空间解析几何数学课程竞赛辅导

合集下载

解析几何课程教案

解析几何课程教案

解析几何课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,如点、直线、圆等;(2)掌握坐标系中直线、圆的方程的求法与应用;(3)了解解析几何在实际问题中的应用。

2. 过程与方法:(1)通过实例引入解析几何的概念,培养学生的空间想象能力;(2)运用代数方法研究直线、圆的方程,提高学生解决问题的能力;(3)利用数形结合思想,分析实际问题,提升学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣,激发学习热情;(2)培养学生克服困难的意志,提高自主学习能力;(3)感受数学在生活中的重要性,培养学生的应用意识。

二、教学内容1. 第一课时:解析几何概述(1)点的坐标;(2)直线的方程;(3)圆的方程。

2. 第二课时:直线的方程(1)直线的一般方程;(2)直线的点斜式方程;(3)直线的截距式方程。

3. 第三课时:圆的方程(1)圆的标准方程;(2)圆的一般方程;(3)圆的方程的性质。

4. 第四课时:直线与圆的位置关系(1)直线与圆相交的条件;(2)直线与圆相切的条件;(3)直线与圆相离的条件。

5. 第五课时:解析几何在实际问题中的应用(1)线性方程组的解法;(2)最大(小)值问题;(3)几何最优化问题。

三、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索解析几何的基本概念和性质;2. 利用数形结合思想,引导学生将几何问题转化为代数问题,提高解决问题的能力;3. 注重实际问题的引入,激发学生的学习兴趣,培养学生的应用意识。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度;3. 课后实践:鼓励学生参加数学竞赛或研究性学习,提升学生的应用能力。

五、教学资源1. 教材:人教版《高中数学》解析几何部分;2. 教辅:同步练习册、习题集等;3. 教学软件:几何画板、数学公式编辑器等;4. 网络资源:相关教学视频、课件、论文等。

解析几何竞赛题选

解析几何竞赛题选

25.[决赛试题](13 分)已知两直线的方程: L : x = y = z , L ' : x = y = z − b 。(1)问: 1a 1
参数 a, b 满足什么条件时, L 与 L ' 是异面直线?(2)当 L 与 L ' 不重合时,求 L ' 绕 L 旋转 所生成的旋转面 π 的方程,并指出曲面 π 的类型。
=
(1 a
, 0, −
1)× c
(0,1, 0)
=
(1 c
, 0,
1 ). a
若π
平行于l2 ,则λ
=

1 a
.在直线l2上取点M
(a,
0, 0),则M 到平面π的距离
即为l1与l2的距离2d,即
(2d )2 =
22
,⇒ 1 = 1 + 1 + 1 .
1 a2
+
1 b2
+
1 c2
d 2 a2 b2 c2
t 可以是任意的,所以,这时, π 的方程为:
⎧ x+y+z=b

⎨ ⎪⎩
x
2
+
y2
+
z2

5 6
b2

π 的类型: a = 1 且 b ≠ 0 时, L 与 L ' 平行,π 是一柱面; a ≠ 1且 b = 0 时, L 与 L ' 相交, π 是一锥面( a = −2 时 π 是平面);当 a ≠ 1且 b ≠ 0 时,π 是单叶双曲面( a = −2 时,π 是
+ +
(z (z
+ 1) 2 −1)2

数学竞赛教案讲义立体几何

数学竞赛教案讲义立体几何

数学竞赛教案讲义-立体几何第一章:立体几何基础1.1 空间点、线、面的位置关系点、直线、平面的基本性质点与直线、直线与直线、直线与平面、平面与平面的位置关系1.2 立体几何的基本概念棱柱、棱锥、棱台、球的定义与性质底面、侧面、顶点的概念空间角、二面角的概念与计算第二章:空间几何图形2.1 棱柱直棱柱、斜棱柱的性质棱柱的面积、体积计算2.2 棱锥直棱锥、斜棱锥的性质棱锥的面积、体积计算2.3 棱台棱台的性质棱台的面积、体积计算2.4 球球的性质球的面积、体积计算第三章:立体几何中的线面关系3.1 直线与平面的关系直线与平面平行、直线在平面内的判定与性质直线与平面相交的性质3.2 直线与直线的关系平行线、相交线的性质异面直线、共面直线的性质3.3 平面与平面的关系平面与平面平行的判定与性质平面与平面相交的性质第四章:立体几何中的角与距离4.1 空间角线线角、线面角、面面角的定义与计算空间角的性质与计算方法4.2 距离点与点、点与直线、点与平面的距离计算直线与直线、直线与平面的距离计算第五章:立体几何的综合应用5.1 立体几何图形的放缩与旋转放缩与旋转的性质与方法放缩与旋转在立体几何中的应用5.2 立体几何中的定理与性质欧拉公式、施瓦茨公式等定理的应用立体几何中的重要性质与定理5.3 立体几何与解析几何的综合应用利用解析几何的知识解决立体几何问题立体几何与解析几何的相互转化第六章:立体几何中的立体角与对角线6.1 立体角立体角的定义与性质立体角的计算方法6.2 对角线多面体的对角线长度计算对角线与几何体的性质关系第七章:立体几何中的不等式与最值7.1 立体几何中的不等式利用立体几何图形性质证明不等式利用不等式解决立体几何问题7.2 立体几何中的最值问题利用几何方法求解最值问题利用代数方法求解最值问题第八章:立体几何中的视图与投影8.1 视图正视图、侧视图、俯视图的定义与性质利用视图研究几何体的性质8.2 投影平行投影、中心投影的性质利用投影解决立体几何问题第九章:立体几何中的定理与性质(续)9.1 立体几何中的定理与性质布雷特施奈德定理、莫恩定理等定理的应用立体几何中的其他重要性质与定理9.2 立体几何中的特殊几何体圆柱、圆锥、球台的性质与应用利用特殊几何体解决立体几何问题第十章:立体几何与实际应用10.1 立体几何在实际应用中的案例分析利用立体几何解决工程、物理、艺术等领域的问题立体几何在现实生活中的应用举例10.2 立体几何竞赛题解析分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力10.3 立体几何练习题与答案解析提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路第十一章:立体几何中的坐标计算11.1 空间点的坐标空间直角坐标系的建立点的坐标表示与运算11.2 空间向量向量的定义与运算向量与立体几何的关系11.3 空间几何体的坐标表示棱柱、棱锥、棱台、球的坐标表示利用坐标解决立体几何问题第十二章:立体几何中的向量计算12.1 向量的线性运算向量的加法、减法、数乘运算向量共线与垂直的判定与性质12.2 向量的数量积与向量积向量的数量积定义与性质向量的向量积定义与性质12.3 空间向量在立体几何中的应用利用向量计算空间角与距离利用向量解决立体几何中的线面关系问题第十三章:立体几何中的解析几何方法13.1 解析几何与立体几何的关系利用解析几何方法解决立体几何问题解析几何在立体几何中的应用举例13.2 参数方程与极坐标方程立体几何图形的参数方程表示利用参数方程与极坐标方程解决立体几何问题第十四章:立体几何中的不等式与最值(续)14.1 立体几何中的不等式问题利用不等式性质解决立体几何问题不等式在立体几何中的应用举例14.2 立体几何中的最值问题(续)利用几何方法求解最值问题利用代数方法求解最值问题第十五章:立体几何的综合与应用15.1 立体几何与其他数学学科的综合立体几何与代数、分析、概率等学科的关系立体几何在交叉学科中的应用15.2 立体几何在实际应用中的案例分析(续)立体几何在工程、物理、艺术等领域中的应用案例立体几何在其他领域中的应用举例15.3 立体几何竞赛题解析与练习题答案解析(续)分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路重点和难点解析重点:理解并掌握立体几何的基本概念、立体几何图形、空间几何图形、立体几何中的线面关系、立体几何中的角与距离、立体几何中的立体角与对角线、立体几何中的不等式与最值、立体几何中的视图与投影、立体几何中的定理与性质、立体几何中的坐标计算、立体几何中的向量计算、立体几何中的解析几何方法、立体几何中的不等式与最值(续)、立体几何的综合与应用。

高中数学中的空间解析几何问题

高中数学中的空间解析几何问题

高中数学中的空间解析几何问题空间解析几何是数学中的一个重要分支,它研究了空间内点、线、面等几何对象的分布和运动规律。

在高中数学中,空间解析几何是数学课程的一个重要内容,通过学习空间解析几何,学生可以更深入地理解空间中的几何关系,并且能够应用解析几何的方法解决实际问题。

本文将详细介绍高中数学中的空间解析几何问题,包括平面与直线的关系、点的位置关系、向量的应用等。

一、平面与直线的关系在空间解析几何中,平面与直线的关系是一个基本概念。

平面可以通过一个点和两个互不平行的直线来确定,而直线可以通过两个互不共面的点来确定。

而确定一个平面和一个直线的关系,可以有以下几种情况:1. 直线与平面相交当一条直线与一个平面相交时,我们可以通过求解它们的交点来确定它们的关系。

通过求解直线的参数方程和平面的方程,可以得出交点的坐标,进而确定直线与平面的位置关系。

2. 直线与平面平行或重合直线与平面平行或者重合时,它们之间存在一定的位置关系。

两者平行时,我们可以通过求解直线的方向向量与平面的法向量的内积是否为零,来判断直线与平面是否平行。

若内积为零,则直线与平面平行;若内积不为零,则直线与平面不平行。

3. 直线在平面内部或平面上当直线与平面内部或平面上时,它们之间也存在一定的关系。

我们可以通过求解直线的参数方程在平面方程中代入,来判断直线是否在平面内部或平面上。

若代入后方程成立,则直线在平面内部或平面上;若不成立,则直线不在平面内部或平面上。

二、点的位置关系在空间解析几何中,点的位置关系也是一个重要的概念。

通过研究点在空间中的位置关系,可以判断点是否在直线或平面上,或者判断两个点之间的距离等。

下面介绍几种常见的点的位置关系:1. 点在直线上当一个点在一条直线上时,可以通过判断点的坐标是否满足直线的方程来确定。

若点的坐标代入直线方程后等式成立,则点在直线上;若不成立,则点不在直线上。

2. 点在平面上当一个点在一个平面上时,可以通过判断点的坐标是否满足平面的方程来确定。

数学竞赛教案讲义(12)——立体几何

数学竞赛教案讲义(12)——立体几何

数学竞赛教案讲义(12)——立体几何第十二章立体几何一、基础知识公理1一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:aa.公理2两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l直线与直线外一点确定一个平面.推论2两条相交直线确定一个平面.推论3两条平行直线确定一个平面.公理4在空间内,平行于同一直线的两条直线平行.定义1异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2两条直线垂直于同一个平面,则这两条直线平行.定理3若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4(三垂线定理)若d为平面。

太原高中数学竞赛辅导

太原高中数学竞赛辅导

太原高中数学竞赛辅导篇一:太原高中数学竞赛辅导太原高中数学竞赛辅导是指针对太原地区高中学生举办的数学竞赛培训活动。

数学竞赛是一项考验学生数学思维和能力的考试,对于提高学生综合素质和升学竞争力具有重要意义。

为了帮助学生在数学竞赛中取得好成绩,许多学校和教育机构都会举办数学竞赛辅导活动。

在太原地区,许多高中学校都会举办数学竞赛辅导活动,其中包括太原五中、一中、二中等名校。

这些学校都有专业的数学老师和竞赛教练,他们会针对学生的不同水平和需求,制定个性化的辅导计划,帮助学生掌握数学知识和解题技巧,提高竞赛水平。

除了学校组织的数学竞赛辅导活动外,也有一些专业的数学培训机构会提供数学竞赛辅导服务。

这些机构通常会有专业的数学老师和竞赛教练,会根据学生的不同需求和水平,提供个性化的辅导方案。

这些机构的辅导课程通常会包括数学竞赛的基础课程、强化课程和冲刺课程,帮助学生掌握数学知识和解题技巧,提高竞赛水平。

参加数学竞赛辅导活动可以帮助学生提高数学素养和竞赛水平,为升学和职业发展打下良好的基础。

同时,学校和培训机构还可以为学生提供一个良好的学习环境和学习氛围,促进学生的学习积极性和学习效率。

太原高中数学竞赛辅导活动得到了许多学校和教育机构的重视,为学生在数学竞赛中取得好成绩提供了重要的支持。

如果您或您的学生想要参加数学竞赛辅导活动,可以通过学校或培训机构咨询相关信息,并选择适合自己的辅导课程和辅导方式。

篇二:太原高中数学竞赛辅导太原是山西省的省会城市,也是该省数学竞赛的主要考点之一。

因此,对于那些想要在数学竞赛中获得好成绩的高中生来说,参加太原高中数学竞赛辅导是非常必要的。

太原高中数学竞赛辅导通常由当地的学校或专业辅导机构提供。

这些机构通常会拥有经验丰富的教师和先进的教学设施,能够帮助学生提高数学竞赛水平。

在参加太原高中数学竞赛辅导时,学生需要根据自己的实际情况选择适合的机构和课程。

一般来说,机构的规模和师资力量越大,所提供的课程和服务质量就越好。

高中数学竞赛讲义+完美数学高考指导(二)

高中数学竞赛讲义+完美数学高考指导(二)

高中数学竞赛讲义+完美数学高考指导(二) 高中数学竞赛讲义(十)──直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x22=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:0;(2)点斜式:0(0);(3)斜截式:;(4)截距式:;(5)两点式:;(6)法线式方程:θθ(其中θ为法线倾斜角,为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。

5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则θα=.6.平行与垂直:若直线l1与l2的斜率分别为k1, k2。

且两者不重合,则l12的充要条件是k12;l1l2的充要条件是k1k21。

7.两点P1(x1, y1)与P2(x2, y2)间的距离公式:1P2。

8.点P(x0, y0)到直线l: 0的距离公式:。

解析几何竞赛题选

解析几何竞赛题选

a2 + 2 (a + 2)2
(x
+
y
+
z
− b)2

2b a+2
(x
+
y
+
z
− b)
− b2
=
0

当 a = −2 时,由⑤得, x + y + z = b ,这表明,π 在这个平面上。
同时,将④代入③,有 x2 + y2 + z2 = 6t2 + 2bt + b2 = 6(t + 1 b)2 + 5 b2 。由于 66
=
sin(π

α
+
β
)
=
α sin(
+
β
)
2R 2
2
22
m
L
β Cα γ
n
= sin α cos β + cos α sin β = l
22
2 2 2R
1

m2 4R2
+
m 2R
1

l2 4R
2
.
n=l
1−
m2 4R2
+m
1

l2 4R2
,
两边平方得解之即得证。
c B
l M
十六、ΔABC的面积为1,点E, F,G分别在边 BC,CA, AB上,AE于点R处平分BF, BF于点 S处平分CG,CG于点T 处平分AE, 求ΔRST的面积。
+ +
(z (z
+ 1) 2 −1)2


⎧x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间解析几何数学竞赛辅导一. 向量代数1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量),,(12121221z z y y x x M M ---=→2、已知向量),,(321a a a a =→、),,(321b b b b =→,则 (1)向量→a 的模为232221||a a a a ++=→(2)),,(332211b a b a b a b a ±±±=±→→(3)),,(321a a a a λλλλ=→ 3、向量的内积→→⋅b a(1)><⋅⋅=⋅→→→→→→b a b a b a ,cos |||| (2)332211b a b a b a b a ++=⋅→→其中><→→b a ,为向量→→b a ,的夹角,且π>≤≤<→→b a ,0注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。

4、向量的外积→→⨯b a (遵循右手原则,且→→→⊥⨯a b a 、→→→⊥⨯b b a )321321b b b a a a k j ib a →→→→→=⨯ (1)332211//b a b a b a b a b a ==⇔=⇔→→→→λ (2)00332211=++⇔=⋅⇔⊥→→→→b a b a b a b a b a(3)几何意义: ||a b ⨯代表以,a b 为邻边的平行四边形的面积S ;平面上三点11(,,0)A x y ,22(,,0)B x y ,33(,,0)C x y 构成的三角形的面积为2121313111|||0|22ABCij k SAB AC x x y y x x y y =⨯=---- 2121313112x x y y x x y y --=--的绝对值也可以写成11223311121ABCx y Sx y x y =的绝对值。

5. 混合积:(,,)()a b c a b c =⋅⨯。

(1)注意:(,,)(,,)(,,)a b c b c a c a b ==(2)坐标表示:111222333(,,)()x y z a b c a b c x y z x y z =⋅⨯=, 其中, ()111,,a x y z =,()222,,b x y z =, ()333,,c x y z =。

(3)几何意义:(,,)a b c 的绝对值表示以,,a b c 为三条邻边的平行六面体的体积。

,,a b c 共面的充要条件是(,,.)0a b c =。

空间不共面的四点111(,,)A x y z ,222(,,)B x y z ,333(,,)C x y z ,444(,,)D x y z 构成的四面体的体积为11121212122231313133341414144411111661x y z x x y y z z x y z V x x y y z z x y z x x y y z z x y z ---==------的绝对值。

(它实际是以,,AB AC AD 为邻边的平行六面体的体积的六分之一)例1 设径矢1=, 2r =,3r =, 证明 133221r r r r r r R⨯+⨯+⨯=垂直于ABC 平面.证明 :由于 ⋅=)(12r r -⋅[)()()(133221r r r r r r ⨯+⨯+⨯]=)()()()()()(131321211132322212r r r r r r r r r r r r r r r r r r ---++ =0)()(321321=-r r r r r r ,所以 ⊥.同理可证 ⊥.所以⊥平面ABC .例2.设P 是球内一定点,A ,B ,C 是球面上三个动点.2/CPA B PC APB π=∠=∠=∠. 以PA ,PB ,PC 为棱作平行六面体, 记与P 相对的顶点为Q ,求Q 点的轨迹.(见北京大学2007考研题)二.直线与平面方程 (一)、平面1、平面的点法式方程已知平面过点),,(000z y x P ,且法向量为),,(C B A n =→,则平面方程为0)()()(000=-+-+-z z C y y B x x A注意:法向量为),,(C B A n =→垂直于平面2、平面的一般方程0=+++D Cz By Ax ,其中法向量为),,(C B A n =→3、求平面方程的主要方法 (1)过直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的平面方程可设为0)()(22221111=+++++++D z C y B x A D z C y B x A λ如果直线方程是点向式或参数式可转化为上述形式处理 例(1)在过直线⎩⎨⎧=++=+++0204z y x z y x 的平面中找出一个平面,使原点到它的距离最长。

(2)平面过OZ 轴,且与平面0=-z y 的夹角为060,求该平面方程(两平面夹角等于两法向量的夹角或两法向量的夹角的补角) (3)求过点)1,0,1(-M 和直线110122-=-=-z y x 的平面方程 (4)过直线⎩⎨⎧=+-=-+083042z y z x 作平面,使它平行于直线⎩⎨⎧=--=--0604z y y x(5)过平面02=+y x 和6324=++z y x 的交线作切于球面4222=++z y x 的平面(6)求由平面0173,0122=++=+-y x z x 所构成的两面角的平分面方程 (2)利用点法式求平面方程注意:(i )任何垂直于平面的向量→n 均可作为平面的法向量 (ii )和平面0=+++D Cz By Ax 平行的平面可设为01=+++D Cz By Ax (iii )如存在两个向量),,(321a a a a =→、),,(321b b b b =→和平面平行(或在平面内),则平面的法向量为321321b b b a a a k j ib a n →→→→→→=⨯= 例1(1)已知两直线为111111--=-=-z y x ,221113-=--=-z y x ,求过两直线的平面方程(2)求过)1,3,8(-A 和)2,7,4(B 两点,且垂直于平面02153=--+z y x 的平面(3)一平面垂直于向量)2,1,2(且与坐标面围成的四面体体积为9,求平面方程(4)已知球面0642222=-+-++z y x z y x 与一通过球心且与直线⎩⎨⎧=-=0z y x 垂直的平面相交,求它们的交线在xoy 面上的投影 例2.已知椭球面1222222=++cz b y a x )(b a c <<, 试求过x 轴且与椭球面的交线是圆的平面方程。

解 平面过x 轴,从而过原点,得0D =。

设法向量(,,)n A B C =,由平面过x 轴得(,,)n A B C =与(1,0,0)i =垂直,得0A =,平面方程:0B y C z+=。

又0y =与0z =都不符合题意,所以0,0B C ≠≠。

不妨令Bz y ky C=-=,它与椭球面的交线为 2222222222222211x y z x c b k y a b c a b c z ky z ky ⎧⎧+++=+=⎪⎪⇒⎨⎨⎪⎪==⎩⎩(1)由于交线圆的圆心在原点,且该圆过点(,0,0),(,0,0)a a -,故该圆的方程也可表示为22222222211x kx y z a y a a z ky z ky⎧+⎧++=+=⎪⇒⎨⎨=⎩⎪=⎩(2)比较(1)和(2)得22222221c b k k c k b c a ++=⇒=±,所求平面方程为:0±=。

(3)轨迹法求方程方法:(i )设平面上任一一点),,(z y x M (ii )列出含有z y x ,,的方程化简的平面方程例 求由平面013=++-z y x 和023=--+z y x 所构成的二面角的平分面的方程(二)、直线 1、直线的对称式方程过点),,(000z y x P 且方向向量为),,(321v v v v =→直线方程32010v z z v y y v x x -=-=- 注意:方向向量),,(321v v v v =→和直线平行 2、直线的一般方程⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A ,注意该直线为平面01111=+++D z C y B x A 和02222=+++D z C y B x A 的交线3、直线的参数方程⎪⎩⎪⎨⎧+=+=+=tv z z t v y y t v x x 3020104、求直线方程的主要方法(1)把直线的一般方程化为点向式方程 方法:已知直线方程为⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A ,则该直线的方向向量为),,(321222111v v v C B A C B A kj i v ==→→→→在直线上任取一点),,(000z y x ,则直线方程为32010v z z v y y v x x -=-=- 例化直线的一般方程⎩⎨⎧=--+=-++0132052z y x z y x 为标准方程(2)根据直线的方向向量求直线方程例(1)过点)2,1,0(M ,且平行于两相交平面013=++-z y x 和023=--+z y x 的直线方程(2求过点)0,4,2(M ,且与直线⎩⎨⎧=--=-+023012z y z x 平行的直线方程(3)求过点)2,0,1(-M ,且与平面0643=+-+z y x 平行,又与直线14213zy x =+=-垂直的直线方程 注意:一直线和两直线垂直;一直线和两平面平行;一直线和一平面平行,和另一直线垂直均可确定直线的方向向量 (3)利用直线和直线的位置关系求直线方程 注意:(1)两直线平行,则332211n m n m n m ==,其中),,(321m m m 和),,(321n n n 为直线的方向向量 (2)两直线302010m z z m y y m x x -=-=-和312111n z z n y y n x x -=-=-相交,则 0321321010101=---=∆n n n m m m z z y y x x 且332211n m n m n m ≠≠ (3)两直线302010m z z m y y m x x -=-=-和312111n z z n y y n x x -=-=-异面,其中公垂线的方向向量为),,(321321321v v v n n n m m m kj iv ==→→→→,则两异面直线的距离为||||→∆=v d ;公垂线方程为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=---=---0032132111132132100v v v n n n z z y y x x v v v m m m z z y y x x例(1)求通过点)1,1,1(M 且与两直线321z y x ==和431221-=-=-z y x 都相交的直线方程解:设所求直线的方向向量为),,(c b a ,已知两直线的方向向量为)3,2,1(、)4,1,2(,且分别过点)0,0,0(、)3,2,1( 则0321111=cb a ,即02=+-c b a ;0412210=--cba,即02=-+c b a 故b c a 2,0==,故)2,1,0(),,(=c b a 所求直线为211101-=-=-z y x (2)已知两异面直线0111+=-=z y x和011111-=-=-z y x ,求它们的距离与公垂线方程 (3)求与直线137182-=-=+z y x 平行且与下列两直线相交的直线 ⎩⎨⎧+=-=3465x z x z 和⎩⎨⎧+=-=5342y z x z (4)求过点)3,2,1(-P 与z 轴相交,且与已知直线22334--=-=z y x 垂直的直线方程(三)有关知识补充:1. 不在一条直线上的三点(,,)(1,2,3)i i i i P x y z i =的平面等价于11213,,PP PP PP 共面⇔11213(,,)0PP PP PP =⇔1112121213131310x x y y z z x x y y z z x x y y z z ------=---。

相关文档
最新文档