公务员考试排列组合公式基本概念
【公务员】排列组合基础知识

【分享】排列组合基础知识及习题分析如果认为本帖有价值请点一下已有15人推荐看过以后觉得好请顶帖!在介绍排列组合方法之前我们先来了解一下基本的运算公式!C5取3=(5×4×3)/(3×2×1) C6取2=(6×5)/(2×1)通过这2个例子看出CM取N 公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。
以取值N的阶层作为分母P53=5×4×3 P66=6×5×4×3×2×1通过这2个例子PMN=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.解答排列、组合问题的思维模式有二:其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.在解决排列与组合的应用题时应注意以下几点:1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻”在解决问题时要掌握基本的解题思想和方法:⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.*****************************************************************************提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为( C )(A)25个 (B)26个 (C)36个 (D)37个------------------------------------------------------【解析】根据三角形边的原理两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22 因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。
国家公务员考试排列组合之圆桌问题

2015国家公务员考试:排列组合之圆桌问题11月22日国家公务员封闭预测班圆桌问题是属于排列组合中的一种,排列组合本身就是我们公务员考试的一个重点和难点,很多学生很是头疼,那么面对这种问题,中公教育专家建议各位考生一定要首先把基础夯实,比如1、排列组合的概念,2、加法原理和乘法原理3、几个常用的方法:优先发、插空法、捆绑法,再结合国家公务员考试、省考的真题体会做排列组合的技巧,注意特殊情况的考虑,比如前年国家公务员考试真题:甲乙两个科室各有4名职员,且都是男女各半。
现从两个科室中选出4人参加培训,要求女职员比重不得低于一半,就需要注意特殊的情况:选取的四名职员都是一个科室的情况不符合题目的要求。
那么圆桌问题相对来说又是排列组合的一个特殊题型,这种题型相对来说考的比较少,但是近几年国家公务员考试考试中又重出江湖,出现在国家公务员考试行测考试数学运算中。
从n个不同元素中,每次取出r个元素,仅按元素间的相对位置而不分首尾地围成一圈,整体旋转后相同的排列算同一种排列,这种排列称为圆排列(或称环状排列),即圆桌问题。
那么这种问题关键看我们怎样去分析,抓住他和直线排列组合的区别,举个例子,5个人排成一排有多少种方式?这种直线排列组合很简单:A(5,5)=5!,但是当5个人坐成一圈时,有多少种方式?很多同学相对比较纠结,其实两个题目关键区别在于直线排列时排列之前相对位置已经被确定,但是圆桌问题时每个位置都不确定,但是这种题目我们只需要先找寻任意一人A坐下,其余人相对位置也就确定了,比如我们可以说一个在A左面,或者是A对面等等,所以当5个人坐成一圈时,有A(4,4)=4!,具体到公式:n个不同元素围成一个圈,其组合有A(n-1,n-1)=(n-1)!下面我们看几个例题,体会一下例:a、b、c、d、e五人围着一张圆桌就坐(1)一共有多少种不同的入座方式?(2)如果a、b二人相邻,有多少种不同的入座方式?(3)如果a、b二人不相邻,有多少种不同的入座方式?中公解析:(1)共有(5-1)!=24种不同的入座方式。
公务员考试行测排列组合基本计数原理

公务员考试行测排列组合基本计数原理在各省公务员行测考试中,数量关系是每年都会考察的内容。
这一部分涉及到的内容、题型和知识点都非常繁多,是大家一直比较头痛的部分。
其中,排列组合的相关题目,可能是大家复习当中的难点。
本文是店铺整理的,欢迎阅读。
排列组合基本计数原理排列组合的基本计数原理有两个,加法原理和乘法原理。
下面让我们逐一进行解释:加法原理即分类时采用的计数方法。
也就是说,当完成一件事情,分成几类情况时,把每一类的情况数计算或枚举出来,那么总的情况数,就是所有类的情况数相加。
乘法原理即分步时采用的计数方法。
也就是说,当完成一件事情,分成先后几步时,把每一步的情况数计算或枚举出来,那么总的情况数,就是所有步的情况数相加乘。
那么,何为分类,何为分步?让我们来举例说明。
如果从北京到上海,那么坐飞机可以,坐高铁可以,坐汽车可以,自驾也行,此时称为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾游也有1种路线,那么从北京到上海,所有的方法数就是3+4+2+1=10种方法。
如果从北京到上海,上海到广州,广州再回北京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从北京到上海有3种方法,上海到广州到4条路线,广州再回北京也有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。
我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成此事。
第一个例子中,想从北京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完成这个行程,即分类当中的每一类,都可以独立完成整个事情。
第二个例子中,北京到上海,上海到广州,广州再回北京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步当中的任何一步,都不能独立完成此事。
下面来看一个例题,加深对于分类分步的理解:例题:某人乘车从家直接到艺术中心有3条路线可选;从家到体育场有4条路线可选,从体育场到艺术中心有2条路线可选,则他从家到艺术中心共有几种不同的路线?通过阅读题目,我们可以发现,题目所求的从家到艺术中心,可以分成两类情况:要么直接到;要么从体育场中转换乘间接到。
公务员考试行测数学公式大全

常用数学公式汇总一、基础代数公式1. 平方差公式:( a + b )·( a - b )= a 2-b 22. 完全平方公式: (a ±b ) 2= a 2±2ab + b 23. 完全立方公式: (a ± b) 3=(a ±b ) (a 2 ab+b 2)4. 立方和差公式: a 3+b 3=(ab)(a2+ ab+b 2)5.mnm +nmnm -nm nmnnnna ·a = aa ÷a=a(a ) =a(ab)=a ·b二、等差数列n (a 1 a n )1 ;(1) s n =2= na 1+ n(n-1)d2(2) a n = a 1+( n - 1)d ;(3)项数 n =a na 1+1;d( 4)若 a,A,b 成等差数列,则: 2A =a+b ; ( 5)若 m+n=k+i ,则: a m +a n =a k +a i ;( 6)前 n 个奇数: 1, 3, 5,7, 9,, ( 2n — 1)之和为 n 2(其中: n 为项数, a 1 为首项, a n 为末项, d 为公差, s n 为等差数列前 n 项的和)三、等比数列(1) a n = a 1q n -1;(- n)1)(2) s n = a 1·1 q( q 1 q( 3)若 a,G,b 成等比数列,则: G 2= ab ;( 4)若 m+n=k+i ,则: a m ·a n =a k ·a i ; ( 5) a m -a n =(m-n)d( 6)a m =q (m-n)a n(其中: n 为项数, a 1 为首项, a n 为末项, q 为公比, s n 为等比数列前n 项的和)四、不等式( 1)一元二次方程求根公式 : ax 2+bx+c=a(x-x 1)(x-x 2)其中: x 1=bb 24ac; x 2=bb 24ac( b 2-4ac 0)2a2a根与系数的关系:x 1+x 2=- b, x 1· x 2=caa(2) ab 2 ab( ab )2aba 2b 2 2ab( a b c ) 3abc23(3) a 2b 2c 23abca b c 33 abc推广: x 1 x 2 x 3... x nn n x 1 x 2...x n(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
公务员行测考试—排列组合问题

排列组合问题I一、知识点: 1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且11 组合数的性质1:m n n m n C C -=.规定:10=n C ;2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)科学分类法 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)插空法 解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法. b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP••=720种不同的排法所以共有720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP•=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:(1-1-4)分法、(1-2-3)分法、(2-2-2)分法下面分别计算每一类的方法数:第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC•=15第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC•=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC•=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种不同的方法例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP•=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
公务员事业编考试行测数量关系公式汇总

行测数量关系公式汇总工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
公务员考试--行测-排列组合问题及计算公式

排列组合公式/排列组合计算公式排列A------和顺序有关(P和A是一个意思)组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
考公排列组合解题技巧

考公排列组合解题技巧
在各类考试中,排列组合问题一直是重点与难点。
为了更有效地解决这类问题,以下是一些关键的解题技巧。
一、理解基本概念
在处理排列组合问题时,首先需要明确什么是排列、什么是组合。
排列是指从n个不同元素中取出m个元素(0≤m≤n),按照一定的顺序放入一起,构成一个有序的组合;而组合则是从n个不同元素中取出m个元素(0≤m≤n),不考虑顺序放入一起。
两者的主要区别在于顺序是否重要。
二、掌握计算公式
1. 排列数公式:A=n(n-1)(n-2)...(n-m+1)
2. 组合数公式:C=n!/[m!(n-m)!]
3. 插空法、捆绑法等其他常用方法。
三、分析具体问题
针对具体问题,首先要明确是排列问题还是组合问题,其次要分析元素的性质、限制条件等因素,选择合适的方法进行计算。
四、运用间接法
在某些情况下,通过间接法可以更简便地解决问题。
例如,在求排列数时,可以先求出总数,然后减去其他不满足条件的情况数。
五、重视组合特点
组合问题有其自身的特点,如无序性、独立性等。
在解题时,要充分利用这些特点简化问题。
六、培养逻辑思维
排列组合问题往往涉及到复杂的逻辑关系,需要我们进行深入的分析和推理。
培养逻辑思维有助于更好地解决这类问题。
七、熟悉常见问题
为了更好地应对考试,需要对各种类型的排列组合问题都有所了解,并掌握相应的解题技巧。
总的来说,解决排列组合问题需要扎实的理论基础、灵活的思维方式和丰富的解题经验。
希望以上技巧能对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合公式复习排列与组合考试内容:两个原理;排列、排列数公式;组合、组合数公式。
考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。
2)理解排列、组合的意义。
掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。
重点:两个原理尤其是乘法原理的应用。
难点:不重不漏。
知识要点及典型例题分析:1.加法原理和乘法原理两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。
而两者的区别在于完成一件事可分几类办法和需要分几个步骤。
例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。
解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。
(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。
(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。
故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。
例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B 建立映射,问可建立多少个不同的映射?分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。
”因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。
因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=53(种)。
2.排列数与组合数的两个公式排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。
连乘积的形式阶乘形式Anm=n(n-1)(n-2)……(n-m+1)=Cnm=例3.求证:Anm+mAnm-1=An+1m证明:左边=∴等式成立。
评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形过程得以简化。
例4.解方程.解:原方程可化为:解得x=3。
评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。
3.排列与组合的应用题历届高考数学试题中,排列与组合部分的试题主要是应用问题。
一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。
常用的方法有:一般方法和特殊方法两种。
一般方法有:直接法和间接法。
(1)在直接法中又分为两类,若问题可分为互斥各类,据加法原理,可用分类法;若问题考虑先后次序,据乘法原理,可用占位法。
(2)间接法一般用于当问题的反面简单明了,据A∪=I且A∩=的原理,采用排除的方法来获得问题的解决。
特殊方法:(1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。
(2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。
(3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。
(4)其它方法。
例5.7人排成一行,分别求出符合下列要求的不同排法的种数。
(1)甲排中间;(2)甲不排两端;(3)甲,乙相邻;(4)甲在乙的左边(不要求相邻);(5)甲,乙,丙连排;(6)甲,乙,丙两两不相邻。
解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1×=720种不同排法。
(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有种,故共有·=3600种不同排法。
(3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有·=1400种不同的排法。
(4)甲在乙的左边。
考虑在7人排成一行形成的所有排列中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有=2520种。
(5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有·=720种不同排法。
(6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。
再将甲、乙、丙插入其中的三个“空”,故共有·=1440种不同的排法。
例6.用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。
解:(1)奇数:要得到一个5位数的奇数,分成3步,第一步考虑个位必须是奇数,从1,3,5中选出一个数排列个位的位置上有种;第二步考虑首位不能是0,从余下的不是0的4个数字中任选一个排在首位上有种;第三步:从余下的4个数字中任选3个排在中间的3个数的位置上,由乘法原理共有=388(个)。
(2)5的倍数:按0作不作个位来分类第一类:0作个位,则有=120。
第二类:0不作个位即5作个位,则=96。
则共有这样的数为:+=216(个)。
(3)比20300大的数的五位数可分为三类:第一类:3xxxx,4xxxx,5xxxx有3个;第二类:21xxx,23xxx,24xxx,25xxx,的4个;第三类:203xx,204xx,205xx,有3个,因此,比20300大的五位数共有:3+4+3=474(个)。
(4)不含数字0且1,2不相邻的数:分两步完成,第一步将3,4,5三个数字排成一行;第二步将1和2插入四个“空”中的两个位置,故共有=72个不含数字0,且1和2不相邻的五位数。
例7.直线与圆相离,直线上六点A1,A2,A3,A4,A5,A6,圆上四点B1,B2,B3,B4,任两点连成直线,问所得直线最多几条?最少几条?解:所得直线最多时,即为任意三点都不共线可分为三类:第一类为已知直线上与圆上各取一点连线的直线条数为=24;第二类为圆上任取两点所得的直线条数为=6;第三类为已知直线为1条,则直线最多的条数为N1=++1=31(条)。
所得直线最少时,即重合的直线最多,用排除法减去重合的字数较为方便,而重合的直线即是由圆上取两点连成的直线,排除重复,便是直线最少条数:N2=N1-2=31-12=19(条)。
解排列组合问题的策略要正确解答排列组合问题,第一要认真审题,弄清楚是排列问题还是组合问题、还是排列与组合混合问题;第二要抓住问题的本质特征,采用合理恰当的方法来处理,做到不重不漏;第三要计算正确。
下面将通过对若干例题的分析,探讨解答排列组合问题的一些常见策略,供大家参考。
一、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略对于带有特殊元素的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与其他位置,也就是解题过程中的一种主元思想。
例1用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有()A.24个B.30个C.40个D.60个解:因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的“特殊”元素,应优先安排,按0排在末尾和0不排在末尾分为两类:①当0排在末尾时,有个;②当0不排在末尾时,三位偶数有个,据加法原理,其中偶数共有+=30个,选B。
若含有两个或两个以上的特殊位置或特殊元素,则应使用集合的思想来考虑。
这里仅举以下几例:(1)无关型(两个特殊位置上分别可取的元素所组成的集合的交是空集)例2用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数?解:由题意可知,两个特殊位置在首位和末位,特殊元素是“0,首位可取元素的集合A={1,2,3,4,5},末位可取元素的集合B={0},A∩B=。
如图1所示。
末位上有种排法,首位上有种不同排法,其余位置有种不同排法。
所以,组成的符合题意的六位数是=120(个)。
说明:这个类型的题目,两个特殊位置上所取的元素是无关的。
先分别求出两个特殊位置上的排列数(不需考虑顺序),再求出其余位置上的排列数,最后利用乘法原理,问题即可得到解决。
(2)包合型(两个特殊位置上分别可取的元素所组成集合具有包合关系)例3用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?解:由题意可知,首位、末位是两个特殊位置,“0”是特殊元素,首位可取元素的集合A={1,2,3,4,5},末位可取元素的集合B={5},B A,用图2表示。
末位上只能取5,有种取法,首位上虽然有五个元素可取但元素5已经排在末位了,故只有种不同取法,其余四个位置上有种不同排法,所以组成的符合题意的六位数有=96(个)。
说明:这个类型的题目,两个特殊位置上所取的元素组成的集合具有包含关系,先求被包合的集合中的元素在特殊位置上的排列数,再求另一个位置上的排列数,次求其它位置上排列数,最后利用乘法原理,问题就可解决。
(3)影响型(两个特殊位置上可取的元素既有相同的,又有不同的。
这类题型在高考中比较常见。
)例4用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?解:由题意可知,首位和百位是两个特殊位置,“3”是特殊元素。
首位上可取元素的集合A={2,3,4,5},百位上可取元素的集合B={1,2,4,5}。
用图3表示。
从图中可以看出,影响型可分成无关型和包含型。
①首先考虑首位是3的五位数共有:个;②再考虑首位上不是3的五位数,由于要比20000大,∴首位上应该是2、4、5中的任一个,种选择;其次3应排在千位、十位与个位三个位置中的某一个上,种选择,最后还有三个数、三个位置,有种排法,于是首位上不是3的大于20000的五位数共有个。