析】先根据奇函数的定义判断出①对;根据奇函数的图象关于原点对称判断出②对③错;通过奇函数的定义求出当x<0的解析式,判断出④对.【解答】解:因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以f(0)=0,故①对;因为奇函数的图象关于原点对称,所以f(x)在[0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0]上有最大值为1;故②对;因为奇函数的图象关于原点对称,所以f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为增函数;故③错;对于④,设x<0,则﹣x>0,因为x>0时,f(x)=x2﹣2x,所以f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,因为f(x)是定义在R上的奇函数,所以f(x)=﹣x2﹣2x,故④对;所以正确的命题有①②④,故选C.【点评】本题考查奇函数的定义、考查奇函数的图象关于原点对称、考查根据函数的奇偶性求函数的解析式,属于中档题.二、填空题(共4空,每空5分,满分20分)13.(5分)函数的定义域是[4.+∞).【分析】根据对数及根式有意义的条件可得x>0,log2x≥2,解不等式可得.【解答】解:由已知可得,解不等式可得{x|x≥4}故答案为:[4,+∞)【点评】本题是函数定义域最基本的考查,建立使函数有意义的不等式之后,关键是要准确解不等式,属于基础试题.14.(5分)若一个球的体积为36π,则它的表面积为36π.【分析】求出球的半径,直接利用表面积公式求解即可.【解答】解:因为球的体积为36π,所以球的半径:=3,球的表面积:4π×32=36π,故答案为:36π.【点评】本题考查球的表面积与体积的计算,考查计算能力.15.(5分)在y轴上的截距为﹣6,且与y轴相交成60°角的直线方程是y=x ﹣6.【分析】与y轴相交成60°角的直线倾斜角为30°或150°.可得斜率为tan30°或tan150°.即.利用斜截式即可得出.【解答】解:与y轴相交成60°角的直线倾斜角为30°或150°.可得斜率为tan30°或tan150°.即.可得方程为:y=x﹣6.故答案为:y=x﹣6.【点评】本题考查了直线的倾斜角与斜率的关系、斜截式,考查了推理能力与计算能力,属于基础题.16.(5分)下列说法正确的是③④.①任意x∈R,都有3x>2x;②若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N;③的最大值为1;④在同一坐标系中,y=2x与的图象关于y轴对称.【分析】①,结合y=3x y=2x,的图象即可判断,②,根据对数的运算性质判定,③,由|x|≥0,且函数y=2t递减,即可判断;④,结合y=2x与=2﹣x的图象即可判断.【解答】解:对于①,x>0时,有3x>2x,x=0时,有3x=2x,x<0时,有3x<2x,故错,对于②,若a>0,且a≠1,M>0,N>0,则有log a(M+N)=log a M•log a N,错;对于③,∵|x|≥0,且函数y=2t,在t≥0时递减,∴的最大值为1,正确;对于④,在同一坐标系中,y=2x与=2﹣x的图象关于y轴对称,正确.故答案为:③④【点评】本题考查了命题真假的判定,涉及到了函数、对数运算的基础知识,属于中档题.三、简答题(满分44分)17.(6分)计算:﹣3.【分析】利用指数、对数性质、运算法则直接求解.【解答】解:﹣3==4﹣4=0.【点评】本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意指数、对数性质、运算法则的合理运用.18.(7分)求经过直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点且平行于直线2x+y﹣3=0的直线方程.【分析】联立方程,求出直线交点,代入平行系方程,可得答案.【解答】解:由得:,即直线l1:2x+3y﹣5=0,l2:3x﹣2y﹣3=0的交点为(,),过交点与直线2x+y﹣3=0平行的直线方程为2(x﹣)+(y﹣)=0,即26x+13y﹣47=0.【点评】本题考查的知识点是求直线方程,直线交点,难度中档.19.(7分)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}①若B⊆A,求实数m的取值范围;②若A∩B=∅,求实数m的取值范围.【分析】①讨论B≠∅和B=∅时,根据B⊆A求出实数m的取值范围;②讨论B=∅和B≠∅时,求出满足题意的m的取值范围.【解答】解:①若B≠∅,∵B⊆A,∴,解得2≤m≤3;若B=∅,满足B⊆A,则:m+1>2m﹣1,解得m<2;∴实数m的取值范围是(﹣∞,3];②若B=∅时,满足A∩B=∅,则:m+1>2m﹣1,解得m<2;若B≠∅时,满足m≥2,且m+1>5或2m﹣1<﹣2,解得m>4或m<﹣,此时取m>4;综上,实数m的取值范围是(﹣∞,2)∪(4,+∞).【点评】本题考查了集合的定义与应用问题,是中档题.20.(8分)求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.【分析】设出圆的一般方程,把点的坐标代入,求解D、E、F,即可求得圆的方程,并进一步求得圆心坐标与半径.【解答】解:设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=25,可得:圆心是(4,﹣3)、半径r=5.【点评】本题考查圆的一般方程与标准方程,考查直线与圆位置关系的应用,是基础题.21.(8分)已知圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.【分析】由圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0得方程可得直线AB的方程为:x+3y﹣10=0.圆心C(3,﹣1)到直线x+3y﹣10=0的距离为d=.可得AB=2=4【解答】解:圆O:x2+y2﹣10x﹣10y=0的圆心为(5,5),半径为5;圆C:x2+y2﹣6x+2y﹣40=0的圆心为(3,﹣1),半径为5,由圆O:x2+y2﹣10x﹣10y=0和圆C:x2+y2﹣6x+2y﹣40=0得方程可得直线AB的方程为:x+3y﹣10=0.圆心C(3,﹣1)到直线x+3y﹣10=0的距离为d=.∴AB=2=4.【点评】本题考查了两圆的位置关系,公共弦的计算,属于中档题.22.(8分)已知函数.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.【分析】(1)由x2﹣1≠0,能求出函数的定义域.(2)函数在(1,+∞)上单调递减,利用定义法能进行证明.【解答】解:(1)∵函数.∴由x2﹣1≠0,得x≠±1,∴函数的定义域为{x∈R|x≠±1}…(4分)(2)函数在(1,+∞)上单调递减.…(6分)证明:任取x1,x2∈(1,+∞),设x1<x2,则△x=x2﹣x1>0,…(8分)∵x1>1,x2>1,∴.又x1<x2,∴x1﹣x2<0,∴△y<0.∴函数在(1,+∞)上单调递减.…(12分)【点评】本题考查函数的定义域的求法,考查函数的单调性的判断与证明,是基础题,解题时要认真审题,注意函数的单调性的合理运用.。