过程控制系统实验指导书
过程控制实验指导书2014.3.5

《过程控制系统》实验指导书吴建国、姬文亮、陆平编写2014.3目录1.实验一:典型过程的工程建模2.实验二:单回路控制系统设计及其工程整定3.实验三:串级控制系统设计及其工程整定4.实验四:集散控制系统实验5.附录一:JX300X系统6.附录二:900系列智能控制器实验一典型过程的工程建模1、实验目的掌握典型过程的工程建模方法。
其实验原理为:被调对象选为锅炉液位或锅炉温度;改变其操纵量使其产生阶跃扰动,测试阶跃变化时过渡过程曲线,并用阶跃响应法来实验辨识系统的数学模型τ、T0、K(参见图1以及教材)。
图1 阶跃响应曲线2、实验准备(被调对象选为锅炉液位)实验采用静压法测量锅炉液位的扩散硅压力变送器LT-3、1#调节器、LIC-3进水电动调节阀M1+VC1,以及被调对象构成了锅炉液位调节系统。
2.1 配管操作锅炉液位调节系统的流程图(用水箱水源和进水阀)见图2,按图2进行下列配管操作,去改变对象的工艺流程。
2.1 用带快速接头的软管将阀门相连通。
2.2 配线操作实验的仪表配线见图进行插棒连线(6根弱电,4根强电)。
2.3 记录曲线的方法(取其中之一即可)2.3.1 在DCS系统上记录数据;2.3.2 人工记录智能仪表上的数据.3、实验步骤3.1 阶跃响应法辨识数学模型3.2 系统调整到相对稳定关闭锅炉出水阀,手操1#调节器使锅炉的液位为200mm左右。
然后改变1#调节器阀位使进水流量FIT-1为常用值(20-30%),手操锅炉出水阀使出水流量FIT-2与FIT-1相等,等待几分钟看液位基本不变,即达到系统相对稳定。
3.3 系统的正向阶跃扰动系统在相对稳定的基础上,手操1#调节器阀位阶跃增加5-10%。
同时记录手动(开环)时锅炉液位LT-3的阶跃响应曲线,分析求解系统数模的三大特性参数:τ、T0、K。
3.4 系统的反向阶跃扰动系统在正向阶跃扰动达到稳定后,再手操1#调节器阀位阶跃减少5-10%,同时记录锅炉液位LT-3的阶跃响应曲线,分析求解系统的τ、T0、K。
过程控制系统课程实习指导书

过程控制系统课程实习指导书赵黎明张冰广东海洋大学信息学院自动化系2009-09-08一.实习目的实习题目主要是加强理论与实践的联系,增强学生对于社会、国情和专业背景的了解;增强劳动观点和社会主义事业心,责任感;通过考察和实践,扩宽学生视野,巩固和运用课堂教学所掌握的理论知识,了解控制系统设计发展的状况,培养学生分析问题、解决问题的能力和创新能力;增强劳动观念,培养学生的敬业、创业精神;积极探索“学、研、产”相结合的人才培养新途径,提高人才培养质量。
二.实习内容实习内容主要是基于PCS3000高级型过程控制实验装置上,借助数字控制仪表,可编程控制器PLC和WINCC组态软件对其单容液位对象、多容液位对象、温度对象、压力对象和流量对象等进行全程监控。
实习过程中要理论联系实际结合以往学过的课程理论,如《过程控制工程》、《过程控制仪表》、《可编程逻辑控制器》,重点强化培养解决实际问题的能力,实践能力和动手能力。
具体内容如下:1.全面熟悉PCS3000高级型过程控制系统实习装置平台。
2.液位、压力、温度和流量信号检测。
3.单容水箱特性测试。
4.串联水箱特性测试。
5.锅炉温度特性测试。
6.水箱液位定值PID调节。
7.管道压力PID调节。
8.水箱液位多位式调节。
9.锅炉温度定值PID调节。
10.管道流量PID调节。
11.纯延迟水箱液位定值PID调节。
12.串联水箱液位定值PID调节。
13.实验数据收集整理,撰写实习报告和参加实习考核。
以上内容只是这次实习的总体规划,具体实施时应根据学生班级人数和具体情况灵活调整,可能只是其中一部分或若干部分。
三.实习时间自动化专业拟定二周;电气工程及其自动化专业拟定三周。
四.实习方式和安排实习方式为校内集中实习;地点安排在科技502。
具体实习内容安排详见实习计划表及其附录。
五.考核内容和方式及成绩评定标准考核内容及方式由三方面综合:平时表现、实习报告质量、答辩成绩。
实习最终成绩根据实习表现,实习报告情况和答辩情况来综合确定。
过程控制系统实验指导书02

《过程控制系统》实验指导书目录第一章实验装置说明 (1)第二章实验要求及安全操作规程 (4)实验一单容自衡水箱液位特性测试 (5)实验二双容水箱特性的测试 (9)实验三单容水箱液位定值控制系统 (12)实验四单闭环流量定值控制系统 (15)实验五锅炉内胆水温定值控制系统 (17)实验六锅炉内胆水温位式控制系统 (19)第一章实验装置说明实验对象总貌图如图1-1所示:图1-1 实验对象总貌图本实验装置对象主要由水箱、锅炉和盘管三大部分组成。
供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。
一、被控对象由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。
1.水箱:包括上水箱、中水箱、下水箱和储水箱。
上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。
水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。
水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。
上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。
储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。
储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。
2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。
计算机过程控制系统(DCS)课程实验指导书

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析分别用P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。
过程控制系统试验

过程控制系统实验指导书荣卫平、张法业编2007年12月目录目录 (2)第一章安全注意事项 (1)1.1防止触电 (1)1.2防止烫伤 (1)1.3防止损坏 (1)1.4其他注意事项 (2)第二章 A2000多热工参数控制系统说明 (3)2.1系统简介 (3)2.1.1 对象系统组成 (3)2.1.2 控制系统组成 (4)第三章过程控制系统实验 (5)实验1实验系统认知 (5)一、实验目的 (5)二、实验设备 (5)三、实验原理与介绍 (5)四、实验要求 (6)五、实验内容与步骤 (7)六、思考问题 (7)七、实验结果提交 (7)实验2温度、压力、液位和流量测量实验 (8)一、实验目的 (8)二、实验设备 (8)三、实验原理与介绍 (8)四、实验要求 (10)五、实验内容与步骤 (11)六、思考问题 (11)七、实验结果提交 (11)实验3单容水箱液位数学模型的测定实验 (12)一、实验目的 (12)二、实验设备 (12)三、实验原理与介绍 (12)四、实验要求 (14)五、实验内容与步骤 (14)六、思考问题 (14)七、实验结果提交 (14)实验4单闭环流量控制实验 (14)一、实验目的 (14)二、实验设备 (15)三、实验原理与介绍 (15)四、实验要求 (17)五、实验内容与步骤 (17)六、思考问题 (18)七、实验结果提交 (18)实验5单容水箱液位定值控制实验 (18)一、实验目的 (18)二、实验设备 (18)三、实验原理 (18)四、实验要求 (20)五、实验内容与步骤 (21)六、思考问题 (23)七、实验结果提交 (23)实验6锅炉水温定值控制实验 (24)一、实验目的 (24)二、实验设备 (24)三、实验原理 (24)四、实验要求 (26)五、实验内容与步骤 (26)六、思考问题 (26)七、实验结果提交 (26)第一章安全注意事项安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。
过程控制系统及装置实验指导书(简写本)^

过程控制系统及装置实验指导书刘解生重庆科技学院电子信息学院实验1离心泵、液位控制操作实习一、实验设备及实验目的1、实验设备:PC计算机、化工过程操作实习软件2、熟悉过程操作实习仿真软件的使用。
3、了解离心泵、液位的工艺流程。
4、掌握实际离心泵、液位过程控制的操作方法。
二、工艺说明1.工作原理离心泵一般由电动机带动。
启动前须在离心泵的壳体内充满被输送的液体。
当电机通过联轴结带动叶轮高速旋转时,液体受到叶片的推力同时旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外沿,以高速流入泵壳,当液体到达蜗形通道后,由于截面积逐渐扩大,大部分动能变成静压能,于是液体以较高的压力送至所需的地方。
当叶轮中心的流体被甩出后,泵壳吸入口形成了一定的真空,在压差的作用下,液体经吸入管吸入泵壳内,填补了被排出液体的位置。
2.“气缚”现象离心泵若在启动前未充满液体,则离心泵壳内极易存在空气,由于空气密度很小,所产生的离心力就很小。
此时在吸入口处形成的真空不足以将液体吸入离心泵内,因而不能输送液体,这种现象为“气缚”。
所以离心泵在开动前必须首先将被输送的液体充满泵体,并进行高点排气。
3.“汽蚀”现象通常,离心泵叶轮入口处是压力最低的部位,如果这个部位液体的压力等于或低于在该温度下液体的饱和蒸汽压力,就会有蒸汽及溶解在液体中的气体从液体中大量逸出,形成许多蒸汽和气体混合物的汽泡。
这些小汽泡随着液体流入高压区后,汽泡破裂重新凝结。
在凝结过程中,质点加速运动相互撞击,产生很高的局部压力。
在压力很大、频率很高的连续打击下,离心泵体金属表面逐渐因疲劳而损坏,寿命大为缩短。
离心泵的安装位置不当、流量调节不当或入口管路阻力太大时都会造成“汽蚀”。
4.离心泵的特性曲线离心泵的流量(F)、扬程(H)、功率(N)和效率(η)是其重要的性能参数。
这些性能参数之间存在一定的关系,可以通过实验测定。
通过实验测定所绘制的曲线,称为离心泵的特性曲线。
常用的离心泵特性曲线有如下三种。
过程控制系统实验指导书以及实验报告格式要求

《过程控制技术与系统》实验指导书过程控制系统组编华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化、测控、集控专业本科生3.所修课程过程控制技术与系统或热工控制系统4.实验课时分配⒌PCS-B过程控制系统⒍实验总体要求1、掌握对象动态特性测量方法;2、掌握单回路控制系统原理和参数整定方法;3、掌握串级控制系统原理和参数整定方法。
⒎本实验的重点、难点及教学方法建议实验通过对控制系统的基本理论和方法有一个感性认识和更好地理解。
实验的重点及难点是:对象动态特性测量基本方法;单回路控制系统投运和参数整定方法;串级控制系统投运和参数整定方法。
目录实验一上水箱动态特性测试实验 (3)实验二上水箱液位控制系统实验 (6)实验三上下水箱液位串级控制系统实验 (11)附录一硬件介绍 (16)附录二软件使用说明 (34)附件三实验报告格式要求 (40)实验一上水箱动态特性测试实验一、实验目的1、被控对象动态特性测试;2、学习和了解DCS系统的原理及它在过程控制中的应用。
二、实验类型综合型三、实验装置1、DCS过程控制实验装置(其中使用:电动调节阀、上水箱及液位变送器、储水箱、增压泵等),液位变送器的量程一般在出厂前已调试好。
2、DCS控制机柜3、安装有组态及监控软件的计算机上水箱动态特性测试实验系统见图1-1图1-1 上水箱单容特性测试实验流程图四、实验步骤1、将过程控制综合实验装置的手动阀门1V1、V4打开, 1V2、1V3、1V7关闭。
2、确认实验装置和控制机柜电源正常。
3、点击主界面上方的“单容水箱特性”按钮进入单容水箱特性实验界面。
图1-2 实验系统主界面4、点击“开始实验”按钮,确认增压泵启动正常,调节阀开度为5%。
5、设置阀门开度值(点击设置按钮,在弹出的对话框中输入阀门开度,以0-100百分数表示),使上水箱水位稳定后。
过程控制系统实验指导书

过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。
二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。
4.了解单回路控制,串级控制及顺序控制的概念,组成方式。
三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。
其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。
高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。
能在一个屏幕上对串级或两个独立的回路进行操作。
标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。
对YS1700编程可直接在PC机上完成。
SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。
(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。
二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。
4.了解单回路控制,串级控制及顺序控制的概念,组成方式。
三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。
其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。
高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。
能在一个屏幕上对串级或两个独立的回路进行操作。
标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。
对YS1700编程可直接在PC机上完成。
SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。
(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。
具有通信功能,能与集中监视操作站及上位计算机交互信息,构成集散控制系统。
具有自诊断功能,有助于系统维护。
4、单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数恒定,而调节器只接收一个测量信号,其输出也只控制一个执行机构。
单回路控制系统主要由四个基本环节组成,即被控对象(简称对象)、测量变送装置、控制器和执行器。
5、SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
6、Smith补偿法改善大滞后对象在过程控制中,常遇到纯滞后时间很长的对象,特别是纯滞后时间L与其惯性时间常数T之比较大的对象,使用常规PID调节效果不佳。
为此,在对象数学模型确知的情况下,采用Smith补偿法可以取得的较好的效果。
Smith补偿结构是先估计一个没有滞后环节的系统模型,用PID算法对该模型进行控制,这样等同于对原系统进行控制。
由于控制回路中没有滞后环节,因此对于大滞后的对象,Smith补偿能取得很好的效果。
Smith补偿的困难之处在于对象模型估计的准确性,估计的准不准直接关系到控制效果的好坏。
(1)Smith补偿控制器的预测控制器结构(2)标准Smith补偿控制器的数字调节器实现实验二三容水箱液位控制系统一、实验目的1.了解三容水箱液位定值控制系统的结构和组成。
2.掌握三阶系统调节器参数的整定与投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
5.综合分析五种控制方案的实验效果。
二、实验设备(实验对象总貌图)1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
三、实验原理图3-14 三容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-14所示。
本实验以上、中、下三只水箱串联作被控对象,下水箱的液位高度为系统的被控制量。
由第二章双容特性测试实验可推知,三容对象是一个三阶系统,可用三个惯性环节来描述。
本实验要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 或PID 控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
调节器参数的整定方法调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。
工程实验整定法有以下四种:(一)经验法若将控制系统按照液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,所以无论是控制器形式还是所整定的参数均可相互参考。
表3-1为经验法整定参数的参考数据,在此基础上,对调节器的参数作进一步修正。
若需加微分作用,微分时间常数按T D =(31~41)T I 计算。
(二)临界比例度法图3-4 具有周期T S的等幅振荡这种整定方法是在闭环情况下进行的。
设T I=∞,T D=0,使调节器工作在纯比例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图3-4所示。
根据临界比例度δk和振荡周期T S,按表3-2所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。
临界比例度法的优点是应用简单方便,但此法有一定限制。
首先要产生允许受控变量能承受等幅振荡的波动,其次是受控对象应是二阶和二阶以上或具有纯滞后的一阶以上环节,否则在比例控制下,系统是不会出现等幅振荡的。
在求取等幅振荡曲线时,应特别注意控制阀出现开、关的极端状态。
(三)衰减曲线法(阻尼振荡法)在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至出现图3-5所示的4:1衰减过程为止。
这时的比例度称为4:1衰减比例度,用δS表示之。
相邻两波峰间的距离称为4:1衰减周期T S。
根据δS和T S,运用表3-3所示的经验公式,就可计算出调节器预整定的参数值。
(四)动态特性参数法所谓动态特性参数法,就是根据系统开环广义过程阶跃响应特性进行近似计算的方法,即根据第二章中对象特性的阶跃响应曲线测试法测得系统的动态特性参数(K、T、τ等),利用表3-4所示的经验公式,就可计算出对应于衰减率为4:1时调节器的相关参数。
如果被控对象是一阶惯性环节,或具有很小滞后的一阶惯性环节,若用临界比例度法或阻尼振荡法(4:1衰减)就有难度,此时应采用动态特性参数法进行整定。
四、实验内容1)熟悉液位控制系统的操作方法与步骤。
2)利用组态王软件画出液位控制系统工艺流程图,连接控制系统。
3)适量增加给定值,观察液位变化,组态画面中曲线变化,跟踪情况及表上数值的变化。
4)观察电动调节阀的开度变化规律。
5)改变几组P I D参数,领会其对控制系统的影响。
6)观察控制效果,分析控制数据。
7) 利用手动阀加扰动,观察液位控制系统的调节过程。
本实验选择上、中、下三只水箱串联组成三容对象(三阶系统)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9、中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀门开度F1-9 > F1-10 > F1-11),其余阀门均关闭。
五、实验报告要求1.画出三容水箱液位定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,并写出整定过程。
3.根据实验数据和曲线,分析三阶系统在阶跃扰动作用下的静、动态性能。
4.比较在相同的阶跃扰动下不同PID参数对系统性能产生的影响。
5.比较在相同的PID参数下,阶跃扰动作用在不同位置对系统性能产生的影响。
6.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
7.综合分析五种控制方案的实验效果。
六、思考题1.为什么对三个水箱的出水阀开度大小要求不同?2.改变比例度δ和积分时间T I对系统的性能产生什么影响?3.如果在相同阶跃信号作用下,要求系统的被控制量具有与前面两个实验完全相同的动态性能指标,本实验中调节器的PID参数应如何设置?附录1 实验装置介绍第一节系统概述一、概述“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。
它是本企业根据工业自动化及其他相关专业的教学特点,并吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证而推出的一套全新的综合性实验装置。
本装置结合了当今工业现场过程控制的实际,是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。
该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。
本装置还可根据用户的需要设计构成AI智能仪表,DDC远程数据采集,DCS分布式控制,PLC可编程控制,FCS现场总线控制等多种控制系统,它既可作为本科,专科,高职过程控制课程的实验装置,也可为教师、研究生及科研人员对复杂控制系统、先进控制系统的研究提供一个物理模拟对象和实验平台。
学生通过本实验装置进行综合实验后可掌握以下内容:1.传感器特性的认识和零点迁移;2.自动化仪表的初步使用;3.变频器的基本原理和初步使用;4.电动调节阀的调节特性和原理;5.测定被控对象特性的方法;6.单回路控制系统的参数整定;7.串级控制系统的参数整定;8.复杂控制回路系统的参数整定;9.控制参数对控制系统的品质指标的要求;10.控制系统的设计、计算、分析、接线、投运等综合能力培养;11.各种控制方案的生成过程及控制算法程序的编制方法。