《先进过程控制系统》实验指导书
过程控制实验指导书2014.3.5

《过程控制系统》实验指导书吴建国、姬文亮、陆平编写2014.3目录1.实验一:典型过程的工程建模2.实验二:单回路控制系统设计及其工程整定3.实验三:串级控制系统设计及其工程整定4.实验四:集散控制系统实验5.附录一:JX300X系统6.附录二:900系列智能控制器实验一典型过程的工程建模1、实验目的掌握典型过程的工程建模方法。
其实验原理为:被调对象选为锅炉液位或锅炉温度;改变其操纵量使其产生阶跃扰动,测试阶跃变化时过渡过程曲线,并用阶跃响应法来实验辨识系统的数学模型τ、T0、K(参见图1以及教材)。
图1 阶跃响应曲线2、实验准备(被调对象选为锅炉液位)实验采用静压法测量锅炉液位的扩散硅压力变送器LT-3、1#调节器、LIC-3进水电动调节阀M1+VC1,以及被调对象构成了锅炉液位调节系统。
2.1 配管操作锅炉液位调节系统的流程图(用水箱水源和进水阀)见图2,按图2进行下列配管操作,去改变对象的工艺流程。
2.1 用带快速接头的软管将阀门相连通。
2.2 配线操作实验的仪表配线见图进行插棒连线(6根弱电,4根强电)。
2.3 记录曲线的方法(取其中之一即可)2.3.1 在DCS系统上记录数据;2.3.2 人工记录智能仪表上的数据.3、实验步骤3.1 阶跃响应法辨识数学模型3.2 系统调整到相对稳定关闭锅炉出水阀,手操1#调节器使锅炉的液位为200mm左右。
然后改变1#调节器阀位使进水流量FIT-1为常用值(20-30%),手操锅炉出水阀使出水流量FIT-2与FIT-1相等,等待几分钟看液位基本不变,即达到系统相对稳定。
3.3 系统的正向阶跃扰动系统在相对稳定的基础上,手操1#调节器阀位阶跃增加5-10%。
同时记录手动(开环)时锅炉液位LT-3的阶跃响应曲线,分析求解系统数模的三大特性参数:τ、T0、K。
3.4 系统的反向阶跃扰动系统在正向阶跃扰动达到稳定后,再手操1#调节器阀位阶跃减少5-10%,同时记录锅炉液位LT-3的阶跃响应曲线,分析求解系统的τ、T0、K。
A3000过程控制实验指导书(实验用)

A3000过程控制实验系统实验指导书V3.0北京华晟高科教学仪器有限公司编制第一章安全注意事项与设备使用安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。
在熟悉设备的知识、安全信息及全部有关注童事项以后使用。
在本使用说明书中,将安全注意事项等级分为“危险”和“注意”。
!危险:不正确的操作造成的危险情况,将导致死亡或重伤的发生。
!注意:不正确的操作造成的危险情况,将导致一般或轻微的伤害或造成物体的硬件损坏。
注意:根据情况的不同,“注意”等级的事项也可能造成严重后果。
请遵循两个等级的注意事项,因为它们对于个人安全都是重要的。
1.1防止触电尽管系统经过多层保护,还是请用户注意以下安全事项。
!危险严格要求系统可靠接地,包括现场对象系统,控制系统,接地电阻不大于4欧姆。
当通电或正在运行时,请不要进行任何维护、维修操作,不要打开机柜后门,接线箱盖子,变频器前盖板,否则会发生触电的危险。
即使电源处于断开时,除维护、维修外,请不要接触任何具有超过安全电压的裸露端子,否则接触各种充电回路可能造成触电事故。
请不要用湿手操作设定各种旋钮及按键,以防止触电。
对于电缆,请不要损伤它,不要对它加过重的应力,使它承载重物或对它钳压。
否则可能会导致触电。
包括布线或检查在内的工作都应由专业技术人员进行。
在开始布线或维修之前,请断开电源,经过10分钟以后,用万用表等检测剩余电压后进行。
1.2防止烫伤!危险不要接触热水管道,避免高温烫伤。
在热水没有冷却时,不要打开锅炉,不要进行任何维修维护工作。
!注意请尽量控制水温在70度以下,以免高温烫伤,提高产品寿命。
1.3防止损坏!危险在水泵运行状态,绝对禁止进行水泵切换控制操作,否则可能损坏变频器。
!危险在水箱水位没有达到一定高度,不能启动调压器输出,否则可能损坏加热器。
该系统增加了硬件的连锁保护,但是也要在操作时注意。
!注意系统应远离可燃物体。
系统发生故障时,请断开电源。
过程控制系统实验指导书02

《过程控制系统》实验指导书目录第一章实验装置说明 (1)第二章实验要求及安全操作规程 (4)实验一单容自衡水箱液位特性测试 (5)实验二双容水箱特性的测试 (9)实验三单容水箱液位定值控制系统 (12)实验四单闭环流量定值控制系统 (15)实验五锅炉内胆水温定值控制系统 (17)实验六锅炉内胆水温位式控制系统 (19)第一章实验装置说明实验对象总貌图如图1-1所示:图1-1 实验对象总貌图本实验装置对象主要由水箱、锅炉和盘管三大部分组成。
供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。
一、被控对象由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。
1.水箱:包括上水箱、中水箱、下水箱和储水箱。
上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。
水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。
水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。
上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。
储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。
储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。
2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。
先进过程控制系统报告

先进过程控制系统实验报告过程控制系统实验 (2)实验二传感器、执行器实验 (2)实验三系统动态特性的测试 (3)实验四液位单回路控制系统的设计及参数整定 (4)仿真实验 (5)实验二过程参数PID控制仿真 (5)实验三复杂过程对象PID控制仿真 (8)实验四非线性控制时滞系统迭代学习控制算法仿真 (10)实验五利用输入-输出的模型参考自适应控制系统的设计与仿真 (13)过程控制系统实验实验二传感器、执行器实验3、流量传感器的测试思考题1、用传感器测量过程变量的准确性如何?如果有误差,可以采取什么方法进行修正?答:实验显示,使用传感器测量过程变量准确度较高,迟滞短,能较好的跟踪变量的变化。
误差修正:对于变化缓慢的变量可以在很短的时间能多次测量取平均值;可以对传感器输出信号进行滤波去噪,及数据平滑等预处理减小误差。
实验三系统动态特性的测试h (mm) 120 160 200 240Q(l/min) 1.599 2.338 3.507 7.014 OR54.13 36.07 11.412R33.872其中水箱的截面积mm=。
190⨯A175mmW(S=)思考题1、分析可能造成模型不准确的原因。
答:实验过程中,将出水阀旋转至固定位置,随着水位变化的不同实际出水速度与液位高低变化不是线性关系,水位差越大,水流速度差别也越大,而设计的模型是按照线性关系进行设计的。
此外,该液位传感器测量的是某一点液体表面至容器底部的距离,而由于液体表面波动较剧烈,测量的结果有较大抖动,无法很好地测量液位高度,引入较大误差。
实验四 液位单回路控制系统的设计及参数整定2、根据液位对象的数学模型,选择系统的采样周期 =S T 0.5 s 。
3思考题1、在控制过程中遇到了哪些问题,你是如何解决的?为了提高控制效果,你在控制算法上还采取了哪些措施?答:液位测量过程中,液位传感器测量水表面高度,由于水面波动较大,测量结果有较大抖动;为了降低因水面波动造成的测量偏差,减去超调量,将检测的液位高度统一加上10mm 作为测量值进行控制,当液位快达到指定高度时便减小进水阀门,减小超调量,减小稳定时间。
过程控制系统及装置实验指导书(简写本)^

过程控制系统及装置实验指导书刘解生重庆科技学院电子信息学院实验1离心泵、液位控制操作实习一、实验设备及实验目的1、实验设备:PC计算机、化工过程操作实习软件2、熟悉过程操作实习仿真软件的使用。
3、了解离心泵、液位的工艺流程。
4、掌握实际离心泵、液位过程控制的操作方法。
二、工艺说明1.工作原理离心泵一般由电动机带动。
启动前须在离心泵的壳体内充满被输送的液体。
当电机通过联轴结带动叶轮高速旋转时,液体受到叶片的推力同时旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外沿,以高速流入泵壳,当液体到达蜗形通道后,由于截面积逐渐扩大,大部分动能变成静压能,于是液体以较高的压力送至所需的地方。
当叶轮中心的流体被甩出后,泵壳吸入口形成了一定的真空,在压差的作用下,液体经吸入管吸入泵壳内,填补了被排出液体的位置。
2.“气缚”现象离心泵若在启动前未充满液体,则离心泵壳内极易存在空气,由于空气密度很小,所产生的离心力就很小。
此时在吸入口处形成的真空不足以将液体吸入离心泵内,因而不能输送液体,这种现象为“气缚”。
所以离心泵在开动前必须首先将被输送的液体充满泵体,并进行高点排气。
3.“汽蚀”现象通常,离心泵叶轮入口处是压力最低的部位,如果这个部位液体的压力等于或低于在该温度下液体的饱和蒸汽压力,就会有蒸汽及溶解在液体中的气体从液体中大量逸出,形成许多蒸汽和气体混合物的汽泡。
这些小汽泡随着液体流入高压区后,汽泡破裂重新凝结。
在凝结过程中,质点加速运动相互撞击,产生很高的局部压力。
在压力很大、频率很高的连续打击下,离心泵体金属表面逐渐因疲劳而损坏,寿命大为缩短。
离心泵的安装位置不当、流量调节不当或入口管路阻力太大时都会造成“汽蚀”。
4.离心泵的特性曲线离心泵的流量(F)、扬程(H)、功率(N)和效率(η)是其重要的性能参数。
这些性能参数之间存在一定的关系,可以通过实验测定。
通过实验测定所绘制的曲线,称为离心泵的特性曲线。
常用的离心泵特性曲线有如下三种。
过程控制系统实验指导书以及实验报告格式要求

《过程控制技术与系统》实验指导书过程控制系统组编华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化、测控、集控专业本科生3.所修课程过程控制技术与系统或热工控制系统4.实验课时分配⒌PCS-B过程控制系统⒍实验总体要求1、掌握对象动态特性测量方法;2、掌握单回路控制系统原理和参数整定方法;3、掌握串级控制系统原理和参数整定方法。
⒎本实验的重点、难点及教学方法建议实验通过对控制系统的基本理论和方法有一个感性认识和更好地理解。
实验的重点及难点是:对象动态特性测量基本方法;单回路控制系统投运和参数整定方法;串级控制系统投运和参数整定方法。
目录实验一上水箱动态特性测试实验 (3)实验二上水箱液位控制系统实验 (6)实验三上下水箱液位串级控制系统实验 (11)附录一硬件介绍 (16)附录二软件使用说明 (34)附件三实验报告格式要求 (40)实验一上水箱动态特性测试实验一、实验目的1、被控对象动态特性测试;2、学习和了解DCS系统的原理及它在过程控制中的应用。
二、实验类型综合型三、实验装置1、DCS过程控制实验装置(其中使用:电动调节阀、上水箱及液位变送器、储水箱、增压泵等),液位变送器的量程一般在出厂前已调试好。
2、DCS控制机柜3、安装有组态及监控软件的计算机上水箱动态特性测试实验系统见图1-1图1-1 上水箱单容特性测试实验流程图四、实验步骤1、将过程控制综合实验装置的手动阀门1V1、V4打开, 1V2、1V3、1V7关闭。
2、确认实验装置和控制机柜电源正常。
3、点击主界面上方的“单容水箱特性”按钮进入单容水箱特性实验界面。
图1-2 实验系统主界面4、点击“开始实验”按钮,确认增压泵启动正常,调节阀开度为5%。
5、设置阀门开度值(点击设置按钮,在弹出的对话框中输入阀门开度,以0-100百分数表示),使上水箱水位稳定后。
过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
过程控制系统实验指导书

过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。
二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。
4.了解单回路控制,串级控制及顺序控制的概念,组成方式。
三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。
其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。
高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。
能在一个屏幕上对串级或两个独立的回路进行操作。
标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。
对YS1700编程可直接在PC机上完成。
SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。
(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先进过程控制系统实验指导书过程控制系统实验 (2)实验一组合型过程控制系统简介及过程控制演示 (2)实验二传感器、执行器实验 (8)实验三系统动态特性的测试 (10)实验四液位单回路控制系统的设计及参数整定 (12)实验五PLC和DCS综合控制演示 (14)仿真实验 (24)实验一MATLAB与SIMULINK熟悉实验 (24)实验二过程参数PID控制仿真 (25)实验三复杂过程对象PID控制仿真 (26)实验四非线性控制时滞系统迭代学习控制算法仿真 (27)实验五利用输入-输出的模型参考自适应控制系统的设计与仿真 (34)过程控制系统实验实验一组合型过程控制系统简介及过程控制演示一、FESTO紧凑型过程控制系统介绍FESTO紧凑型过程控制系统如图1-1所示,在这套系统上,我们可以进行液位、温度、压力、流量的控制。
图 1-1二、组合式过程控制系统介绍结合过程计算机控制系统理论的学习,我们研制了一套组合式过程控制系统,这套系统可以通过灵活、方便的管路组合,实现过程控制中的五种典型控制方式—单回路控制,串级控制、前馈控制、均匀控制和比值控制。
三、主要仪器与设备1、计算机2、接口研华 USB-4711AUSB-4711A系列包括即插即用数据采集模块,因此无需再打开您的计算机机箱来安装板卡。
仅需插上模块,便可以采集到数据,简单高效。
USB-4711A 是给任何带有USB端口的计算机增加测量和控制能力的最佳途径。
它通过USB 端口获得所有所需的电源,所以它无需连接外部的电源。
USB-4711A在一块卡上包含了所有的数据采集功能,如:16路AI,2路AO,8路DI,8路DO,1路32位计数器,其中A/D数据采集为12位。
USB-4711A板卡的如图1-2。
图 1-2 USB-4711A板卡表 1.1:I/O 接口信号描述3.水箱:水箱如图1-4所示。
技术参数见表1-1。
图 1-4表1-1工作温度 最大:+65C O外部尺寸 宽度 深度 高度240 mm 190 mm 385 mm 材质 塑料 螺旋接口15 mm 直径3、 流量传感器流量传感器如图1-5,主要技术参数见表1-2。
表 1-2工作电压 5 to 12 V DC 工作电流 6 to 33 mA 输出信号 方波信号,5…12 V 频率范围 13 to 1200 HZ 测量范围 0.5 to 15.0 l/min 工作压力 80°C max 。
6bar 工作温度 0°C to 65°C接线方式白:电源正绿:电源负褐:输出+图 1-54、比例阀1094-PMR比例阀如图1-6,主要技术指标见表1-3。
表 1-3工作电压24 V DC功率8 W工作压力0 to 0.5 bar环境温度Max。
+55°C媒介自然媒介,如水、压缩空气媒体温度0°C to +65°C图 1-6 1094-PMR比例阀接口如图1-7所示。
端子2:+24V,端子3:24V地,端子4:输出控制信号。
R1:最小流量调节,R2:最大流量调节,R3:延迟时间调节。
S1:(on):中频(2832),S2:(off)图 1-75、 液位传感器 主要技术参数见表1-4表 1-4工作电压 24 V DC 测量范围 0-400 mm 输出信号 0—5 V DC 工作温度 -40—120°C接线方式 红:电源正黑:电源负蓝:输出+6、 温度传感器 主要技术参数见表1-5表 1-5 工作电压24 V DC 测量范围 0-100 °C 输出信号0—5 V DC 接线方式红:电源正 绿:电源负 黄:输出+7、 管路、接头、手动阀管路、接头、手动阀如图1-8所示。
系统所有部件的连接都是直接插拔,非常方便。
图 1-8实验二传感器、执行器实验一、实验目的了解传感器、执行器的工作原理,掌握它们在实际过程控制中的应用。
二、实验要求编程实现系统液位、温度、流量等模拟量的数据采集以及比例阀开度的控制。
三、实验步骤1、液位传感器的测试在水箱内按要求注入不同高度的纯净水,利用万用表和USB-4711A板卡的A/D口分别测出液位传感器的输出电压。
并在计算机内将其转换成对应的高度。
将测量数据填入下表。
高度250 mm 200 mm 150 mm 100 mm 50 mm 输出万用表测量值(伏)A/D 口测量值(伏)机内转换高度(mm)相对误差(%)2、温度传感器的测试改变水箱内水的温度,用温度计测量出水温,同时利用万用表和USB-4711A的A/D口测出温度传感器的输出电压,并在计算机内将其转换成相应的温度。
将测量数据填入下表。
温度计(度)传感器输出电压(伏)A/D口测量电压(伏)机内转换温度(度)相对误差(%)3、流量传感器的测试调节手动阀以改变流量传感器所在管路中的流量,利用USB-4711A的计数口测量流量传感器单位时间内输出的脉冲数,并转换成对应的流量。
将测量结果填入下表。
脉冲数(个/秒)150 128 125 122 121流量(l/min) 2.174 1.905 1.868 1.832 1.8194、比例阀的控制通过USB-4711A的D/A口向比例阀输出控制,比较机内控制电压与实际输出电压,并将结果填入下表。
控制量(伏)0 2.5 5 7.5 10测量值(伏)相对误差(%)四、思考题1、用传感器测量过程变量的准确性如何?如果有误差,可以采取什么方法进行修正?实验三 系统动态特性的测试一、实验目的学习单容对象动态特性的实验测定方法。
二、实验要求通过实验的方法建立液位对象的过程数学模型。
三、实验步骤利用液位对象的液位与输出流量的关系建立其模型 ⑴ 测试系统结构如图3-1所示。
图3-1 利用液位—输出流量关系建立模型的实验原理图⑵ 原理对于液位系统,根据动态物料平衡关系有dt hd A Q Q O i ∆=∆-∆ ①式中: i Q —输入流量; O Q —输出流量; h —液位高度; A —水箱截面积;i Q ∆、O Q ∆、h ∆分别为偏离某一平衡状态0i Q 、0O Q 、0h 的增量。
在静态时,O i Q Q =,0=∆dthd ,当i Q 变化时,h 、O Q 也将发生变化,由流体力学可知,流体在紊流情况下,h 与流量之间为非线性关系,为简化起见,作线性化处理。
近似认为O Q 与h 在工作点附近成正比,而与出水阀的阻力2R (称为液阻)成反比,即2R h Q O ∆=∆ 或 02Q h R ∆∆= ② 由①、②,消去中间变量O Q ,再求拉氏变换得 单容液位过程的传递函数为:11)()()(22+=+=∆∆=TS KAS R R S Q S H S W i ③ ⑶ 关闭所有出水阀,向水箱内注水至260mm 左右,然后按图3-1将出水阀旋开至适当位置,测量给定液位高度所对应的流量值,填入下表。
并根据式③求液位对象的模型。
h (mm)120 160 200 240O Q (l/min )1.660 1.7581.8682.1862R2R其中水箱的截面积mm mm A 175190⨯=。
=)(S W四、思考题1、分析可能造成模型不准确的原因。
实验四液位单回路控制系统的设计及参数整定一、实验目的掌握过程计算机控制系统的单回路控制方式。
二、实验要求设计单容水箱的液位单回路控制系统,实现液位的定值控制,并对系统进行参数整定。
三、实验内容1、按照图4-1,在组合式实验装置上通过选择管路,构造液位单回路控制系统。
图4-1 液位单回路控制系统原理图2、画出液位单回路控制系统方框图。
3、根据液位对象的数学模型,选择系统的采样周期T。
S4、运用经验法确定数字调节器的参数根据经验公式,选择调节器参数C K 、I T 和D T 值。
观察不同参数情况下的控制效果,最终确定较为满意的调节器参数。
实验次数调节器参数性能指标C KI TD TS t1 2 3 4四、思考题1、在控制过程中遇到了哪些问题,你是如何解决的?为了提高控制效果,你在控制算法上还采取了哪些措施?实验五PLC和DCS综合控制演示一、CS4000高级过程控制实验装置对象介绍CS4000高级过程控制实验装置对象如图6-1所示,采用四容液位控制体系和两容温度控制体系,主要包括:1、两个独立的水路动力系统,一路由循环泵、电动调节阀、电磁流量计组成(主管路);另一路由变频器、循环泵、涡轮流量计组成(副管路),由变频器调节流量,涡轮流量计检测流量。
2、四个有机玻璃水箱组,每个水箱均装有液位变送器;通过阀门切换,任何两组动力的水流可以到达任何一个水箱。
3、一个加热水箱和一个温度纯滞后水箱,安装多个Pt100热电阻检测仪表,由一个可控硅控制的电加热管提供热源,通过调节电加热管功率或待加热水量以达到控制水温的目的。
图6-1 CS4000高级过程控制实验装置对象采用PLC控制系统或DCS控制系统,我们可以进行液位、温度、压力、流量的控制实验。
二、PLC介绍实验室使用的是西门子S7 300系列PLC,主要由电源,CPU,数字量输入输出,模拟量输入输出模块组成,本次试验用到的是模拟量输入输出模块,如图6-2所示。
图6-2 PLC三、DCS组态原理DCS的组态过程是一个循序渐进、多个软件综合应用的过程,在应用AdvanTrol-Pro软件对控制系统进行组态时,可针对系统的工艺要求,逐步完成对系统的组态。
图6-3 系统组态工作流程图四、实验演示1、液位对象PLC控制演示1)点击图标,进入step7编程界面,新建一个新的项目,如下图所示,2)在My_Prj2项目内插入S7-300工作站:SIMATIC 300(1)3)单击SIMATIC 300(1),选择hardware,进入硬件组态窗口,如下图所示点击硬件目录工具,显示硬件目录硬件目录展开SIMA TIC 300硬件目录,双击Rack-300子目录下的Rail插入一个导轨所选模块简要信息4)插入0号导轨:(0)UR;插入各种S7-300模块。
分别如下图所示,本次实验用到的模块包括PS 307 10A(6ES7 307-1KA01-0AA0);CPU 314(6ES7 314-1AG13-0AB0);SM 331 AI 8*12bit(6ES7 331-7KF02-0AB0);SM332AO*12bit(6ES7 332-5HF00-0AB0)带有插槽的机架(导轨)槽号模块列表订货号输入模块地址输出模块地址MPI 子网地址 放置模块型号版本号5) 硬件组态,如下图所示6) 编写程序。
配置电源模块配置 C PU配置模拟量输入模块 配置模拟量输出模块7)选择My_prj2程序,单击My_prj2,选择SIMATIC 300(1),最后点击如图所示的下载按钮,这就完成了程序的下载。