大学生竞赛培训数学论文

合集下载

大学数学论文(5篇)

大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺当开展的基础。

第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。

最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。

这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。

基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。

2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。

主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。

限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。

还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。

还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。

基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。

大学生数学竞赛3篇

大学生数学竞赛3篇

大学生数学竞赛第一篇:大学生数学竞赛的重要性随着世界经济的不断发展,数学竞赛在学生中越来越受到关注。

大学生数学竞赛就是其中的重要一环。

大学生数学竞赛不仅考察了学生的数学知识储备与应用能力,还能提高学生数学思维的发展,培养学生的解题能力和专业素养,受到了广泛的认可和赞扬。

首先,大学生数学竞赛是考察学生数学知识储备与应用能力的一种方法。

数学是一门基础性学科,对于大部分专业都有很大的帮助。

在大学生数学竞赛中,会考察学生对于数学知识的掌握以及能够将所学的知识应用到实际问题中去的能力。

这样一来,可以检验出学生在数学方面的水平和能力,并为学生提供更好的发展和学习机会。

其次,大学生数学竞赛能够提高学生数学思维的发展。

数学竞赛的考题对于学生的思维和判断能力有很大的挑战性,能够使学生积极探索、动脑思考,锻炼学生的逻辑思维和抽象思维能力,有利于学生综合素质的提高。

最后,大学生数学竞赛能够培养学生的解题能力和专业素养。

竞赛需要高强度的训练和准备,这样可以帮助学生逐渐提升自己的解题能力和专业素养。

在竞赛过程中,学生会不断地接触到新的数学概念和技巧,提高学生的中英文文献查找、阅读、理解和运用水平,增强学生的数学思维能力和解决实际问题的能力,从而使学生能够从学术上更快地成长和进步。

总之,大学生数学竞赛对于学生的成长和发展极为重要,既能够检验学生所学的知识和技能,又能够培养学生的数学思维和解题能力,帮助学生锤炼专业素养,提高学生的综合能力和竞争力。

第二篇:大学生数学竞赛的难点及应对之策大学生数学竞赛作为一种高难度的竞赛,对于学生来说具有非常大的挑战性。

考虑到这样的情况,学生在准备大学生数学竞赛时,需要掌握一定的应对之策。

首先,学生需要提前多练习,通过模拟考试来提高自己的应试能力和考试技巧。

在考试之前,学生应根据自己的学习情况制定详细的学习计划,合理安排学习的时间,避免急于求成,使自己精力充沛、状态最佳。

其次,学生需要多思考、多交流,通过讨论问题来加深对数学知识的理解和掌握。

数学建模竞赛优秀大学生论文.doc

数学建模竞赛优秀大学生论文.doc

数学建模竞赛优秀大学生论文医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。

1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。

1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。

原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。

1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。

1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。

把求得的数学结果返回到实际问题中去,检验其合理性。

如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。

总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。

2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。

因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。

DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。

聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。

在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。

大学生数学建模竞赛B题优秀论文

大学生数学建模竞赛B题优秀论文

关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。

首先,我们基于层次分析法建立了模型一。

模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。

对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。

模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。

我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。

考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。

最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。

模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。

然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。

评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。

修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。

基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。

本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。

通过对结果的讨论,得出了具有一定实际意义的结论和建议。

一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。

二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。

(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。

三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。

(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。

四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。

五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。

(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。

六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。

(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。

七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。

(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。

(三)改进的方向针对模型的不足,提出可能的改进方向和方法。

八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。

(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。

以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。

问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。

现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。

问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。

大学生数学建模竞赛与创新能力的培养论文

大学生数学建模竞赛与创新能力的培养论文

大学生数学建模竞赛与创新能力的培养论文大学生数学建模竞赛与创新能力的培育论文数学建模有利于将数学理论付诸实践应用,在各行业中作用巨大。

大学生数学建模教育的实施,也是素质教育创新的重要要求。

开展数学建模竞赛,有利于提高大学生创新能力,对提升大学生综合素质也有帮助。

讨论如何通过大学生数学建模竞赛培育大学生创新能力,具有十分重要的现实价值。

一、通过数学建模竞赛培育大学生创新能力的途径与策略高校组织开展数学建模比赛,对创新型大学生的选拔机制进行完善,为大学生创新能力的提高提供实战平台。

老师不仅要激发学生对数学建模的爱好,也要培育大学生的创新能力。

学校鼓舞全体学生共同参加数学建模竞赛,通过竞赛实现大学生各方面能力的培育。

竞赛的开展主要分为初期选拔、暑期选拔以及赛前选拔三个阶段。

1. 初期选拔阶段。

高校于每年的4 月开始进行初期选拔的筹备工作,在5 月初开始进行动员宣传,采纳张贴海报及制作展板等形式进行文件的发布,全校级别的数学建模竞赛于6 月份组织开展。

随着近些年数学建模竞赛的不断进展,学生对数学建模的爱好高涨。

数学指导组老师一同进行竞赛论文的评审,遵循一定的评审原则,保证评审的合理性、客观性。

获奖人数根据参赛总人数进行合理设置,通常约占总人数的50%。

经过校级竞赛选拔部分善于创新的学生进行暑期培训。

整体而言,数学建模竞赛具有较大的影响,涉及较多的学校与学生,学生从中也可获得较大的好处,对大学生创新能力的培育有利。

2. 暑期选拔以及再次选拔阶段。

高校通常在8 月开始着手参赛学生的建模专题培训,合理制订数学建模专题的培训计划,对竞赛知识内容进行科学编排,保证理论课与实验课课时的均衡安排,使指导老师的教学优势得到发挥。

课程组根据大纲的指示,进行年度教学计划的科学制订。

老师也可一同进行备课,以全国竞赛出题为中心进行探讨,促进学生竞赛能力的提高。

在短期集训课的学习完成后,对参训学生进行再次选拔。

此时学生的竞争意识将十分强烈,选拔竞争也十分激烈。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

竞赛数学小论文

竞赛数学小论文

多种解题方法例解15-=a ,求1227223--+a a a 的值摘 要:学习竞赛数学最重要的是锻炼思维,而解决问题又是学生学习数学的目的,对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法。

在教学中,不失时机地通过引导学生进行“一题多解”的训练,通过广泛的联想,使我们的思维触角伸向不同的方向,不同的层次,这样不仅能巩固所学知识,而且能较好地培养学生思维的广阔性。

下面这道题不仅可以用最普通的直接带入法,还能用变形、分解、凑配的方法解决。

Abstract : The most important thing to learn mathematics competition is it can exercice thinking, and solve the problem is the purpose of studying mathematics for students, analyze researching from different angles may get different revelation for common question, and can elicit a variety of different solutions. In the teaching, guiding students to carry on the "one topic multi-solution" training in time, through wide imagination, make our thinking spread different direction and different levels, so that not only can consolidate knowledge, but also can cultivate the students' thinking of extensity well. This problem can be solved with the most common Directly Into Method 、Disassemble and so on.关键词: 竞赛数学 思维能力 一题多解 综合除法一、问题陈述 已知15-=a ,则1227223--+a a a 等于多少?二、问题解答解法一:直接代入法直接带入法数学解题中最容易想到的有时候也是一种计算量巨大的方法,在没有思路解题的时候采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学生竞赛培训数学论文1普通高校开展数学竞赛培训的必要性与可行性分析在高科技产品日新月异的信息时代,笔者认为:“数学是科学技术发展的必备技术工具,是各门学科发展的基础和升华”。

因此数学教育在现化教育中所占据地位举足轻重。

数学竞赛的举办和发展为数学教育增添了新的活力,提供了新的契机,发掘了新的人才。

从微观角度来说,为了提高学生的创新思维和发散性思维,在数学竞赛前进行培训显得尤为重要。

从宏观角度来说,赛前培训对推进教学改革和提高教学质量,有着多方面的积极意义。

应与课堂教学相互配合,相互渗透,但又有着课堂教学所无法代替的重要作用。

首先,数学竞赛培训能够巩固学生在课内所学的知识、扩大学生的视野、拓宽解题思路、增强逻辑推理能力以及解题和运用数学知识解决实际问题的能力;其次,数学竞赛培训能够帮助学生掌握正确的学习方法,促使大学数学教学更好地进行;再次,数学竞赛培训对提高学生学习兴趣,促进思维能力发展,增强探索精神和创新才能皆有促进作用;最后,数学竞赛在发现和发挥大学生的特长,选拔和培养具有数学天赋的学生等方面也有着积极的意义。

参加全国大学生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参加预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织大学生参加竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所研究的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类学生必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺利开展的基础。

第三,调动部分高校专任的数学教师组成竞赛培训团队也是一项动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从此项经费中申请一部分;第二方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参加培训的学生收取(或变相地收取)一部分。

这些经费主要用于:参加竞赛的学生报名费、培训教师的课时费和学生竞赛时的考试相关费用等。

基于上述分析,在普通高校开展数学竞赛培训以及组织学生参加全国大学生数学竞赛是完全可行的并具有实际意义的。

2普通高校学生现状分析为了吸引、鼓励更多的学生参与数学竞赛活动,必须先了解现在普通高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,普通高校大学生的质量普遍下降。

主要原因有两个:一是大学的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致普通高校中的优质生源比例相对减少。

限于优质生源比例小的问题,再加上数学理论繁杂与深奥,学习起来困难重重,多数学生在学习数学时会产生为难情绪从而心生畏惧。

还有小部分的学生在进校时数学基础就比较差,(或由此产生的)学习数学的积极性很低。

还有一部分学生认为数学无实际用途,从主观上学习数学的兴趣消极。

基于以上几点原因加上一些来自普通高校教学条件的限制,很多大学生的实际数学水平较低,所引发的直接结果就是学习成绩下降、考试分数偏低、补考人数增多,更有甚者一些学生因为数学不及格而无法毕业。

现阶段普通高校多数强调实践,所以在大学一、二年级基础阶段会大量调减理论课时,特别是有关数学的理论课程。

这样就导致了教师在上课时会对课程进行调整,例如内容增加、进度加快等等。

数学课中部分核心内容由于难以理解,权衡之下只好放弃。

因课时问题,数学习题课早已名存实亡。

关于这一点在文[3]中笔者会有详尽的论述。

一些普通高校强调少讲精讲,但数学本身就是一门高深抽象的学科,没有理论基础实践就无从说起。

一些内容略讲或是不讲,都有可能在学生在今后的实际应用中造成影响。

但即使知道删减理论会有诸多的弊病,许多普通高校还是在课程中减少了很多的数学内容。

多数普通高校的本科学生所学的数学内容少,而且掌握的不扎实不牢固。

这一点与数学竞赛产生了严重的予盾。

那么哪些学生适合参加数学竞赛呢?笔者认为有两类学生比较合适一类是自主学习能力强,数学基础扎实,对数学非常感兴趣的学生;另一类就是考研的学生。

这两部分学生对数学的求知欲望非常强烈,因此成为是参加数学竞赛的主力军。

3稳固参赛学生群体策略据调查显示,有的普通高校因为这个问题而放弃参加全国大学生数学竞赛。

即便参加人数也少的可怜,以我校为例,我校于2011年第一次参加全国大学生数学竞赛,当时仅有一个非数学专业的学生参加了竞赛,其余29名数学专业的学生也是被志愿的。

为了保障全国性的数学竞赛活动在我校顺利开展,我校实行了以“利益驱动”的办法。

使学生有两方面的既得利益:选修学分和考研辅导。

为了稳固参赛学生的群体,我校主要从以下三方面开展了工作。

3.1有效宣传根据经验,通过学生(或辅导员)在学生中进行数学竞赛宣传以及在学生中发放宣传小册子的方法收效甚微。

为了能够在学生中得到有效的宣传,我院在大一的第二学期末,由《高等数学》任课教师负责向自己的任课班级做大量宣传,向学生讲清楚参加数学竞赛所能获得的利益,通过自愿报名的方式鼓励学生积极参与。

3.2设立选修课为能够顺利进行数学竞赛辅导培训,我们开设两门40学时的选修课《高等数学选修》与《数学基础研修》(这两门课程的学分均为2学分,他们的本质是数学竞赛辅导课程)。

这样我们就解决了培训的时间与教室的安排问题(当然,我们可以给教务部门一些时间安排上的建议)。

由于大学生在大学期间要修满一定的选修学分,所以这两门课程的开设对学生是有一定吸引力的。

另外,培训内容要尽可能让学生理解。

如果内容难度过大,就会造成多数学生在课堂的注意力不集中,甚至来上课仅仅是为了走形式。

这样就达不到吸引学生参加竞赛的目的。

总的来说,就是用选修课的学分来吸引学生参加数学竞赛培训,在学生能够接受的基础之上对其加以培训,并弱化对选修课的考核。

慢慢提高学生对学习数学信心,自主自愿报名参加数学竞赛。

考虑到普通高校的教学内容(无论是专业的还是非专业的)无法满足竞赛的要求,而且还有一小部分竞赛内容不在工科教学大纲的范围内。

我校选择了开设《高等数学选修》、《基础数学研修》两门选修课。

《高等数学选修》是为参加数学竞赛预赛的工科类学生准备的;《基础数学研修》是为专业类的本科学生而开设的。

这两门选修课的授课内容严格遵从《中国大学生数学竞赛大纲》的要求。

对提高学生数学素养是有百利而无一害的。

3.3考研辅导数学竞赛的难度大大超过了考研数学的难度,为了吸引更多考研的学生,我们的辅导以考研数学的难度为基础的。

让学生在参赛的同时得到专业教师的考研辅导,加大学生对竞赛的兴趣。

竞赛辅导的基础目标是考研数学辅导,重要目标是数学竞赛辅导。

我们的辅导内容遵从竞赛大纲、以历年考研真题结合历年的竞赛真题的解题技巧制定讲授内容。

这样既能得学分,又能得到考研数学的辅导,在帮助考研学生的同时也达到了稳定参加数学竞赛人数的目的。

笔者认为上述条件能够吸引很大一批学生选修《高等数学选修》与《基础数学研修》。

快速扩大数学竞赛在学生中的影响。

一方面学生会因为选修学分易得而在学生群体广泛宣传;另一方面学生会因为能满足自己的求知欲望而踊跃报名,还有一些学生会因能得到免费的考研数学辅导而进行宣传。

在参加竞赛培训的人数得以保障的情况想,在参加培训的学生中选择一些较好的参加竞赛,这样就能够提高获奖率,也可以减少一些费用(比如报名费、考务费等)。

另外,我校的学生在数学竞赛中获得的奖项,在物质上是没有任何奖励的。

不过,按获得的奖项的等级不同会奖励不同的创新学分,创新学分可作为选修学分。

比如,在初赛中获得国家一等奖,会得5个创新学分;二等奖,4个创新学分,依次类推。

在决赛中获得奖项,在我校还从未有过,但笔者相信通过我校师生的共同努力,在不远的将来一定会实现这个梦想。

4建立一支德能兼备的培训团队为了能够更好地让学生适应竞赛试题题型,组建一支不计报酬和得失、具有奉献精神和敬业精神的的培训教师团队是关键。

组建这样的队伍需要两个条件。

首先,培训教师虽然不计报酬但不能没有报酬,否则会使培训的教师缺乏教学兴趣。

由于我校的数学竞赛培训是以选修课的形式进行教学的,故大部分的报酬是由学校以课时费的形式来支付的。

但是与培训教师花费大量时间和精力进行试题和教法的研究相比,他们所得的课时费与付出是无法成正比的。

其次,大学生的数学竞赛培训可以看作我们日常教学的有益补充。

培训教师必须有较好的数学素养,教学方法,在解题能力和表达能力有较高的水平。

同时,还要求培训教师广泛地查阅课外参考书、新近的考研参考书和各省市及国家的数学竞赛试卷等。

可以说培训团队业务水平及敬业精神的高低直接决定着数学竞赛成绩的好坏。

以我校为例———数学专业的培训团队有五人,非数学专业的团队有四人。

他们每人分别负责一部分内容。

大家的同感是:任何一门课程的全部培训内容由一人完成几乎是不可能的,竞赛培训备课所需的时间与精力不是正常课程备课所能比拟的。

甚至,有时我们在一学时的时间里只能讲解一道例题,不是我们的培训教师没有能力,而是我们在将知识教授给学生们的同时还要保证学生能顺利消化,扎实的掌握解题技巧。

据笔者调查,各普通高校很少有专门的数学教师来辅导将要考研学生的数学知识。

由于数学竞赛的难易程度在考研数学的难度之上,故数学竞赛的培训教师完全胜任考研数学辅导。

这样一个专门的考研辅导团队是学校领导和所有将要考研的学生非常期待的。

所以将考研团队与数学竞赛培训团队融为一体,从各个角度上看都是可以实现的,也是具有现实意义的。

5结语笔者认为引导、鼓励学生参加数学竞赛培训的首要目的并不是为了获奖,而是为了能够提高学生的数学素养,更好地奠定学生的数学能力与数学思维,培养数学方面的新生力量。

次要目的是建立一个长效机制———既能有效地辅导学生的考研数学,又能对学生进行数学竞赛辅导,同时也能保证参加培训人数的生源。

笔者认为我校培训机制的创新点在于,将正常的教学、考研辅导和数学竞赛培训三者紧密地结合在一起。

利用三者的相互优势使得数学竞赛培训机制能够长期有效地进行、健康合理地发展。

相关文档
最新文档