医学科研和论文撰写中常用的数据处理和统计分析方法
最新临床研究中常用统计分析方法及选择

例子2:英国某年全人口统计资料
矛盾:移民组的发病率在各个年龄组均高于英格兰和威尔士组,为什么它的合计发病率反而低?
分析中混杂因素的控制
胃癌 228 235 143 187 250 … 胃炎 100 153 178 143 200 … 非胃病 98 123 170 100 120 …
资料特点:计量资料,两组,标准差相差比较大(方差不齐) 不妥的方法:t检验 恰当的方法:t’检验 或者 Wilcoxon秩和检验
实例5 两组病人,采用两种药物治疗,治疗疗效如下表。经卡方检验,P=0.0486,差异有统计学意义。因此可以认为试验组的疗效比对照组的疗效好。
资料特点:计数资料,两组,例数比较少 不妥的方法:卡方检验 恰当的方法:Fisher精确检验
(二)分析目的
数值变量资料 - 计量资料 无序分类变量资料 - 计数资料 有序分类变量资料 - 等级资料
(三)资料类型
无序分类:指类别或属性间无顺序、程度之分 例如,性别(男、女)为二分类 血型(A、B、AB、O)为多分类
有序分类:指类别间存在着次序,或程度上的差异。 例如,治疗效果:无效、好转、显效、治愈 实验室检验:–、+、++、+++
统计学方法有什么用? 合理选择统计方法的四个因素 数据资料的描述 数据资料的组间比较 变量间关系研究
主要内容
一张关于统计学的图片
一、统计学方法有什么用?
例子1:一研究者宣布找到一种治疗某病的新药,试验的结果如下:
药物
例数
有效
有效率
新药
60
42
50%
该新药是否值得推广?
几个例子
比较目的
医学论文中统计图表的正确使用

医学论文中统计图表的正确使用在医学研究中,统计图表是表达和分析数据的重要工具。
本文将介绍如何在论文中正确使用统计图表,以提高研究成果的可读性和可信度。
关键词:医学论文、统计图表、数据表达、数据分析医学论文中通常需要处理大量的数据,包括临床试验、流行病学调查、基因组学等多方面的信息。
统计图表作为一种直观的数据表达方式,能够清晰地呈现研究结果,从而帮助读者更好地理解数据分析的结论。
在选择统计图表时,应根据研究数据的类型、数量和所要呈现的信息进行选择。
例如,对于比较两组数据的均值差异,可以选择柱状图或线图;对于展示多组数据间的关系,可以选择散点图或饼图。
选择合适的图表后,需要正确设置图表的各项参数。
例如,坐标轴的标签、图例、标题等,以便清晰地表达图表的含义。
同时,还需注意图表的尺度,确保数据表达的准确性。
选择正确的数据分析方法对于统计图表的使用至关重要。
常用的统计分析方法包括描述性统计、方差分析、卡方检验等。
作者需根据数据的特点和研究目的选择合适的方法进行数据分析。
统计图表中的尺度应设置合理,确保数据的准确性。
例如,在柱状图中,各柱子的高度应与其所代表的数据成比例;在线图中,线条的起伏应能反映出数据的变化。
在展示实验数据时,通常会涉及标准误差。
标准误差反映了数据散布的范围,帮助读者更好地理解数据的波动情况。
在制作图表时,应正确计算和标注标准误差。
为了使图表更加完整和易于理解,通常需要提供一些补充数据。
例如,可以在图表下方列出数据的平均值、中位数等指标,以便读者对数据进行整体把握。
下面通过一个实例来说明如何正确使用统计图表。
在一项探讨高血压与年龄关系的研究中,研究者收集了500名患者的血压和年龄数据,并采用统计图表来呈现分析结果。
由于要探讨的是高血压与年龄之间的关系,可以选择散点图来展示数据点,同时绘制一条趋势线来反映二者的关系。
在散点图中,横坐标为年龄,纵坐标为血压。
为了便于观察,可以将数据点的大小和颜色进行调整,使其在图中更加突出。
医学科研方法与数据处理

数据处理技术
01
数据格式统一化
02
数据分析
描述性统计:均值、中位数、频数等。
03
数据处理技术
• 推断性统计:回归分析、方差分析、卡方 检验等。
数据处理技术
数据可视化
1
2
图表制作:条形图、饼图、散点图等。
数据分析报告编写。
3
04
数据分析与解读
统计分析方法选择
描述性统计
用于描述数据的基本特征,如均值、中位数、标准差 等。
医学科研方法与数据 处理
汇报人:可编辑 2023-12-31
目 录
• 医学科研概述 • 医学研究设计 • 数据收集与处理 • 数据分析与解读 • 医学研究中的常见问题与解决策略 • 医学科研的未来发展与挑战
01
医学科研概述
医学科研的定义与目的
定义
医学科研是对医学领域中的现象、问 题、规律进行系统研究的活动,旨在 探索疾病预防、诊断、治疗和康复等 方面的新理论、新方法和新技术。
调查法
总结词
通过问卷、访谈等方式收集研究对象有关信息的方法。
详细描述
调查法是医学科研中常用的方法之一,可以通过问卷调查、访谈等方式收集研究对象的基本情况、行为习惯、态 度等方面的信息。调查法具有较高的灵活性和针对性,能够根据研究目的和对象的不同设计不同的调查方案。
案例研究法
总结词
通过对特定对象进行深入、全面的研究来探讨其特征、规律和影响因素的方法。
推论性统计
用于从样本数据推断总体特征,如T检验、卡方检验 、回归分析等。
高级统计分析
包括结构方程模型、主成分分析、因子分析等复杂统 计方法,用于深入探索数据之间的关系和结构。
统计分析软件介绍
03-02 医学论文中常用统计分析方法SPSS操作及结果的正确表达

SPSS演示:Frequencies
Analyze => Descriptive Statistics => Frequencies
矩法
统计描述指标
SPSS演示:Descriptives
Analyze => Descriptive Statistics => Descriptives
矩法
统计描述指标
总体均数的区间估计?
t分布法
X t / 2, S X ,X t / 2, S X
正态近似法
S SX n
X Z / 2 S X , X Z / 2 S X
总体率的区间估计
1. 正态近似法
(n足够大且np与n(1-p)均大于5 时)
( p u / 2 S p , p u / 2 S p )
2. 查表法
(当n≤50,特别是p很接近于0或1时)
Sp
p(1 p) n
SPSS演示
总体均数可信区间估计: Analyze => Descriptive Statistics => Explore
问题5:如何进行两个均数的比较?
奥美沙坦酯/ 氢氯噻嗪复方片剂用于奥美沙坦酯单药治疗血 压未达标的原发性轻中度高血压患者的临床研究
SPSS演示
Analyze => Descriptive Statistics => Crosstabs
SPSS演示
问题3:如何正确使用统计图或统 计表描述你的科研数据?
A tabular presentation of data is often the heart or, better, the brain, of a scientific paper. ------Peter Morgan
医学科研中的统计分析方法和案例

医学科研中的统计分析方法和案例医学是一门基础科学,研究的是人体结构、功能和生理机制,以及各种疾病的防治。
医学科研中的统计分析是一项重要的技术工具。
随着科技的不断发展,越来越多的医学研究采用了统计分析方法,以便更准确地分析数据并得到可靠的结论。
本文将讲述医学科研中常用的统计分析方法和案例。
一、统计分析方法1.描述性统计学描述性统计学是对数据进行总结、概括和描述的一种方法。
它可以用表格、图形和文字等方式来表示数据的特征、分布、中心位置、离散程度和对称性等。
医疗领域中常用的描述性统计学方法有频率分布、百分比、均值、中位数、标准差、方差和不同形式的图表等。
2.推论统计学推论统计学是基于抽样数据的一种统计学方法,它是从样本数据中推断总体数据的特征、参数和分布。
推论统计学方法可以通过参数检验、置信区间、ANOVA和回归分析等方法来进行数据分析和假设检验等。
3.多元统计学多元统计学是研究多个变量相互影响和关联的一种方法,它具有处理大量数据和准确分析复杂数据的能力。
多元统计学在医学领域中广泛应用,尤其是在预测疾病发生、药物效果和治疗方案等方面的研究中。
二、统计分析案例1.糖尿病患者的胰岛素敏感试验研究目的:检测糖尿病患者的胰岛素敏感性,以便为治疗方案的制定提供依据。
样本选择:随机选择50名糖尿病患者。
研究设计:使用胰岛素敏感性试验来测量患者的血糖和胰岛素水平。
数据分析:使用均值和标准差统计患者的血糖和胰岛素水平,并使用ANOVA方法来比较各组之间的差异。
结果:胰岛素敏感测试验结果显示,患者血糖水平较高,而胰岛素水平较低。
并且,不同性别和不同年龄的患者,其胰岛素敏感性也存在显著的差异。
2.癌症患者的治疗方案研究目的:确定在癌症患者治疗中不同方案的疗效和安全性。
样本选择:选择50名癌症患者。
研究设计:设计两种治疗方案,一种是放疗,一种是化疗,比较其疗效和不良反应。
数据分析:使用均值和标准差统计疗效和不良反应,并使用回归分析和多元统计方法,探讨不同治疗方案的疗效差异和影响因素。
医学科研论文统计方法

3. 抽样误差 因个体差异及样本只能是总体 的一部分,而产生的样本统计量与 总体参数之间的差异。 抽样误差愈小,用样本推断总 体的精确度愈高
统计量 依据样本观察值所定 出的量。如:样本均数、样本标 准差 、样本率。
参数 总体的统计指标数值。 如:总体均数、总体标准差、 总 体率。
4. 概率 probability
2.计数资料,enumeration data
由无序分类变量组成
将观察单位按某种属性或类别分组 所得各组的观察单位数
1)二项分类:阳性、阴性
2)多项分类:A、B、O、AB血 型。
3.等级资料
半定量资料
介于计量和计数资料之间,由有序 分类变量组成。观察单位的分组是 按照程度上的差异或等级大小来分。
3、线条:无竖线及斜线
4、数字:对齐;如缺失用“-” 或“…”表示
5、如有备注: 出,写在 用“*”标
表1 某医院1998年各科住院危重病 人抢救成功率
科别 内科
外科
危重人数 315
322
抢救成功数 252
249
成功率% 80.0
77.3
医学统计学研究的 基本步骤
1.资料设计 3.资料整理 2.资料收集 4.资料分析
1、资料设计,design 按研究者是否对观察对象施加 干预分为: (1)、调查设计,survey design 研究者只是“被动”地观察 客观实际情况 ( 2 ) 、 实 验 设 计 , experiment design 研究者主动地施加干预
2.统计推断: 1)推断总体均数的可信区间 2)假设检验:
t检验,u检验,秩和检验和方差 分析(检验)
1)样本推断总体 95%或者99%总体均数可信区间估计 注意:该方法表示在一个总体中,用 统计量如何来估计总体水平的大致范 围,不能用来评价个体的 水平。 最常用的 公式: X 1.96 S x 表示在大样本情况下95%总体均数可
医学科研数据的整理与分析学习
完全随机设计与分析:案例1(数值变量资料)
案例1
案例1
案例1
多组比较呢?
完全随机设计与分析:案例2 (数值变量资料)
案例2
完全随机设计与分析:案例3 (分类变量资料)
案例3
多组比较呢?
测得某地5801人的ABO血型和MN血型结果如表, 问两种血型系统之间是否有关联?
单组试验
样本与总体
自身前后 配对设计
自身左右 配对设计
分类变量资料 数值变量资料
正态分布
配对t检验, u检验,χ2检验或
方差分析
是
否
u检验
t检验
配对t检验 符号秩和检验
配对试验
分类变量资料
数值变量资料
差异性检验 配对χ2检验
一致性试验 (Kappa检验)
否
正态分布 与方差齐性
是
符号秩和检验
配对t检验
区间估计
总体均数(μ)的100(1-α)%可信区间(CI):
(1)已知总体标准差σ,按正态分布原理,计算公式为:
x uασx
(2)σ未知,n较小,按t分布原理计算:
x t,υ sx
(3)σ未知,n足够大(如n>100),按正态分布原理计算:
x uαsx
区间估计
总体率的可信区间估计
▪查表法 ▪ 当n≤50时 ▪正态近似法
配对t检验
配对设计与分析:案例 (异体配对)
配对设计与分析:案例 (异体配对)
配对设计与分析:案例 (异体配对)
配对设计与分析:案例 (异体配对)
配对设计与分析:案例 (异体配对)
第四节 论文中统计结果的表达与解释
一、“材料与方法”的统计表达
常用医学统计学方法汇总
选择合适的统计学方法1连续性资料1.1 两组独立样本比较1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。
1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。
1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon 检验。
1.2 两组配对样本的比较1.2.1 两组差值服从正态分布,采用配对t检验。
1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。
1.3 多组完全随机样本比较1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。
如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。
1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。
如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。
1.4 多组随机区组样本比较1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。
如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。
1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。
如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。
****需要注意的问题:(1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。
因为统计学上有中心极限定理,假定大样本是服从正态分布的。
医学科研中的统计方法与数据分析
医学科研中的统计方法与数据分析在医学科研中,统计方法和数据分析是不可或缺的工具。
通过运用统计学原理和技术,医学研究者可以从大量的数据中提取出有意义的信息,为医学进步和临床实践提供科学依据。
本文将探讨医学科研中的统计方法和数据分析的重要性以及如何正确应用它们。
一、统计方法的重要性统计方法在医学科研中的重要性不言而喻。
首先,统计方法可以帮助研究者对数据进行整理和描述。
医学研究中常常涉及到大量的数据,通过统计方法可以对这些数据进行分类、汇总和描述,使得数据更加清晰和易于理解。
其次,统计方法可以帮助研究者从数据中发现规律和趋势。
通过统计学原理和技术,研究者可以对数据进行分析,找出其中的关联性和差异性。
例如,通过比较两组患者的临床数据,可以确定某种治疗方法的有效性,或者发现某种疾病的危险因素。
最后,统计方法可以帮助研究者进行推断和预测。
在医学研究中,往往无法对整个人群进行观察和实验,而只能通过抽样来获取数据。
通过运用统计学原理,研究者可以从样本数据中进行推断,得出关于整个人群的结论,并进行预测。
二、数据分析的步骤正确应用统计方法和数据分析需要遵循一定的步骤。
下面将介绍常用的数据分析步骤。
1. 数据清洗:在进行数据分析之前,需要对数据进行清洗。
这包括检查数据的完整性、准确性和一致性,排除异常值和缺失值,以确保数据的可靠性和可用性。
2. 描述性统计分析:描述性统计分析是对数据进行整理和描述的过程。
通过计算均值、中位数、标准差等统计指标,可以对数据的分布和变异程度进行描述,从而获得对数据的基本认识。
3. 探索性数据分析:探索性数据分析是对数据进行初步探索的过程。
通过绘制直方图、散点图、箱线图等图表,可以发现数据中的趋势、关联性和异常值,为后续分析提供线索。
4. 推断性统计分析:推断性统计分析是对数据进行推断和预测的过程。
通过运用假设检验、置信区间、回归分析等统计方法,可以从样本数据中推断出关于整个人群的结论,并进行预测。
医学科研和论文撰写中常用的数据处理和统计分析方法
• 整群抽样法:先将总体按某个标志分成若干群,然后随机地
抽取若干群,并由抽中群中全部个体组成样本。
医学科研和论文撰写中常用的数据处理和统计分析方法
第8页
几个常见分布
• 分类变量分布类型
– 二项分布:观察单位含有相互对立一个结果,观察单 位观察结果相互独立(如:治愈/未治愈、传染/未传染)
Whitney秩和检验
• 成组设计多个样本比较秩和检验:H检验法(Kruskal-Wallis
法)
• 多个样本间两两比较秩和检验 • 配伍组设计多个样本比较秩和检验
医学科研和论文撰写中常用的数据处理和统计分析方法
第13页
Hale Waihona Puke 医学统计学方法• 利用统计学原理和方法研究医学领域中生物、理化、社会、心理等原因
可靠度,如x线对肺癌诊疗。
• 临床疗效分析比较 如几个药品疗效比较,视资料性质作显著性检验。 • 现象间关联情况分析如眼PSRT与屈光度关系,用线形相关和回归分析。 • 人群归类、评价,可选取判别分析、聚类分析、主成份分析等。
医学科研和论文撰写中常用的数据处理和统计分析方法
第19页
样本含量
• 统计学是对研究样本进行抽象归纳科学,没有足够样本量就不可能得
– 四格表卡方检验要求样本量大于40,方格中理论数大于5(n~>40,t>5), 若不符合则用校正卡方检验或准确概率法。行x列表卡方检验要求理论数 均大于1且小于5者不超出表中数1/5,若不符合则改用其它方法(合理合 并)。
– 正常值范围确实定:观察数量应尽可能多于100例;需分组者,各组人数 也是如此(标本起源困难时酌情降低)。若为偏态分布,应以百分位数计算, 则例数应≥120例。