圆柱体侧面积公式表面积公式圆柱体体积公式
所有体积表面积侧面积公式

所有体积表面积侧面积公式
一、正方体。
1. 体积公式:V = a^3(a为正方体的棱长)
2. 表面积公式:S = 6a^2
3. 侧面积公式:正方体的侧面有4个正方形,每个正方形边长为a,所以侧面积S_侧=4a^2
二、长方体。
1. 体积公式:V=abh(a、b、h分别为长方体的长、宽、高)
2. 表面积公式:S = 2(ab+ah+bh)
3. 侧面积公式:长方体侧面积S_侧=2h(a + b)
三、圆柱。
1. 体积公式:V=π r^2h(r为底面半径,h为圆柱的高)
2. 表面积公式:S = 2π r^2+2π rh
3. 侧面积公式:S_侧=2π rh
四、圆锥。
1. 体积公式:V=(1)/(3)π r^2h(r为底面半径,h为圆锥的高)
2. 表面积公式:S=π r^2+π rl(l为圆锥的母线长,l = √(r^2)+h^{2})
3. 侧面积公式:S_侧=π rl
五、球。
1. 体积公式:V=(4)/(3)π R^3(R为球的半径)
2. 表面积公式:S = 4π R^2,球没有侧面积概念(因为球是一个完全对称的几何体)。
圆柱、圆锥常用的表面积、体积公式

刘老师圆柱的侧面积=底面圆周长×高 字母表示:S 侧=C 底h 2. 底面圆周长=圆周率×直径=圆周率×2×半径 字母表示:C 底=πd=2πr 3. 求圆柱的表面积三步:(1)圆柱的底面积=S 底=πr²=π(d÷2)²=πd²÷4(2)圆柱侧面积=S 侧=h×C 底(底面圆周长)=2πrh=πdh (3)圆柱表面积=S 表=S 侧+2S 底圆柱体积的公式 圆柱的体积=底面积×高 字母表示:V 柱=S 底h 圆锥体积的公式(1) 圆锥的体积等于与它等底等高圆柱体积的1/3 V 锥=V 柱÷3=S 底h÷3 (2) 已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3 (3) 已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h (4) 已知圆锥体积(V )和底面积(S ),求高的公式:h=3V 锥÷S 底板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5例题精讲圆柱与圆锥【例 2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 3】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【例 10】(2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3)5cm【例 11】(第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 12】有两个棱长为8厘米的正方体盒子,A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A盒注满水,把A盒的水倒入B盒,使B盒也注满水,问A盒余下的水是多少立方厘米?【例 13】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【例16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【例17】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【例18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【例19】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【例20】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 22】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【例23】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 24】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆∆绕AC旋转一周,求ABC 扫出的立体图形的体积.(π 3.14=)CB A 【例 25】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【巩固】如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少?ABC【例 26】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)AB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?BA。
圆柱体积的计算公式

圆柱体的体积怎么算?公式是什么?
圆柱的体积=底面积x高,即V=S底面积×h=(π×r×r)h。
1、圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。
2、圆柱体的两个底面是完全相同的两个圆面。
两个底面之间的距离是圆柱体的高。
3、圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
扩展资料
下面是各种不同图形体积计算公式:
1、长方体:
长方体体积=长×宽×高
2、正方体:
正方体体积=棱长×棱长×棱长
3、圆柱(正圆):
圆柱(正圆)体积=圆周率×(底半径×底半径)×高以上立体图形的体积都可归纳为:
1、圆锥(正圆):
圆锥(正圆)体积=圆周率×底半径×底半径×高/3 2、角锥:
角锥体积=底面积×高/3
4、球体:
球体体积=4/3(圆周率×半径的三次方)。
圆柱的表面积和体积计算公式

圆柱的表面积和体积计算公式圆柱体是一种常见的几何体,它具有圆柱壁和两个平行的圆底面。
计算圆柱体的表面积和体积是学习数学和几何的基本内容。
下面将介绍圆柱体的表面积和体积计算公式。
一、圆柱体的表面积计算公式圆柱体的表面积由两个圆底面的面积和圆柱侧面的面积组成。
下面分别介绍这两部分的计算公式。
1. 圆底面的面积计算公式圆底面的面积可以由圆的半径来计算。
公式如下:底面面积= π × 半径²其中,π是一个常数,约等于3.14159。
半径表示底面圆的半径长度。
2. 圆柱侧面的面积计算公式圆柱侧面的面积可以通过圆的周长和圆柱体的高度来计算。
公式如下:侧面面积 = 周长 ×高度我们知道,圆的周长等于2π乘以半径,即:周长= 2π × 半径所以,侧面面积的计算公式可以转化为:侧面面积= 2π × 半径 ×高度3. 圆柱体的表面积计算公式将上述两个部分的面积加起来,即可得到圆柱体的表面积计算公式:表面积 = 2 ×圆底面的面积 + 圆柱侧面的面积代入前面的公式,得到:表面积= 2 × (π × 半径²) + (2π × 半径 ×高度)= 2π × 半径 × (半径 + 高度)二、圆柱体的体积计算公式圆柱体的体积可以由圆底面的面积和圆柱体的高度来计算。
计算公式如下:体积 = 圆底面的面积 ×高度代入圆底面的计算公式,得到:体积= (π × 半径²) ×高度三、实例演算为了更好地理解和应用圆柱体的表面积和体积计算公式,以下举例进行实际演算。
例题:一个圆柱的底面半径为5cm,高度为8cm,求其表面积和体积。
解:根据上述的公式,我们可以将已知数据代入计算。
表面积= 2π × 半径 × (半径 + 高度)= 2 × 3.14159 × 5 × (5 + 8)≈ 2 × 3.14159 × 5 × 13≈ 403.936体积= (π × 半径²) ×高度= 3.14159 × 5² × 8≈ 3.14159 × 25 × 8≈ 628.318所以,该圆柱的表面积约为403.936平方厘米,体积约为628.318立方厘米。
圆柱、圆锥、圆台的体积和面积公式。

圆柱、圆锥、圆台的体积和面积公式。
圆柱、圆锥、圆台的体积公式:
圆柱的体积:V= πr 2h 或 V=
Sh
(r 为圆柱的底面半径,h 为圆柱的高,S 为圆柱的底面积)
圆锥的体积:V=31πr 2h 或 V=3
1Sh
(r 为圆锥的底面半径,h 为圆锥的高,S 为圆锥的底面积)
圆台的体积:V=31πh (R 2+r 2+Rr)
(R 为圆台的底面半径,r 为圆台的顶面半径,h 为圆台的高) 圆柱、圆锥、圆台的面积公式:
圆柱的表面积公式: S=2πr 2+2πrh
圆柱的侧面积公式: S=2πrh
(r 为圆柱的底面半径,h 为圆柱的高)
圆锥的表面积公式: S=πr 2+πr l
圆锥的侧面积公式: S=πr l
(r 为圆锥的底面半径,h 为圆锥的高,l 圆锥的母线)
圆台的表面积公式: S=πr2+πR2 +πR l+πr l
=π(r2+R2 +R l+r l)
圆台的侧面积公式: S=πR l+πr l
(R为圆台的底面半径,r为圆台的顶面半径,h为圆台的高,l圆台的母线)。
圆柱体的侧面积与体积

圆柱体的侧面积与体积圆柱体是根据一个圆绕着圆心轴线旋转而形成的一个几何体,它具有独特的几何属性。
本文将重点讨论圆柱体的侧面积与体积,并探讨它们的计算方法。
一、圆柱体的侧面积侧面积是指圆柱体的表面积中除了底面积外,其他全部面积之和。
圆柱体的侧面积可以通过展开圆柱体得到。
可将一个圆柱体展开为一个长方形,再通过计算长方形的面积来得到圆柱体的侧面积。
假设圆柱体的底面半径为r,高度为h,则展开后的长方形的宽度为2πr(圆周的长度),长度为h。
根据长方形的面积公式,可得到圆柱体的侧面积S:S = 2πrh二、圆柱体的体积体积是指圆柱体所包含的空间大小,可以用于描述物体的容量。
圆柱体的体积可以通过计算底面积与高度的乘积来得到。
圆柱体的底面积为圆的面积,即A = πr^2。
因此,圆柱体的体积V 可以表示为:V = πr^2h三、实例分析为了更好地理解圆柱体的侧面积与体积的计算方法,我们来看一个实际的例子。
假设某个圆柱体的底面半径为5cm,高度为8cm。
我们可以先计算侧面积,再计算体积。
侧面积S = 2πrh= 2π * 5 * 8≈ 251.327 cm^2体积V = πr^2h= π * 5^2 * 8≈ 628.319 cm^3因此,该圆柱体的侧面积约为251.327 cm^2,体积约为628.319 cm^3。
四、结论通过以上的分析可以得出结论:圆柱体的侧面积与体积分别与底面积和高度有关。
侧面积等于底面周长乘以高度,而体积等于底面积乘以高度。
我们可以根据这些公式来计算圆柱体的侧面积和体积。
总结起来,圆柱体是一个具有特殊几何属性的几何体,它的侧面积和体积可以通过一定的计算方法来求得。
通过对圆柱体的侧面积与体积的计算,我们可以更好地理解和应用它们在实际问题中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱体侧面积公式表面积公式圆柱体体积公式圆柱体是一种几何体,由两个平行且相等的圆底面联结而成。
圆柱体的侧面是由底面沿着垂直于底面的方向移动所得的表面,可以看作是一个长方形的形状,高度等于圆柱体的高。
1.圆柱体的侧面积公式:
圆柱体的侧面积可以通过将它展开成一个矩形,再计算矩形的面积来求得。
矩形的长为圆的周长,即2πr,宽为圆柱体的高度h。
因此,圆柱体的侧面积公式可以表示为:
侧面积=周长×高度=2πr×h
2.圆柱体的表面积公式:
圆柱体的表面积由两个底面和一个侧面构成。
圆柱体的底面积为圆的面积,即πr²。
假设圆柱体的高为h,则两个底面的面积共为2πr²。
另外,圆柱体的侧面积为2πrh。
所以,圆柱体的表面积公式可以表示为:表面积 = 2底面积 + 侧面积= 2πr² + 2πrh = 2πr(r + h)
3.圆柱体的体积公式:
圆柱体的体积可以通过将其底面面积乘以高度来计算。
圆柱体的底面面积为πr²,且高度为h,所以圆柱体的体积公式可以表示为:体积=底面积×高度=πr²×h
以上是圆柱体侧面积、表面积和体积的公式。
这些公式在几何学和实际生活中都有重要的应用。
在工程领域,圆柱体的体积公式可以用来计算容器的容积;在建筑领域,圆柱体的表面积公式可以用来计算柱子的表面
积;在物理学中,圆柱体的侧面积公式可以用来计算液体流动的表面积等等。