(完整版)线性规划的对偶原理

合集下载

线性规划的对偶理论(第一部分

线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系

第2章线性规划的对偶理论

第2章线性规划的对偶理论

第2章 线性规划的对偶理论2.1 对偶线性规划模型2.1.1 引例在线性规划问题中,存在这样一个问题,即每一个线性规划问题都伴随有另一个线性规划问题,称它为对偶线性规划问题。

【例2.1】某企业用四种资源生产三种产品,工艺系数、资源限量及价值系数如表2-1所示。

表2-1【解】设x 1,x 2,x 3分别为产品A ,B ,C 的产量,则线性规划数学模型为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤++≤++≤++≤++++=0,5504673002384507455006897080100max 3,21321321321321321x x x x x x x x x x x x x x x x x x Z现在从另一个角度来考虑企业的决策问题。

假如企业自己不生产产品,而将现有的资源转让或出租给其它企业,那么资源的转让价格是多少才合理?合理的价格应是对方用最少的资金购买本企业的全部资源,而本企业所获得的利润不应低于自己用于生产时所获得的利润。

这一决策问题可用下列线性规划数学模型来表示。

设y 1,y 2,y 3及y 4分别表示四种资源的单位增值价格(售价=成本+增值),总增值最低可用min w =500y 1+450y 2+300y 3+550y 4表示。

企业生产一件产品A 用了四种资源的数量分别是9,5,8和7个单位,利润是100,企业出售这些数量的资源所得的利润不能少于100,即10078594321≥+++y y y y同理,对产品B 和C 有70427680634843214321≥+++≥+++y y y y y y y y增值价格不可能小于零,即有y i ≥0,i =1,2,3,4 从而企业的资源价格模型为⎪⎪⎩⎪⎪⎨⎧≥≥+++≥+++≥++++++=0,7042768063481007859550300450500min 3,214321432143214321y y y y y y y y y y y y y y y y y y y w这是一个线性规划数学模型,称这一线性规划问题是前面生产计划问题的对偶线性规划问题或对偶问题(Dual Problem ,缩写为DP)。

第2章 线性规划的对偶理论

第2章  线性规划的对偶理论






5
• 从工厂的决策者来看,G越大约好,但为了 使对方容易接受应使总收入即对方的总支出 尽可能少,才比较合理,因为只有这样,厂 方不会吃亏,对方也容易接受。于是,这个 问题的数学模型可归结为:求决策量w1,w2, 使得
minG=24w1+26w2 2w1+3w2 ≥ 4 3w1+2w2≥3 w1,w2 ≥0
i 1
m
x j 0( j 1,2,...,n)
wi 0(i 1,2,...,m)





12
用矩阵可表示为
min Z cx
Ax b s.t. x 0
• 其中
max W wb
wA c s.t. w 0
T
C (c1, c2 ,, cn ), X ( x1, x2 ,, xn )
对偶问题 目标函数min
m个约束条件
≤ ≥ =
m个变量
≥ 0 ≤ 0 无符号限制


变 量
n个变量
≥ 0 ≤ 0 无符号限制
n个约束条件
≥ ≤ =
约 束 条 件
目标函数价值系数 约束条件右端常数 系数矩阵 A
管 理
约束条件右端常数 目标函数价值系数 系数矩阵转置AT
运 筹 学
18
例2.3写出下列线性规划的对偶规划
• 用wj (i=1,2,…,m)表示对偶规划的变量,其对偶规划的 一般形式为
a11w1 a21w2 am1wm c1 a12 w1 a22 w2 am2 wm c2 s.t. a w a w a w c mn m n 1n 1 2 n 2 w j 0( j 1, 2,, m) 管 理 运 筹

2.4线性规划的对偶理论

2.4线性规划的对偶理论

对偶变换的规则
原问题(或对偶问题)
目标函数 maxz 变量: n 个
≥0 ≤0 无约束
约束条件:m 个 ≤ ≥ =
约束条件右端项 目标函数变量系数
对偶问题(或原问题)
目标函数 minω
约束条件:n 个

≤ =
变量: m 个

≤ 无约束
目标函数变量系数
约束条件右端项
原问题与对偶问题的结构关系
(1)标准对称式的线性规划问题的对偶仍是标准对称式;
偶问题:
min
W
Y1
,
Y2
b
b
min W (Y1 Y2 )b
s.t.(Y1
,
Y2
)
A A
C
s.t.(YY11,
Y2 Y2
)A 0
C
Y1 , Y2 0
令Y=Y 1 - Y 2 因为Y 1 ,Y 2 ≥0, 所以Y为不受正负约束的变量
min
W Yb YA C
s.t . Y为 无 约 束 的 变 量
y2 y3
解:
x1 0, x2 0, x3取 值 无 约 束
min s.t.
b1 y1 b2 y2 b3 y3
a11 y1 a21 y2 a31 y3 c1
a12 y1 a22 y2 a32 y3 c2 a13 y1 a23 y2 a33 y3 c3
y1 0, y2取 值 无 约 束, y3 0
(2)原问题与对偶问题中的目标函数的优化方向相反 (一个为极大,另一个就为极小);
3x1 2x2 2x2 20
s.t.
4x1
3x2 3x2 x1 x2 x2
10 5
x1 x2 x2 5

第2章线性规划的对偶理论

第2章线性规划的对偶理论

max z 5x1 6x2 3x3
x1 2x2 2x3 5
(1)
s.t
.
4xx1 175xx223xx33

3 8
x2 0, x3 0
n
max z c j x j j1


n
aij x j
bi
(i 1,, m1 m)
-15 y3 1/5 0 -4/5 1
zj - cj
0 4 0
原问题松 弛变量
00
y4 y5 -1/2 0
1/5 -1/5
3 3
原问题 变量
第19页
说明:1)只需求解其中一个问题, 从最优解的单纯形表中同时得
到另一个问题的最优解.
2)单纯形法迭代的每一步中, 原问题及对偶问题解的关系
目标函数值
n)
m
min w bi yi i 1
yi 0 (i 1,, m1 )
yi无约束(i m1 1,, m)
m
aij yi c j ( j 1,, n1 )
i 1 m
aij yi c j ( j n1 1,, n)
i 1
第10页
写出下列线性规划的对偶问题

m i 1
aij
yi

c
j
(
j

1,, n)
yi 0 (i 1,, m)
min w bY
AY C
s.t.
Y 0
第4页
2-2 原问题与对偶问题
对应关系: (1) max
min
= (2)
约束条 件个数
变量的 个数

线性规划对偶理论(含影子价格)_21136

线性规划对偶理论(含影子价格)_21136

对 偶
a11 a12
s.t.
a21
a22
a1n x1 b1
a2n
x2
b2
对 称

am1 am2
amn
xn
bm


x1, x2 , , xn 0

min Z c1x1 c2 x2 cn xn
定 义
a11 a21
s.t.
a12
a22
a1n a2n
x2 0,
x2
2
0
无界
关于无界性有如下结论: minW 4 y1 2 y2
原问题
问题无界
无可 行解
对偶问题 无可行解 无可行解
问题无界
y1 y2 2
(对)
y1
y1
y2 0, y2
1 0
无可 行解
原 : max Z x1 2x2
x1 x2 x3 2
2x1 x2 x3 1
m
m
A
≥b
n
对偶问题的特点
〔1〕目标函数在一个问题中是求最大值在 另一问题中则为求最小值
〔2〕一个问题中目标函数的系数是另一个 问题中约束条件的右端项
〔3〕一个问题中的约束条件个数等于另一 个问题中的变量数
〔4〕原问题的约束系数矩阵与对偶问题的 约束系数矩阵互为转置矩阵
一般
线性规 划问题 的对偶 问题
〔4〕强对偶性〔最优解的目标函数之间的关系〕 如果原问题有最优解,则其对偶问题也一定有 最优解,且两者的目标函数值相等
3、互补松弛性
在线性规划问题的最优解中, 如果对应某一约束条件的对偶变量值为非零,
则该约束条件取严格等式;
反之如果约束条件取严格不等式,

第三章线性规划的对偶定理

第三章线性规划的对偶定理

特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
二、原问题与对偶问题的数学模型
❖ 1.对称形式的对偶
当原问题对偶问题只含有不等式约束
时,称为对称形式的对偶。
根据对称形式的对偶模型,可直接 写出上述问题的对偶问题:
b max w (Y 1,Y 2 ) -b
(Y
1,Y
2
)
A A
C
Y1 0 ,Y2 0
max w (Y 1 Y 2 ) b
(Y
1
Y
2
)
A
C
Y 1 0, Y 2 0
令 Y Y,1 Y得2对偶问题为:
max w Yb
❖ (3)若原问题可行,但其目标函数值无 界,则对偶问题无可行解。
❖ (4)若对偶问题可行,但其目标函数值 无界,则原问题无可行解。
❖ (5)若原问题有可行解而其对偶问题无 可行解,则原问题目标函数值无界。
❖ (6)对偶问题有可行解而其原问题无可 行解,则对偶问题的目标函数值无界。
CX Yb
原问题
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2 x1 x2
s.t.
5x2 15
6 x1 2 x2 24

线性规划的对偶原理

线性规划的对偶原理
min z=CTX
max w=bTY s.t. ATY≤C Y ≥0
max w=bTY s.t. ATY≤C Y :无约束
s.t.
AX≤b X ≥0
max w=bTY s.t. ATY≤C Y ≤0

例2 写出下列线性规划的对偶问题
max z x1 2 x 2 x3 x1 x 2 x3 2 x x x 1 2 3 s.t. 1 2 x1 x 2 x3 2 x1 0; x 2 , x3 无约束
*
*
*
*
4、无界性:若线性规划问题(4.2.1)的目标函数无上界, 则问题(4.2.2)无可行解;若问题(4.2.2)的目标函数 无下界,则问题(4.2.1)无可行解. 5、对偶定理:若问题(4.2.1)和(4.2.2)之一有最优解, 则另一个也有最优解,并且目标函数值相等.
1、对称性:对偶问题的对偶是原始问题.
min z=CTX s.t. AX≥b X ≥0
对偶的定义
max w=bTY s.t. ATY≤C Y ≥0
max z’=-CTX
s.t. -AX≤-b X ≥0
对偶的定义
min w=-bTY s.t. -ATY≥-C Y ≥0
2、弱对偶性:若 X 为问题
max z C T X AX b s.t. X 0
第四章 线性规划的对偶原理
线性规划的对偶性
对于线性规划的最大值问题,都相应存在着一个特 定的包含同样数据的最小值问题.也就是说,一个问题 可以从两个不同的方面提出:一个方面是在一定的资源 条件下,如何最合理地规划使用这种资源,使得完成的 任务量最大;另一个方面是根据已确定的任务如何规划 使用资源,使得消耗的资源为最少.这样的问题可以看 作是从两个不同的角度对同一个问题所进行的分析与研 究,是根据同样的条件与数据所构成的两个问题.它们 之间的关系是相对的,通常称一个问题是另一个问题的 对偶问题.如果把前者称为原始问题,后者就叫做对偶 问题.反之,如果把后者称为原始问题,前者就叫做对 偶问题,两者互为对偶.这便是线性规划的对偶性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划的对偶原理
3。

1 线性规划的对偶问题
一、 对偶问题的提出
换位思考
家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大
213050m ax x x z +=
⎪⎩

⎨⎧≥≤+≤+0
,50212034212121x x x x x x
某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。

他 需要与家具厂谈判付给该厂每个工时的价格。

如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少.
目标:租金最少;1y —付给木工工时的租金;2y -付给油漆工工时的租金
2150120m in y y w +=
所付租金应不低于家具厂利用这些资源所能得到的利益
1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收入 502421≥+y y
2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收入 30321≥+y y
3)付给每种工时的租金应不小于零 0,021≥≥y y
二、 原问题与对偶问题的数学模型
1. 对称形式的对偶
原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。

原问题:
⎪⎩

⎨⎧≥≥=0min X b AX CX z
对偶问题:
⎪⎩

⎨⎧≥≤=0max Y C YA Yb w
2. 非对称形式的对偶
若原问题的约束条件全部是等式约束(即线性规划的标准型),即
⎪⎩

⎨⎧≥==0min X b AX CX z
则其对偶问题的数学模型为
⎪⎩

⎨⎧≤=是自由变量Y C YA Yb w max
可把原问题写成其等价的对称形式:
min z =CX AX ≥b AX ≤b X ≥0
即 min z =CX
⎥⎦

⎢⎣⎡-A A X ≥⎥⎦⎤⎢⎣⎡-b b
X ≥0
设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。

根据对称形式的对偶模型,写出上述问题的对偶问题:
max w =(Y 1,Y 2)·⎥⎦

⎢⎣⎡-b b
(Y 1,Y 2)·⎥⎦


⎣⎡-A A ≤C Y 1≥0 Y 2≥0
即 max w =( Y 1-Y 2)·b
( Y 1-Y 2)A ≤C
Y 1≥0 Y 2≥0
令Y= Y 1-Y 2, 得对偶问题为: max w = Yb
YA ≤C Y 是自由变量
原问题: ⎪⎪⎩⎪⎪⎨
⎧≥≥+--=+-≤+++无约束
423143132143214
321,,0,14
325
x x x x x x x x x x x x x x
对偶问题: ⎪⎪⎪⎩⎪
⎪⎪⎨⎧≤≥=+≥-+=-≥+++-=0
,,01331
2245min 32131321213213
21y y y y y y y y y y y y y y y y w 无约束
原问题: ⎪⎪⎩⎪
⎪⎨
⎧≤≥=----≥++≤++-+--=无约束
3241432143243214
321,,0,024*******
4324323min x x x x x x x x x x x x x x x x x x x z
对偶问题: ⎪⎪⎪⎩⎪
⎪⎪⎨⎧
≥≤≥-+-=-+=-+-≤++-=无约束
3213
213213
21313
21,0,04
44437332
3232253max y y y y y y y y y y y y y y y y y w
3。

2 对偶问题的基本性质和基本定理
一、 对称性定理
对称性定理:对偶问题的对偶是原问题.
二、 弱对偶性定理
弱对偶性定理:若X )0(和Y )0(分别是原问题和对偶问题的可行解,则有C X )0(≥Y )0(b 。

三、 最优性定理
最优性定理:若X )0(和Y )0(分别是原问题和对偶问题的可行解,且有C X )0(=Y )0(b ,则X )0( 和Y )0(分别是原问题和对偶问题的最优解。

四、 对偶定理
对偶定理:有一对对偶的线性规划问题,若其一有一个有限的最优解,则另一个也有最优解, 且相应的目标函数值相等。

若任一个问题具有无界解,则另一个问题无可行解。

五、 单纯型乘子Y 的定理
单纯型乘子Y 的定理:若线性规划原问题有一个对应于基B 的最优基本可行解,则此时的单 纯型乘子Y= C B B 1-是相应于对偶问题的一个最优解。

六、 对称形式对偶的互补松弛定理
对称形式对偶的互补松弛定理:若X )0(和Y )0(分别是原问题和对偶问题的可行解,则X )0(和 Y )0(都是最优解的充要条件是,对所有i 和j ,下列关系式成立:
1. 如果x )
0(j 〉0,必有Y )0(P j =c j
2. 如果Y
)
0( P j < c j ,必有x )0(j =0
3. 如果y )
0(i 〉0,必有A i X )0(=b i
4. 如果A i X )0(>b i ,必有y )
0(i =0
其中P j 是A 的第j 列,A i 是A 的第i 行。

互补松弛定理意味着:如果原问题最优解X )0(中第j 个变量x )0(j 为正,则其对偶问题中与之 对应的第j 个约束式在最优情况下必呈严格等式(即其松弛变量为0);而如果对偶问题中 第j 个约束式在最优情况下呈严格不等式,则原问题最优解X )0(中第j 个变量x )0(j 必为0. 类似地,如果对偶问题最优解Y )0(中第i 个对偶变量y )0(i 为正,则其原问题中与之对应的第 i 个约束在最优情况下必呈严格等式(即其剩余变量为0);而如果原问题中第i 个约束在 最优情况下呈严格不等式,则对偶问题最优解Y )0(中第i 个对偶变量y )0(i 必为0。

互补松弛性:0=S YX 0=X Y S Y X ,为最优解
对一对对偶规划的最优解而言,如果对应某一约束条件的对偶变量的值为非零,则该约 束条件取严格等式;反之,如果某个约束条件取严格不等式,则其对应的对偶变量一定为零。

七、 非对称形式对偶的互补松弛定理
非对称形式对偶的互补松弛定理:若X )0(和Y )0(分别是原问题和对偶问题的可行解,则X )0( 和Y )0(都是最优解的充要条件是,对所有j ,下列关系式成立:
1. 如果x )
0(j >0,必有Y )0(P j =c j
2. 如果Y
)
0( P j < c j ,必有x )0(j =0
例:已知线性规划问题⎪⎩

⎨⎧≥≤-+-≤++-+=0
,,122
max 3213213212
1x x x x x x x x x x x z
试用对偶理论证明上述线性规划问题无最优解
该问题存在可行解,如)0,0,0(=X 又对偶问题为 0
,01122min 212122212
1≥≥-≥+≥--+=y y y y y y y y y y w
由第一个约束条件知对偶问题无可行解,由此可知其原问题无最优解
八、最优对偶变量(影子价格)的经济解释
由对偶定理可知,当达到最优解时,原问题和对偶问题的目标函数值相等。

如果在得到最优解时,某种资源并未完全利用,其剩余量就是该约束中剩余变量的取值,那么该约束相对应的影子价格一定为零。

因为在得到最优解时,这种资源并不紧缺,故此时再增加这种资源不会带来任何效益.反之,如果某种资源的影子价格大于零,就说明再增加这种资源的可获量,还回带来一定的经济效益,即在原问题的最优解中,这种资源必定已被全部利用,相应的约束条件必然保持等式。

相关文档
最新文档