大学物理第九章静止电荷与静电场答案
电动力学-静电场答案

编号: 班级: 学号:姓名: 成绩:第1章 静电场1. 证明均匀介质内部的极化电荷体密度p ρ,总等于自由电荷体密度f ρ的 -(1-εε0)倍。
f ρ=⋅∇DE])[(E)(P 00εεεχρ-⋅-∇=⋅-∇=⋅-∇=e Pf P ρεεεεερ)(D])[(001--=-⋅-∇=2. 有一内外半径分别为21和r r 的空心介质球,介质的介电常数为ε,使介质内均匀带静止自由电荷f ρ,求 (1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
解 1)由电荷分布的对称性可知:电场分布也是对称的。
电场方向沿径向 故:1r r<时0402==⎰dV r r fV ερπ)E( 或 0=)E(r21r r r <<时 球壳体内:dr r r D r ds rr f ⎰⎰⎰==⋅12244πρπ)(n D ])([)(3113r r rr D f -=ρ ])([)()(310013rr r r D r E f -==ερε 在2r r>的球形外:)()(212202023441421r r dr r r E r r rf -==⎰ρεππρεπ )()(2122203r r rr E -=ερ式中 r εεε0= 写在一起⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<<-<=)(r )()(r])([)(E 22122302131013130r r r r r r r r r r r r f ερερ2) r ])([)(E D P 310013rrf --=-=ερεεε f p ρεεερ0--=⋅-∇=P (与第一题相符) 内表面:013031101011=-=--⋅-=-⋅-===])([]E )[(n )p (p n 12r rr f r r r r p ερεεσ 外表面:2222100013022r r r rr r r p )()(E])([n )p (p n 12--=--⋅-=-⋅-===ερεεεεσ3. 证明:当两种绝缘介质的分界面上不带面自由电荷时,电场线的偏折 满足:1212tan tan εεθθ= 式中1ε和2ε分别为两介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。
大学物理试卷答案(15及以后)

第九章 电磁场理论(一)电介质和导体学号 姓名 专业、班级 课程班序号一 选择题[ C ]1. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是 (A) C A B U U U == (B) C A B U U U => (C) U U U A C B >> (D) C A B U U U >>[ D ]2. 一个未带电的空腔导体球壳内半径为R 。
在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) d q 04πε (C) R q04πε (D) )11(40Rd q-πε[ D ]3. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则(A) 0 U >U A B ≠ (B) 0 U >U A B = (C) A B U U = (D) A B U U <[ A ]4. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。
再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板位置无关 (B) 储能减少,但与金属板位置有关 (C) 储能增加,但与金属板位置无关 (D) 储能增加,但与金属板位置有关[ C ]5. C 1和C 2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C 1中插入一电介质板,则 (A) C 1极板上电量增加,C 2极板上电量减少 (B) C 1极板上电量减少,C 2极板上电量增加 (C) C 1极板上电量增加,C 2极板上电量不变(D) C 1极板上电量减少,C 2极板上电量不变二 填空题1. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 =2.0×10-8C; 另一内半径为 r 2 = 10cm 、 外半径为 r 3 = 15cm 的金属球壳B , 带电量为 q 2 = 4.0×10-8C , 两球同心放置,如图所示。
第九章 静电场及其应用含答案—2021-2022学年高二上学期人教版(2019)必修第三册

2021—2022人教(2019)物理必修第三册第9章静电场及其应用含答案人教2019必修第三册第9章静电场及其应用一、选择题。
1、如图所示,左边是一个原先不带电的导体,右边C是后来靠近导体的带正电金属球,若用绝缘工具沿图示某条虚线将导体切开,分导体为A、B两部分,这两部分所带电荷量的数值分别为Q A、Q B,则下列结论正确的是()A.沿虚线d切开,A带负电,B带正电,且Q B>Q AB.只有沿虚线b切开,才有A带正电,B带负电,且Q B=Q AC.沿虚线a切开,A带正电,B带负电,且Q B>Q AD.沿任意一条虚线切开,都有A带正电,B带负电,而Q A、Q B的值与所切的位置有关2、(双选)如图所示,可视为点电荷的小物体A、B分别带负电和正电,B固定,其正下方的A静止在绝缘斜面上,则A受力个数可能为()A.2 B.3 C.4 D.53、(双选)把质量为m的正点电荷q,在电场中从静止释放,在它运动过程中如果不计重力,下述正确的是()A.点电荷运动轨迹必与电场线重合B.点电荷的速度方向,必定和所在点的电场线的切线方向一致C .点电荷的加速度方向,必与所在点的电场线的切线方向一致D .点电荷的受力方向,必与所在点的电场线的切线方向一致4、下列说法正确的是( )A.处于静电平衡的导体,由于导体内的电场强度为零,所以导体内的电势也为零B.处于外电场中的静电平衡的导体,由于附加电场的出现,导体内的原电场变为零C.处于外电场中的静电平衡的导体,由于附加电场和原电场相互抵消,导体内的电场变为零,但导体表面的电场不为零,且与表面垂直D.处于静电平衡的导体,导体表面的电势一定与导体内部的电势不相等5、(多选)为了防止静电危害,下列措施正确的是( )A .油罐车上拖一条与地面接触的铁链B .飞机的机轮上装有搭地线或用导电橡胶做轮胎C .在地毯中夹杂不锈钢纤维D .尽可能保持印染厂空气干燥6、(双选)两个完全相同的金属小球,带电荷量之比为17,相距为r ,两球相互接触后再放回原来位置,则它们的库仑力可能为原来的( ) A.47 B.37 C.97 D.1677、(双选)关于静电力和电场强度,下列说法正确的是( )A .电场强度的方向总是跟静电力的方向一致B .电场强度的大小总是跟静电力的大小成正比C .正电荷受到的静电力的方向跟电场强度的方向一致D .同一个点电荷在某点受到的静电力越大,该点的电场强度就越大8、图中接地金属球A 的半径为R,球外点电荷的电荷量为Q,到球心的距离为r 。
高中物理第九章静电场及其应用总结(重点)超详细(带答案)

高中物理第九章静电场及其应用总结(重点)超详细单选题1、半径为R的绝缘光滑半球形碗,固定放置在水平面上,在碗中置入三个质量均为m,电荷量相同的带电小球。
当处于平衡状态时,三小球同处于水平平面内,该平面和地面的距离为0.5R。
已知静电力常数为k,重力加速度为g,则()A.小球电荷量的大小为32R√mgkB.小球受到的弹力大小为√3mgC.小球电荷量的大小为12R√3mgkD.碗受到三小球的作用力小于3mg答案:AAC.小球受重力,碗给的支持力和库伦作用力,三力平衡。
已知三个小球处于同一平面,所以三个小球从俯视图看应为等边三角形排布,已知该平面和地面的距离为0.5R,所以该平面到碗面处也应为0.5R,并且已知碗的半径为R,所以碗面处的圆心到其中一个小球的距离应为R,根据几何知识,可得其中一个小球到其所处平面中心的距离为l=√(R)2−(0.5R)2=√3 2R根据几何知识有,小球与小球之间距离为32R,小球受力分析如图所示每个小球所受库仑力为F=2⋅kq2(32R)2cos30°又有tan30°=mg F联立解得q=32R√mgkA正确,C错误;B.根据以上分析,有F N=mgsin30°=2mgB错误;D.将三个小球看成一个整体,受到重力和碗给小球的作用力,因此和三个小球重力等大反向,3mg,D错误。
故选A。
2、如图,在一点电荷附近a、b点放置试探电荷测量其受力,下列试探电荷受力F与电荷量q的关系图中,正确的是()A.B.C.D.答案:B电场强度的定义式E=Fq,即F−q图像的斜率表示场强的大小,而试探电荷的电量越大,同一点所受的电场力越大,即电场力关于电量q为增函数;根据点电荷周围的场强决定式E=kQr2可知E a>E b故选B。
3、如图所示,将两个摆长均为l的单摆悬于O点,摆球质量均为m,带电量均为q(q>0)。
将另一个带电量也为q(q>0)的小球从O点正下方较远处缓慢移向O点,当三个带电小球分别处在等边三角形abc的三个顶点上时,摆线的夹角恰好为120°,则此时摆线上的拉力大小等于()A.√3mg B.3mg C.2√3kq 2l2D.√33kq2l2答案:D球a与球b间距为√3l,对小球a受力分析,受重力、c球对a球的斥力、b球对a球的斥力和细线的拉力,如图所示根据平衡条件,水平方向F ab+F ac cos60°=Tcos30°竖直方向F ac sin60°+Tsin30°=mg其中F ab=F ac=kq2(√3l)2解得T=mg=√33⋅kq2l2故D正确, ABC错误。
大学物理下册第九章:静电场

讨论静电除尘器的工作原理及性能评价指标。
例题3
解释静电复印机的工作过程及常见故障处理方法。
例题4
阐述静电场对人体产生的危害及相应的防护措施。
06 总结回顾与拓展延伸
本章知识点总结回顾
静电场的基本性质
静电场是由静止电荷所产生的电场,具有保守性和无源性 。其基本性质包括电场的强度、电势、电场线等概念。
静电屏蔽
当导体和绝缘体之间存在一定距离时,由于导体的静电屏蔽效应,可 以减弱或消除外部静电场对绝缘体的影响。
典型例题分析与讨论
01
例题1
分析导体球壳在点电荷电场中的静 电感应现象及电荷分布情况。
例题3
解释尖端放电现象的原理及影响因 素,并给出实际应用案例。
03
02
例题2
讨论平行板电容器中绝缘介质对电 容器电容的影响及原因。
03 电势能、电势与等势面
电势能概念及计算方法
电势能定义
电荷在电场中具有的势能,与电荷的电量和电场中的 位置有关。
电势能计算
通过电场力做功来计算电势能的变化,从而确定电势 能的大小。
电势能零点选择
通常选择无穷远处或地球表面为电势能零点,方便计 算。
电势定义及物理意义
电势定义
单位正电荷在电场中某点具有的电势能,反 映电场能的性质。
情况。
THANKS FOR WATCHING
感谢您的观看
大学物理下册第九章静电场
目录
• 静电场基本概念与性质 • 库仑定律与电场线 • 电势能、电势与等势面 • 静电场中导体和绝缘体性质 • 静电场应用与防护 • 总结回顾与拓展延伸
01 静电场基本概念与性质
静电场定义及特点
静电场
大学物理大题及答案

内容为:7.8.14;8.11.14; 11.14.15; 7.10.12;~14.16.18~ 第九章 静电场9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aqa q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=LrqE 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r LQ r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E r S E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为 re rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL E r <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 0a a x εσl E l E 电势变化曲线如图(b)所示.9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.9-25 在一次典型的闪电中,两个放电点间的电势差约为109V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L = ×105J· kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qUE E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.第十章 静电场中的导体与电介质10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε于是可求得各处的电场强度和电势的分布:r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm.如果电路能检测出的电容变化量是 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为 ×10-9m ,两表面所带面电荷密度为± ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度 02='E 空气中电场强度δd UE -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.第十一章 恒定磁场11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR Ir μB =在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度. 解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3 ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Ir μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B = T ,毫伏表测出血管上下两端的电压为U H = mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dB U B E H H v 11-21 从太阳射来的速度为×108 m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v 地磁北极附近的回转半径 m 2322==eB m R v 第十二章 电磁感应 电磁场和电磁波12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律t ΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==LL B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小 tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解? 第十四章 波 动 光 学14-9 在双缝干涉实验中,用波长λ= nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =×10-3m双缝间距: d =d ′λ/Δx = ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ??,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 14-11 如图所示,将一折射率为的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ= nm ,L = ×10-2m ,测得30 条条纹的总宽度为 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ= 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对 nm 激光的折射率为)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ= ×10-6m . 14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为 ×10-2m ,用λ= nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λN l =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 14 -18 如图所示,折射率n 2 = 的油滴落在n 3 = 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m = μm,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n = 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图14-21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得。
高中物理第九章静电场及其应用真题(带答案)

高中物理第九章静电场及其应用真题单选题1、如图所示,在超高压带电作业中,电工所穿的高压工作服内有编织的铜丝,这样做的目的是()A.铜丝编织的衣服不易拉破B.铜丝电阻小,对人体起到保护作用C.电工被铜丝衣服所包裹,使衣服内场强为零D.电工被铜丝衣服所包裹,使衣服内电势为零答案:C屏蔽服的作用是在穿用后,使处于高压电场中的人体外表面各部位形成一个等电位屏蔽面,从而防护人体免受高压电场及电磁波的危害,等电位说明电势相等而不是等于0,等电势时电势差为0,电场强度为0。
故选C。
2、如图,在一点电荷附近a、b点放置试探电荷测量其受力,下列试探电荷受力F与电荷量q的关系图中,正确的是()A.B.C.D.答案:B电场强度的定义式E=F,即F−q图像的斜率表示场强的大小,而试探电荷的电量越大,同一点所受的电场q可知力越大,即电场力关于电量q为增函数;根据点电荷周围的场强决定式E=kQr2E a>E b故选B。
3、关于电荷守恒定律,下列叙述不正确的是()A.一个物体所带的电荷量总是守恒的B.在与外界没有电荷交换的情况下,一个系统所带的电荷量总是守恒的C.在一定的条件下,一个系统内的等量的正、负电荷即使同时消失,也并不违背电荷守恒定律D.电荷守恒定律并不意味着带电系统一定和外界没有电荷交换答案:AA.根据电荷守恒定律,单个物体所带的电荷量是可以改变的,A错误;B.在与外界没有电荷交换的情况下,一个系统所带的电荷量总是守恒的,B正确;C.一个系统内的等量的正、负电荷同时消失,并不违背电荷守恒定律,C正确;D.电荷守恒定律并不意味着带电系统一定和外界没有电荷交换,D正确。
本题选不正确项,故选A。
4、如图所示,空心金属球壳上所带电荷量为+Q,关于O、M两点电场强度EO、EM的说法中正确的是()A.EO≠0EM=0B.EO=0 EM≠0C.EO=0 EM=0D.EO≠0EM≠0答案:C由题意,可知空心金属球壳处于静电平衡状态,根据处于静电平衡状态中的导体,内部电场强度处处为零,可知E O=0,E M=0。
2020--2021学年人教版高一物理必修第三册第9章 静电场及其应用练习含答案

A.一定是正电
B.一定是负电
C.可能是正电,也可能是负电 D.无法确定
3 / 11
12、现代理论认为,反质子的质量与质子的质量相同,约为电子质量的 1 836 倍, 若 me=0.91×10-30 kg,e=1.6×10-19 C,求反质子的比荷mq 。
13、如图所示,电荷量 Q=2×10-7 C 的正点电荷 A 固定在空间中 O 点,将质 量 m=2×10-4 kg,电荷量 q=1×10-7 C 的另一正点电荷 B 从 O 点正上方 0.5 m 的某处由静止释放,B 运动过程中速度最大位置在 P 点。若静电力常量 k=9×109 N·m2/C2,重力加速度 g 取 10 m/s2,求: (1)B 释放时的加速度大小; (2)P、O 间的距离 L。 14、如图所示,一厚度不计的金属圆桶带电荷总量为 Q=+4×10-6 C。 (1)此时,金属桶内、外表面带电荷量分别为多少? (2)如果用丝线在桶内悬挂一带电荷量 q=-2×10-6 C 的小球,桶内、 外表面带电荷量分别为多少? (3)若桶内金属小球与内表面接触一下,桶内、外表面带电荷量分别 为多少? (4)若小球悬挂时,用手接触一下桶外表面,然后再将小球从桶中取出,则金属 桶内、外表面带电荷量又为多少?
*9、如图所示,在两个带等量异种电荷的绝缘导体球之间,对称地放着两个相
同的导体 ab、cd,当用导线将 a、d 连接起来时,下列判断正确的是( )
A.有自由电子沿导线从 a 流向 d
B.有自由电子沿导线从 d 流向 a
C.导线中没有电流通过
D.达到静电平衡后,a 端和 d 端均不带电
*10、[多选]如图所示,a、b、c、d 为四个带电小球,两球之间的作用分别为 a 吸
2020--2021(新教材)物理必修第三册第 9 章 静电场及其应用练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 静止电荷与静电场9.1 电荷 库仑定律 9.2 电场强度一.选择题和填空题1-2 CB3、-3σ / (2ε0) -σ / (2ε0) 3σ / (2ε0)4、()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点.二.计算题1、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为=q / L ,在x 处取一电荷元d q = d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.2、解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元 d q = d x = Q d x /(3R ) 它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 2分 整个细绳上的电荷在环心处的场强()203020116412RQx R dx R Q E R εεπ=-π=⎰ 2分 圆环上的电荷分布对环心对称,它在环心处的场强E 2=0 2分由此,合场强 i RQi E E20116επ== 2分 R3x x方向竖直向下.三.理论推导与证明题证:选环心作原点,x 轴沿圆环轴线方向,y 、z 轴如图所示.在环上任取一电荷元d q =(Q d θ) /(2π),设P 点位于x 处,从电荷元d q 到P 点的矢径为r ,它在P 点产生的场强为rr Q r r q E ˆ8d ˆ4d d 20220εθεπ=π= r ˆ为矢径r 方向上的单位矢量.d E 沿x 轴的分量为d E x =d E cos φ (φ为矢径r与x 轴正向夹角) 由对称性容易证明 E y =0 E z =0因而有 E =E x 20202024cos d 8cos r Q r Q εφθεθππ=π=⎰()2/32204xR Qx+π=ε 当x >>R 时,可得 E ≈Q / (4πε0x 2)这相当于一个位于原点O 的带电量为Q 的点电荷在P 点产生的场强.9.3 电通量 真空中的高斯定理一、选择题和填空题 1-4、 D D C B 5、 q / (6ε0)6、 0 r rR302εσ 7、204r q επ 0二. 计算题1、解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.2解:由高斯定理 ⎪⎩⎪⎨⎧<<><=21021,2,,0R R R R R R R R E πελ3解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得210E E E+= 在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ=方向分别如图所示.在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S ' 可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212d r E Pερ-=(1) 求O '点的场强'O E. 由图(a)、(b)可得E O ’ = E 1O’ =3ερd, 方向如图(c)所示. (2)求P 点的场强P E.由图(a)、(b)可得⎪⎪⎭⎫ ⎝⎛-=+=2302143d r d E E E P P P ερ 方向如(d)图所示.图(c)2O’=0图(b)9.4 真空中的环路定理 电势一.选择题和填空题1-5、CDBAC D 7、0 λ / (2ε0) 8、q / (6πε0R )9、⎪⎭⎫⎝⎛π∆-π20414R S R Q ε 二.计算题1、解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l xq x a l q U P -+π=-+π=008d 4d d εε 整个杆上电荷在P 点产生的电势 ()⎰--+π=ll P x a l x lq U d 80ε()l lx a l l q --+π-=ln 80ε⎪⎭⎫⎝⎛+π=a l l q 21ln 80ε 2、解:(1)由高斯定理求得电场的分布:21220212011,,44,0R r R R r rQ Q r Q R r E <<⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+<=πεπε 各区域电势的分布为:(r<R 1)202101202121012021201114144)11(444221R Q R Q R Q Q R R Q dr r Q Q dr r Q U R R R πεπεπεπεπεπε+=++-=++=⎰⎰∞21202012,44R r R R Q r Q l d E U r <<+=⋅=⎰∞πεπε)(,420213R r r Q Q U >+=πε(2))11(42101R R Q U -=∆πε 作图略9.5 静电场中的导体一.选择题和填空题1.C 2.D 3.D 4.C 5、 不变 减小二.计算题1解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2、解 由静电平衡的条件 知0=+=+感E E E q o00q 4E E r dq πε-=-=+感0r为水平向右的单位矢量。
点的电势为零,则由于导体球接地,圆心O0=+=+感U U U q OdqU 04πε-=感 3、解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为 ⎰--+π=R d R x xd x U d )11(20ελ )ln (ln 20R d R R R d ---π=ελRRd -π=ln0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RRd -π=ln 0ε9.6 静电场中的电介质一.选择题和填空题1-5 、BACBD 6. 减小 减小 7、rε1r ε 8. σ σ / ( ε 0ε r ) 9. )4/(0R q r εεπ q / (4πε0R )二、判断改错题答: (1) 正确.(2) 介质内场强与原来一样.(3) 电场能量增大为原来的εr 倍.三、计算题 1、解:在圆柱导体内、外分别作半径为r 、长为L 的同轴圆柱形高斯面,并应用 D的高斯定理.圆柱内: rLD =0得 D = 0 ()a r < E = 0 ()a r >圆柱外:rLD =得 ()[]0π2/r r Dλ= , (r >a ) 0r 为径向单位矢量 ()r D E εε01/ =()[]002/r r rεελπ= (a <r <b )()[]0002 2//r r D Eελεπ== (r >b )2、(1)设介质板外的电场0E ,介质板内的场为:rE E ε0=两极板间的电势差为:t E t d E U rε00)(+-=tt d U E r r +-=∴εε)(0 t t d UE r +-=ε)(t t d U E D r r +-==∴εεεε)(0000 tt d U E D r r r +-==εεεεε)(0(2) t t d U S QE r r +-==εεε)(00 tt d S U Q r r +-=∴εεε)(0 (3)tt d S U QC r r +-==εεε)(09.7 静电场的能量一.选择题和填空题1. A。