成都各区初三“二诊”真题成华区数学2018初三二诊试题答案(手写版)

合集下载

成都市成华区2018年九年级第二次诊断性检测试题及答案

成都市成华区2018年九年级第二次诊断性检测试题及答案

成华区初2018届第二次诊断性测试题九年级英语全卷分为A卷和B卷,A卷含听力测试。

A卷满分100分,B卷满分50分;考试时间120分钟。

每位同学有一张答题卷,请将所有答案直接涂和写在答题卷相对应的题目后,收卷只收答题卷。

A卷(选择题,计100分)1.A卷共8页,在答A卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卷上。

2.解答A卷时,在每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答在试卷上无效。

第一部分听力测试(共30小题,计30分)一、听句子,根据所听到内容选择正确答案。

每小题读两遍。

(共5小题,每小题1分;计5分)1. A. Really? What happened? B. You look so tried. C. What a pain!2. A. We had a good time. B. But it makes me sleepy.C. Waiting for her drove me crazy.3. A. That’s an excellent plan. B. I remember losing my schoolbag in Grade 7.C. To celebrate the end of junior high school.4. A. What about waste pollution? B. The air has become really polluted around here.C. I think we should take the bus or subway instead of driving.5. A. What do you hope to do in the future? B. Good idea. Let’s go shopping tomorrow.C. Because she always encourages me in English.二、听句子,选择与你所听到的句子意思相符合的图片,并将代表图片的字母填在相应的题号后,每小题读两遍。

四川省成都市2018年中考数学二模试卷 含答案

四川省成都市2018年中考数学二模试卷 含答案

2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.。

四川省成都市成华区2018届九年级数学下学期第二次诊断性检测试题(pdf,无答案)

四川省成都市成华区2018届九年级数学下学期第二次诊断性检测试题(pdf,无答案)

成华区初2018届第二次诊断性检测九年级数学注意事项:1、全卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2、考生必须在答题卡上作答,答在试卷、草稿纸上无效。

3、在答题卡作答时,考生需首先准确填写自己的姓名、准考证号,并用2B 铅笔准确填涂好自己的准考证号。

A 卷的第一题为选择题,用2B 铅笔填涂作答;其他题,请用黑色墨水签字笔书写,字体工整、笔迹清楚。

请按照题号在各题目对应的答题区域内作答,超出答题区域书写的答案无效。

4、保持答题卡面清洁,不得折叠、污染、破损等。

A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数。

根据刘徽的这种表示法,图1表示的数值为:(+1)+(-1)=0,则可推算图2表示的数值为( )A.7B.-1C.1D.±12.下面的几何体中,主视图为圆的是( )3.下列运算正确的是( )A.5ab-ab=4B.(a 2)3=a 6C.(a-b)2=a 2-b 2D.39±=4.据相关报道,开展精准扶贫工作五年以来,我国约有55000000摆脱贫困,将55000000用科学记数法表示是( )A.55×106B.0.55×108C.5.5×106D.5.5×1075.一把直尺和一块三角板ABC(其中∠B=30°,∠C=90°)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=50°,那么∠BAF 的大小为( )A.20°B.40°C.45°D.50°6.在同一平面直角坐标系中,函数y=kx(k>0)与y=x k (k>0)的图象可能是( )则上述车速的中位数和众数分别是( ) A.50,8 B.49,8C.49,50D.50,508.如图,△ABC 中,点D,E 分别是AB,AC 的中点,则△ADE 和四边形DECB 的面积比是( )A.1:1B.1:2C.1:3D.1:49.如图,AB 是⊙O 的直径,CA 切⊙O 于点A,CO 交⊙O 于点D,连接BD,若∠C=40°,则∠B 等于( )A.20°B.25°C.30°D.40°10.已知抛物线y=ax 2-2ax-1(a ≠0),下列四个结论:①当a>0时,在对称轴的右边,y 随x 的增大而增大;②函数图象的对称轴是x=-1;③当a=1时,图象经过点(-1,2);④当a=-2时,函数图象与x 轴没有交点,其中正确的共有( )A.4个B.3个C.2个D.1个二、填空题(本大题共4个小题,每小题4分,共16分)1l.分解因式:m 3-mn 2=_________.12.从2,0,π,32,6这五个数中随机抽取一个数,抽到有理数的概率是_________. 13.已知:在平行四边形ABCD 中,点E 在DA 的延长线上,AE=21AD,连接CE 交BD 于点F,则FDBF 的值是_________.14.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D;再分别以点B 和点D 为圆心,大于21BD 的长为半径作弧,两弧相交于点E,作射线CE 交AB 于点F,则AF 的长为_________.三、解答下列各题(本大题满分54分)15.(每小题6分,共12分)(1)计算:()()2018012114.330sin 2---+-+︒π(2)解不等式组()⎪⎩⎪⎨⎧<-≤-②①211121x x ,并写出该不等式组的最大整数解.16.(本题满分6分)先化简,再求值:x x x x x x x x 124122222÷⎪⎪⎭⎫ ⎝⎛+-+-+-,其中x 为满足-3<x<2的整数.17.(本题满分8分)如图,在距离铁轨200米的A 处,观察由成都开往西安的“和谐号”动车,当动车车头到达B 处时,车头恰好位于A 处的北偏东60°方向上,10秒钟后,动车车头到达C 处,此时车头恰好位于A 处西偏北45°方向上,求这时段动车的平均速度是多少米/秒?(结果精确到个位,参考数据:2≈1.414,3≈1.732)18.(本题满分8分)某班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出如下统计表,绘制成如下扇形统计图.男、女生所选项目人数统计表加入初中qq交流群:2307534431对1&8人班课程咨询电话:400-810-2656根据以上信息解决下列问题:(1)m=_______, n=________.(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,求所选取的2名学生中恰好有1名男生、1名女生的概率(用树状图或列表法解答).19.(本小题满分10分)如图,一次函数y=ax+b 与反比例函数y=x k交于点A(1,4)和点B(-2,-2),与y 轴交于点C.(1)求一次函数和反比例函数的解析式;(2)若点M 在y 轴上,且△MAB 的面积等于29,求点M 的坐标.20.(本小题满分10分)如图,AB 为⊙O 的直径,AC 是⊙O 的一条弦,D 为弧BC 的中点,过点D 作DE ⊥AC,垂足为AC 的延长线上的点E,连接DA,DB.(1)求证:DE 是⊙O 的切线;(2)试探究线段AB,BD,CE 之间的数量关系,并说明理由;(3)延长ED 交AB 的延长线于F,若AD=DF,DE=3,求⊙O 的半径.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.若实数a,b 在数轴上对应的点的位置如图,则化简|a|+()2b -a 的结果是______.22.若x 1,x 1是关于x 的方程x 2-2mx-m 2-m-1=0的两个想上且x 1+x 2=1-x 1x 2,则m=______.23.有五张正面分别标有数-2,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x 的方程x xx ax -=---13311有正整数解的概率为______.24.如图,矩形ABCD 中,AB=4,AD=8,点E,F 分别在边AD,BC 上,且点B,F 关于过点E 的直线对称,如果EF 与以CD 为直径的圆恰好相切,那么AE=______.25.如图,直线y=3x-8交x 轴于点A,交y 轴于点B,点C 是反比例函数y=x k(x>0)的图象上位于直线AB 上方的一点,CD ∥x 轴交AB 于点D,CE ⊥CD 交AB 于点E,若AD ·BE=4,则k 的值为______.二、解答题(本大题共30分)26.(本小题满分8分)工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形.(1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米?(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,问裁掉的小正方形边长是多少分米时,总费用最低,最低费用为多少元?27.(本小题满分10分)如图,在△ABC 中,∠ACB=90°,AC=BC,CD 是中线,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC,BC 的延长线相交,交点分别为E,F,DF 与AC 交于点M,DE 与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF 绕点D 旋转的过程中,①求证:AB 2=4CE ·CF②若CE=8,CF=4,求DN 的长.28.(本小题满分12分)如图,抛物线y=-21x 2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点.(1)求抛物线的解析式及点D 的坐标;(2)如图1,抛物线的对称轴与x 轴交于点E,连接BD,点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)如图2,若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MNPQ,求点Q 的坐标.。

2018年成都市成华区二诊【含答案】

2018年成都市成华区二诊【含答案】

成华区初2018届第二次诊断性检测九年级英语第二部分基础知识运用六、选择填空A)从各题A、B、C 三个选项中选出正确的答案。

31. Nowadays WeChat makes_____ possible for us to talk to anywhere and anytime.A. itB. thatC. this32. The doctor did what he could _____ the girl who was badly hurt in the accident.A. saveB. savingC. to save33. –If there are_____ people driving, there will be _____ air pollution.-- Yes, the air will be fresher and cleaner.A. less; fewerB. fewer; lessC. fewer; fewer34. –When shall I call, in the morning or afternoon?--_____. I’ll be in all day.A. AnyB. NeitherC. Either35. –All the workers went home yesterday_____ Mr. White. Why?-- Because he was on duty.A. exceptB. besidesC. except for36. She lives in a house in the UK _____ she built herself out of rubbish.A. whereB. thatC. who37. Mike was usually so carefully, _____ this time he made a small mistake.A. yetB. stillC. even38. The teacher can see in our eyes that we are _____ knowledge. She tells us that knowledge will give us wings to fly.A. responsible forB. similar toC. thirsty for39. –How is Lily now?-- I heard the company _____ her a good job, but she refused it.A. introducedB. offeredC. provided40. –I’m planning to spend a vocation on a beach, but still can’t decide _____.-- Of course, your best friends.A. where I’m goingB. who I’m going withC. how I’m going there.B) 根据对话内容,从方框中选出适当的选项补全对话,并将选项的编号填在横线上。

2018成都中考数学二模拟试卷含参考答案

2018成都中考数学二模拟试卷含参考答案

(第13题图)9题图)**==(一、选择题1则αsin .A 432 .A 92=+x 34 .A .C 5有( .A 6则∠ 80.A 7(16米,那么路=BC 如图,将n 个边长都为则n 个这样的正方形重叠部分的面积和为(第15题每小题6分,第(2)计算:22 -16.球的仰角分别为四、(每小题817.如图,直线的交点,PB x⊥(1)求点P,另有一个停止DB//交CB的延1 24 3(第18题图)20.如图,⊙O (1)判断DCE ∆(2)设⊙O一、填空题:(21.已知13y x =-22.如图,B A ,,过BC 上一点P =BF 3223+24题图)n m ,以k Q (k k ,44≤≤-的值(4分).27.(10分)运动(不与点对称点,HQ⊥的面积为y.(何值时,HDE∆28.(12的线段AB的长为说明理由.**==(**==(**==()==****==()==****==()==****==()==****==()==****==()==****==(**==()==****==(**==(**==(**==(**==(**==(**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删如有侵犯,请联系我们立即删除)==****==(。

2018成都市高新区二诊数学试题答案.docx

2018成都市高新区二诊数学试题答案.docx

2018年九年级第二次诊断性考试试题数学(满分150分,时间:120分钟)第Ⅰ卷A卷(100分)一、选择题(每小题3分,共30分, 在下面每一个小题给出的四个选项中,只有一项是正确的.)1.计算9的结果为(A)A.3B.﹣3C.6D.﹣92.下列运算正确的是(C)A.a+a=a2B.a3÷a=a3C.a2•a=a3D.(a2)3=a53.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是(B)A.B.C.D.4.把0.0813写成a×10n(1≤a<10,n为整数)的形式,则n为( B )A.1B.﹣2C.2D.8.135.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为(D)A.量角器B.直尺C.三角板D.圆规6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的众数、极差分别为(C)A.1.70、0.25B.1.75、3C.1.75、0.30D.1.70、37.将抛物线y=﹣x2向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是(C)A.B.C.D.8.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是(D)A.m<3B.m≤3C.m<3且m≠2D.m≤3且m≠29.如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是(B)A.30°B.25°C.20°D.15°10.如图,正五边形ABCDE 内接于⊙O ,若⊙O 的半径为5,则的长度为( B )A .πB .2πC .5πD .10π第Ⅱ卷二、填空题(每小题4分,共16分) 11.因式分解:=++49142x x()27+x.12.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.13.如图,▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的F 点,若△FDE 的周长为8 cm ,△FCB 的周长为20cm ,则FC 的长为 6 cm .14. 把直线y=﹣x +3向上平移m 个单位后,与直线y=2x +4的交点在第一象限,则m 的取值范围是 m >1 . 三、解答题(本题共54分) 15. (每小题6分,共12分)(1)计算:()o45cos 2341|21|01--+⎪⎭⎫ ⎝⎛-+--π解:()分分分原式14-12141242221412⋯⋯=⋯⋯-+--=⋯⋯⨯-+-+-=(2)解不等式组()⎪⎩⎪⎨⎧-<-+-≥xx x x 613121,并把解集在数轴上表示出来. 解:分分分1212211⋯⋯<≤-∴⋯⋯<⋯⋯-≥x 由②得:x 由①得:x将原不等式组解集在数轴上表示如下: 数轴表示……2分16、(本小题6分)先化简,再求值:⎪⎭⎫⎝⎛---÷--225262x x x x ,其中12-=x . 解:()()()()()分分分原式132133223222452322⋯⋯+-=⋯⋯+--⨯---=⋯⋯⎪⎪⎭⎫⎝⎛---÷--=x x x x x x x x x x 分分原式时当1221312212⋯⋯-=⋯⋯+--=-=x17、(本小题8分)为了测量白塔的高度AB ,在D 处用高为1.5米的测角仪 CD ,测得塔顶A 的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A 的仰角为61°,求白塔的高度AB .(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)解:设AE=x , 在Rt △ACE 中,CE==1.1x ,………………………………2分 在Rt △AFE 中,FE==0.55x ,………………………………2分由题意得,CF=CE ﹣FE=1.1x ﹣0.55x=12,………………………………2分 解得:x=,………………………………1分故AB=AE +BE=+1.5≈23米.答:这个电视塔的高度AB 为23米.………………………………1分18、(本小题8分)某销售公司年终进行业绩考核,人事部门把考核结果按照A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图1,图2.(1)参加考试人数是 ,扇形统计图中D 部分所对应的圆心角的度数是 ,请把条形统计图补充完整;(2)若考核为A 等级的人中仅有2位女性,公司领导计划从考核为A 等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A 等级的人数达到30人,求平均每年的增长率.(精确到0.01,=2.236)解:(1)参加考试的人数是:24÷48%=50人;………………………………1分 扇形统计图中D 部分所对应的圆心角的度数是:360°×=36°;…………………………………1分C 等级的人数是:50﹣24﹣15﹣5=6人,补图如下:………………………………1分故答案为:50,36;(2)树状图或表格因为共有20种可能,其中满足一男一女的情况有12种,………………………………2分 ∴P (一男一女)=532012 ;………………………………1分(3)设增长率是x ,依题意列方程得:24(1+x )2=30,………………………………1分 解得:x 1=﹣1+≈0.12,x 2=﹣1﹣(舍去),答:每年增长率为12%.………………………………1分19、(本小题10分)如图,已知A (3,m ),B (﹣2,﹣3)是直线AB 和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;………………………………1分把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),………………………………1分设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;………………………………1分(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;…………………2分(3)存在点C.………………………………1分如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);………………………………1分如图,过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积, ∴△OBC 2的面积等于△OAB 的面积,由B (﹣2,﹣3)可得OB 的解析式为y=x , 可设直线C 1C 2的解析式为y=x +b',把C 1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',………………………………1分 解得b'=,∴直线C 1C 2的解析式为y=x +,解方程组,可得C 2(,);………………………………1分如图,过A 作OB 的平行线,交双曲线于点C 3,则△OBC 3的面积等于△OBA 的面积, 设直线AC 3的解析式为y=x +b“, 把A (3,2)代入,可得2=×3+b“, 解得b“=﹣,∴直线AC 3的解析式为y=x ﹣,解方程组,可得C 3(﹣,﹣);………………………………1分综上所述,点C 的坐标为(﹣3,﹣2),(,),(﹣,﹣).20、(本小题10分)如图, ⊙O ABC Rt ∆的外接圆,o90=∠C ,21tan =B ,过点B 的直线l 是 ⊙O 的切线,点D 是直线l 上一点,过点D 作CB DE ⊥交CB 延长线于点E ,连结AD ,交⊙O 于点F ,连结BF 、CD 交于点G.(1)ACB ∆∽BED ∆; (2)当AC AD ⊥时,求CGDG的值; (3)若CD 平分ACB ∠,AC =2,连结CF,求线段CF 的长.(1)分∽分分111⋯⋯∆∆⋯⋯∠=∠⋯⋯∠=∠BED ACB BDE ABC E ACB (2)分分∽分为矩形∽141124:2:1::⋯⋯=⋯⋯∆∆⋯⋯=∴∆∆CG DG GDF GCB BC DE BE ACED BED ACB (3)分分分15581454,5218,442⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∴⋯⋯⊥⇒==⇒==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯===⇒=CF AB CF BC BF BD AB DE BE BC ACB 卷(50分)一、填空题(每小题4分,共20分)21.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 11 小时. 22.若⎩⎨⎧-==21b a 是关于b a ,的二元一次方程7=-+b ay ax 的一个解,代数式1222-++y xy x 的值是 24 .23.如图,同心圆的半径为6cm ,8cm ,AB 为小圆的弦,CD 为大圆的弦,且ABCD 为矩形,若矩形ABCD 面积最大时,矩形ABCD 的周长为 39.2 cm .24.如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B'C'交CD 边于点G .连接BB'、CC'.若AD=7,CG=4,AB'=B'G ,则=(结果保留根号).25.在平面直角坐标系,对于点P (x ,y )和Q (x ,y′),给出如下定义:若y′=,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3). 点(﹣5,﹣2)的“可控变点”坐标为 3或﹣;若点P 在函数y=﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y′的取值范围是﹣16≤y′≤16,实数a 的取值范围为__≤a ≤4.____________.二、解答题(本题共30分)26、(本小题8分)为进一步缓解城市交通压力,成都大力支持共享单车的推广,并规范共享单车定点停放,某校学生小明统计了周六校门口停车点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 的值表示8:00点时的存量,x=2时的y 值表示9:00点时的存量…以此类推,他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系.时段 x 还车数 借车数 存量y 7:00﹣8:00 1 7 5 15 8:00﹣9:002 8 7 n ……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的还车数比借车数的2倍少4,求此时段的借车数.解:(1)m+7﹣5=15,m=13,………………………………1分则m的实际意义:7:00时自行车的存量;………………………………1分故答案为:13,7:00时自行车的存量;(2)由题意得:n=15+8﹣7=16,………………………………1分设二次函数的关系式为:y=ax2+bx+c,把(0,13)、(1,15)和(2,16)分别代入得:,………………………………1分解得:,∴y=﹣x2+x+13;………………………………1分(3)当x=3时,y=﹣×32+×3+13=16,………………………………1分当x=4时,y=﹣×42+×4=13=15,………………………………1分设10:00﹣11:00这个时段的借车数为x,则还车数为2x﹣4,根据题意得:16+2x﹣4﹣x=15,x=3,………………………………1分答:10:00﹣11:00这个时段的借车数为3辆.27、(本小题10分)在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P(1)如图1,若点N在边BC上,点M在边DC上,BN=CM,求证:BP•BM=BN•BC;(2)如图2,若N为边DC的中点,M在边ED上,AM∥BN,求的值;(3)如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.(1)证明:在正六边形ABCDEF中,AB=BC,∠ABC=∠BCD=120°,………………………………1分∵BN=CM,∴△ABN≌△BCM,∴∠ANB=∠BMC,………………………………1分∵∠PBN=∠CBM,∴△BPN∽△BCM,∴=,∴BP•BM=BN•BC;………………………………1分(2)延长BC,ED交于点H,延长BN交DH于点G,取BG的中点K,连接KC,………………1分在正六边形ABCDEF中,∠BCD=∠CDE=120°,∴∠HCD=∠CDH=60°,∴∠H=60°,∴DC=DH=CH,∵DC=BC,∴CH=BC,∵BK=GK,∴2KC=GH,KC∥DH,………………………………1分∴∠GDN=∠KCN,∵CN=DN,∠DNG=∠CNK,∴△DNG≌△CNK,∴KC=DG,∴DG=DH=DE,∵MG∥AB,AM∥BG,∴四边形MABG是平行四边形,………………………………1分∴MG=AB=ED,∴ME=DG=DE,即=,………………………………1分(3)如图3,过N作NH⊥AB,交AB的延长线于H,………………………………1分∵∠ABC=120°,。

2018年中考数学二模试卷含答案

2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。

2018年四川省成都市中考数学二诊试卷含答案解析


{ ������
=
������−1 3
解得:
������
=
2������
+ 3
10

即交点坐标为(������3−1,2������
+ 3
10),
∵ 交点在第一象限,
{ ������−1 > 0

3
2������
+ 3
10
>
0,
解得:������ > 1.
5
故答案为:������ > 1. 方法二:如图所示: 把直线������ = −������ + 3向上平移 m 个单位后,与直线������ = 2������ + 4的交点在第一象限, 则 m 的取值范围是������ > 1. 故答案为:������ > 1.
6. 在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:
成绩/������
1.50
1.60
1.65
1.70
1.75
1.80
人数
2
3
2
3
4
1
则这些运动员成绩的众数、极差分别为( )
A. 1.70、0.25
B. 1.75、3
C. 1.75、0.30
D. 1.70、3
【答案】C 【解析】解: ∵ 这组数据中1.75������出现次数最多,有 4 次, ∴ 这组数据的众数为1.75������,
【答案】B
【解析】解:连接 OA、OB, ∵ 五边形 ABCDE 是正五边形, ∴ ∠������������������ = 360 ∘ ÷ 5 = 72 ∘ ,

2018年四川省成都市成华区中考数学二诊试卷和答案

第1页(共31页)页)2018年四川省成都市成华区中考数学二诊试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.根据刘徽的这种表示法,图1表示的数值为:(+1)+(﹣1)=0,则可推算图2表示的数值为(值为( )A .7B .﹣1C .1D .±12.(3分)下面的几何体中,主视图为圆的是(分)下面的几何体中,主视图为圆的是( )A .B .C .D .3.(3分)下列运算正确的有(分)下列运算正确的有( )A .5ab ﹣ab=4B .(a 2)3=a 6C .(a ﹣b )2=a 2﹣b 2D .=±34.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是(用科学记数法表示是( ) A .55×106 B .0.55×108 C .5.5×106 D .5.5×1075.(3分)一把直尺和一块三角板ABC (其中∠B=30°,∠C=90°)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D ,点E ,另一边与三角板的两直角边分别交于点F ,点A ,且∠CDE=50°,那么∠BAF 的大小为(的大小为( )A .20°B .40°C .45°D .50°6.(3分)在同一平面直角坐标系中,函数y=kx (k >0)与y=(k >0)的图象可能是(可能是( )A .B .C .D .7.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速(km/h ) 48 49 50 51 52 车辆数(辆)54821则上述车速的中位数和众数分别是(则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,8 8.(3分)如图,在△ABC 中,点D 、E 分别为AB 、AC 的中点,则△ADE 与四边形BCED 的面积比为(的面积比为( )A .1:1B .1:2C .1:3D .1:49.(3分)如图,AB 是⊙O 的直径,CA 切⊙O 于点A ,CO 交⊙O 于点D ,连接BD ,若∠C=40°,则∠B 等于(等于( )A .20°B .25°C .30°D .40°10.(3分)已知抛物线y=ax 2﹣2ax ﹣1(a ≠0),下列四个结论:①当a >0时,在对称轴的右边,y 随x 的增大而增大;②函数图象的对称轴是x=﹣1;③当a=1时,图象经过点(﹣1,2);④当a=﹣2时,函数图象与x 轴没有交点,其中正确的共有(确的共有( )A .4个B .3个C .2个D .1个二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)分解因式:m 3﹣mn 2= . 12.(4分)从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是率是 . 13.(4分)已知:在平行四边形ABCD 中,点E 在DA 的延长线上,AE=AD ,连接CE 交BD 于点F ,则的值是的值是.14.(4分)如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为的长为.三、解答题(共54分)15.(12分)(1)计算:2sin30°+(π﹣3.14)0+|1﹣|﹣(﹣1)2018(2)解不等式组,并写出该不等式组的最大整数解16.(6分)先化简,再求值:(+)÷,且x 为满足﹣3<x <2的整数.17.(8分)如图,在距离铁轨200米的A 处,观察由成都开往西安的“和谐号”动车,当动车车头到达B 处时,处时,车头恰好位于车头恰好位于A 处的北偏东60°方向上,10秒钟后,动车车头到达C处,此时车头恰好位于A处西偏北45°方向上,求这时段动车的平均速度是多少米/秒?(结果精确到个位,参考数据:≈1.414,≈1.732)18.(8分)某班针对“你最喜爱的课外活动项目”对全班学生进行调査(每名学生分别选一个活动项目),并根据调查结果列出如下统计表,绘制成如下扇形统计图:项目 男生(人数) 女生(人数) 机器人 7 93D打印 m 4航模 2 2其他 5 n根据以上信息解决下列问题:(1)m= ,n= ;;)扇形统计图中机器人项目所对应扇形的圆心角度数为(2)扇形统计图中机器人项目所对应扇形的圆心角度数为(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,求所选取的2名学生中恰好有1名男生、1名女生的概率(用树状图或列表法解答).19.(10分)如图,一次函数y=ax+b与反比例函数y=交于点A(1,4)和点B (﹣2,﹣2),与y轴交于点C.(1)求一次函数和反比例函数的解析式;(2)若点M在y轴上,且△MAB的面积等于,求点M的坐标.20.(10分)如图,AB 为⊙O 的直径,AC 是⊙O 的一条弦,D 为弧BC 的中点,过点D 作DE ⊥AC ,垂足为AC 的延长线上的点E ,连接DA 、DB . (1)求证:DE 是⊙O 的切线;(2)试探究线段AB 、BD 、CE 之间的数量关系,并说明理由; (3)延长ED 交AB 的延长线于F ,若AD=DF ,DE=,求⊙O 的半径.四、填空题(本大题共5个小题,每小题4分,共20分) 21.(4分)实数a ,b 在数轴上对应点的位置如图所示,化简在数轴上对应点的位置如图所示,化简||a |+的结果是果是.22.(4分)若x 1,x 2是关于x 的方程x 2﹣2mx ﹣m 2﹣m ﹣1=0的两个根且x 1+x 2=1﹣x 1x 2,则m= .23.(4分)有五张正面分别标有数﹣2,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.不同外其余全部相同.现将它们背面朝上,现将它们背面朝上,现将它们背面朝上,洗匀后从中任取一张,洗匀后从中任取一张,洗匀后从中任取一张,将卡片上的数将卡片上的数记为a ,则使关于x 的方程﹣3=有正整数解的概率为有正整数解的概率为. 24.(4分)如图,矩形ABCD 中,AB=4,AD=8,点E ,F 分别在边AD ,BC 上,且点B ,F 关于过点E 的直线对称,如果EF 与以CD 为直径的圆恰好相切,那么AE= .25.(4分)如图,直线y=x ﹣8交x 轴于点A ,交y 轴于点B ,点C 是反比例函数y=的图象上位于直线AB 上方的一点,CD ∥/x 轴交AB 于点D ,CE⊥CD 交AB 于点E ,若AD•BE=4,则k 的值为的值为.五、解答题(本大题共30分)26.(8分)工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形. (1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米?(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,元,问裁掉的小正方形边长是多少分米时,问裁掉的小正方形边长是多少分米时,问裁掉的小正方形边长是多少分米时,总费用最低,总费用最低,总费用最低,最低费用最低费用为多少元?27.(10分)如图,在△ABC 中,∠ACB=90°,AC=BC ,CD 是中线,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为E 、F ,DF 与AC 交于点M ,DE 与BC 交于点N . (1)如图1,若CE=CF ,求证:DE=DF (2)如图2,在∠EDF 绕点D 旋转的过程中,=4CE•CF CF①求证:AB2=4CE•②若CE=8,CF=4,求DN的长.28.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P 在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2018年四川省成都市成华区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.根据刘徽的这种表示法,图1表示的数值为:(+1)+(﹣1)=0,则可推算图2表示的数值为(值为( )A .7B .﹣1C .1D .±1【解答】解:根据题意知,图2表示的数值为3+(﹣4)=﹣1, 故选:B .2.(3分)下面的几何体中,主视图为圆的是(分)下面的几何体中,主视图为圆的是( )A .B .C .D .【解答】解:A 、的主视图是矩形,故A 不符合题意; B 、的主视图是正方形,故B 不符合题意; C 、的主视图是圆,故C 符合题意; D 、的主视图是三角形,故D 不符合题意; 故选:C .3.(3分)下列运算正确的有(分)下列运算正确的有( )A .5ab ﹣ab=4B .(a 2)3=a 6C .(a ﹣b )2=a 2﹣b 2D .=±3【解答】解:A 、5ab ﹣ab=4ab ,故本选项错误; B 、(a 2)3=a 6,故本选项正确;C 、(a ﹣b )2=a 2﹣2ab ﹣b 2,故本选项错误;D 、=3,故本选项错误;故选:B .4.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是(用科学记数法表示是( ) A .55×106 B .0.55×108 C .5.5×106 D .5.5×107 【解答】解:55000000=5.5×107, 故选:D .5.(3分)一把直尺和一块三角板ABC (其中∠B=30°,∠C=90°)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D ,点E ,另一边与三角板的两直角边分别交于点F ,点A ,且∠CDE=50°,那么∠BAF 的大小为(的大小为( )A .20°B .40°C .45°D .50°【解答】解:由图可得,∠CDE=50°,∠C=90°, ∴∠CED=40°, 又∵DE ∥AF , ∴∠CAF=40°, ∵∠BAC=60°,∴∠BAF=60°﹣40°40°=20°=20°, 故选:A .6.(3分)在同一平面直角坐标系中,函数y=kx (k >0)与y=(k >0)的图象可能是(可能是( )A .B .C .D .【解答】解:当k >0时,正比例函数y=kx 的图象经过一、三象限,反比例函数y=的图象分布在一、三象限, 故选:C .7.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速(km/h ) 48 49 50 51 52 车辆数(辆)54821则上述车速的中位数和众数分别是(则上述车速的中位数和众数分别是( ) A .50,8 B .50,50 C .49,50 D .49,8 【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50. 故选:B .8.(3分)如图,在△ABC 中,点D 、E 分别为AB 、AC 的中点,则△ADE 与四边形BCED 的面积比为(的面积比为( )A.1:1 B.1:2 C.1:3 D.1:4【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.9.(3分)如图,AB是⊙O的直径,CA切⊙O于点A,CO交⊙O于点D,连接BD,若∠C=40°,则∠B等于(等于( )A.20° B.25° C.30° D.40°【解答】解:如图,∵AB是⊙O的直径,CA切⊙O于点A,∴∠CAO=90°.∵∠C=40°,∴∠COA=50°,∴∠B=∠COA=25°.故选:B.10.(3分)已知抛物线y=ax 2﹣2ax ﹣1(a ≠0),下列四个结论:①当a >0时,在对称轴的右边,y 随x 的增大而增大;②函数图象的对称轴是x=﹣1;③当a=1时,图象经过点(﹣1,2);④当a=﹣2时,函数图象与x 轴没有交点,其中正确的共有(确的共有( )A .4个B .3个C .2个D .1个【解答】解:∵抛物线y=ax 2﹣2ax ﹣1(a ≠0),∴当a >0时,抛物线开口向上,在对称轴的右边,y 随x 的增大而增大,故①正确,函数图象的对称轴是直线x=﹣=1,故②错误,当a=1时,y=x 2﹣2x ﹣1,当x=﹣1时,y=2,故③正确,当a=﹣2时,y=﹣2x 2+4x ﹣1,当y=0时,﹣2x 2+4x ﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,故当a=﹣2时,函数图象与x 轴有两个交点,故④错误, 故选:C .二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)分解因式:m 3﹣mn 2= m (m +n )(m ﹣n ) . 【解答】解:m 3﹣mn 2, =m (m 2﹣n 2), =m (m +n )(m ﹣n ).12.(4分)从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是率是 .【解答】解:∵在,0,π,,6这五个数中,有理数有0、、6这3个, ∴抽到有理数的概率是, 故答案为:.13.(4分)已知:在平行四边形ABCD 中,点E 在DA 的延长线上,AE=AD ,连接CE交BD于点F,则的值是.的值是【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△DFE∽△BFC,∴===.故答案为:.14.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长6 .的长为为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.三、解答题(共54分)15.(12分)(1)计算:2sin30°+(π﹣3.14)0+|1﹣|﹣(﹣1)2018(2)解不等式组,并写出该不等式组的最大整数解【解答】解:(1)原式=;(2),由①得:x≤3,由②得:x>﹣1,∴不等式组的解集是﹣1<x≤3,∴不等式组的最大整数解是3.16.(6分)先化简,再求值:(+)÷,且x为满足﹣3<x<2的整数.【解答】解:原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2所以x=﹣1原式=﹣2﹣3=﹣517.(8分)如图,在距离铁轨200米的A处,观察由成都开往西安的“和谐号”车头恰好位于A处的北偏东60°方向上,10秒钟处时,车头恰好位于动车,当动车车头到达B处时,后,动车车头到达C处,此时车头恰好位于A处西偏北45°方向上,求这时段动车的平均速度是多少米/秒?(结果精确到个位,参考数据:≈1.414,≈1.732)【解答】解:如图,作AD⊥BC于点D,则AD=200米,∵在Rt△ABD中,∠BAD=60°,∴BD=AD•tan∠BAD=200(米),∵∠CAD=45°,∴CD=AD=200米,则BC=CD+BD=200+200(米).则平均速度是=20(+1)≈55米/秒.18.(8分)某班针对“你最喜爱的课外活动项目”对全班学生进行调査(每名学生分别选一个活动项目),并根据调查结果列出如下统计表,绘制成如下扇形统计图:项目 男生(人数) 女生(人数) 机器人 7 93D打印 m 4航模 2 2其他 5 n根据以上信息解决下列问题:(1)m= 11 ,n= 9 ;144° ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为)扇形统计图中机器人项目所对应扇形的圆心角度数为(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,求所选取的2名学生中恰好有1名男生、1名女生的概率(用树状图或列表法解答).【解答】解:(1)∵本次调查的总人数为(2+2)÷10%=40人,∴m=40×30%﹣4=8,机器人对应的百分比为×100%=40%,则其他项目对应百分比为1﹣(30%+10%+40%)=20%,∴n=40×20%﹣5=3,故答案为:8、3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为360°×40%=144°, 故答案为:144°;(3)列表得:男1 男2 女1 女2男1 ﹣﹣ 男2男1 女1男1 女2男1男2 男1男2 ﹣﹣ 女1男2 女2男2女1 男1女1 男2女1 ﹣﹣ 女2女1女2 男1女2 男2女2 女1女2 ﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P( 1名男生、1名女生)==.19.(10分)如图,一次函数y=ax+b与反比例函数y=交于点A(1,4)和点B (﹣2,﹣2),与y轴交于点C.(1)求一次函数和反比例函数的解析式;(2)若点M在y轴上,且△MAB的面积等于,求点M的坐标.【解答】解:(1)把点A(1,4)和点B(﹣2,﹣2),代入一次函数y=ax+b,可得,解得,∴一次函数解析式为y=2x+2,把点A(1,4)代入反比例函数y=,可得k=1×4=4,∴反比例函数解析式为y=;(2)y=2x+2,令x=0,则y=2,∴C(0,2),设点M的坐标为(0,y),则CM=|y﹣2|,∵△MAB的面积等于,∴CM×(1+2)=,即×|y﹣2|×(1+2)=,解得y=﹣1或5,∴点M的坐标为(0,﹣1)或(0,5).20.(10分)如图,AB为⊙O的直径,AC是⊙O的一条弦,D为弧BC的中点,过点D作DE⊥AC,垂足为AC的延长线上的点E,连接DA、DB.(1)求证:DE是⊙O的切线;(2)试探究线段AB、BD、CE之间的数量关系,并说明理由;(3)延长ED交AB的延长线于F,若AD=DF,DE=,求⊙O的半径.【解答】(1)证明:连接OD,∵D为的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF,∴EF为半圆O的切线;(2)解:BD2=CE×AB,理由是:过D作DM⊥AB于M,连接CD, ∵D为的中点,∴∠CAD=∠BAD,∵DE⊥AE,DM⊥AB,∴DE=DM,∠E=∠DMB,∵CC、A、B、D四点共圆,∴∠ECD=∠DBM,在△ECD和△BMD中∴△ECD≌△BMD,∴CE=BM,∵AB是⊙O的直径,DM⊥AB,∴∠ADB=∠DMB=90°,∵∠DBM=∠ABD,∴△DBM∽△ABD,∴=,∴BD2=BM×AB,即BD2=CE×AB;(3)解:∵OA=OD , ∴∠DAO=∠ODA , ∵AD=DF , ∴∠DAO=∠F , ∴∠DAO=∠F=∠ODA ,∴∠DOF=∠DAO +∠ODA=2∠F , ∵EF 切⊙O 于D , ∴∠ODF=90°, ∴∠F +∠DOF=90°, ∴∠F=30°,∠DOF=60°, ∵DE=DM=,在Rt △DMO 中,OD===2,即⊙O 的半径是2.四、填空题(本大题共5个小题,每小题4分,共20分) 21.(4分)实数a ,b 在数轴上对应点的位置如图所示,化简在数轴上对应点的位置如图所示,化简||a |+的结果是果是 b ﹣2a .【解答】解:由数轴可得:a <0,a ﹣b <0, 则原式=﹣a ﹣(a ﹣b )=b ﹣2a . 故答案为:b ﹣2a .22.(4分)若x 1,x 2是关于x 的方程x 2﹣2mx ﹣m 2﹣m ﹣1=0的两个根且x 1+x 2=1﹣x1x 2,则m= 2 .【解答】解:∵x 1,x 2是关于x 的方程x 2﹣2mx ﹣m 2﹣m ﹣1=0的两个根, ∴x 1+x 2=2m ,x 1•x 2=﹣m ﹣1, ∵x 1+x 2=1﹣x 1x 2, ∴2m=1+m +1, 解得:m=2. 故答案为:2.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.不同外其余全部相同.现将它们背面朝上,现将它们背面朝上,现将它们背面朝上,洗匀后从中任取一张,洗匀后从中任取一张,洗匀后从中任取一张,将卡片上的数将卡片上的数记为a ,则使关于x 的方程﹣3=有正整数解的概率为有正整数解的概率为 . 【解答】解:解分式方程得:x=, ∵分式方程的解为正整数, ∴a >0, 又∵x ≠1, ∴a ≠4, ∴a=1,∴使关于x 的分式方程有正整数解的概率为. 故答案为:.24.(4分)如图,矩形ABCD 中,AB=4,AD=8,点E ,F 分别在边AD ,BC 上,且点B ,F 关于过点E 的直线对称,如果EF 与以CD 为直径的圆恰好相切,那么AE= 6﹣.【解答】解:如图,设⊙O 与EF 相切于M ,连接EB ,作EH ⊥BC 于H .由题意易知四边形AEHB是矩形,设AE=BH=x,由切线长定理可知,ED=EM,FC=FM,∵B、F关于EH对称,∴HF=BH=x,ED=EM=8﹣x,FC=FM=8﹣2x,EF=16﹣3x,在Rt△EFH中,∵EF2=EH2+HF2,∴42+x2=(16﹣3x)2,解得x=6﹣或6+(舍弃),∴AE=6﹣,故答案为:6﹣.25.(4分)如图,直线y=x﹣8交x轴于点A,交y轴于点B,点C是反比例函数y=的图象上位于直线AB上方的一点,CD∥/x轴交AB于点D,CE﹣ .的值为⊥CD交AB于点E,若AD•BE=4,则k的值为【解答】解:如图,过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO, 由直线y=x﹣8,可得A(,0),B(0,﹣8),∴AO=,BO=8,AB=,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得,即=,∴AD=﹣y ,由△BEG ∽△BAO ,可得,即=,∴BE=2x , ∵AD•BE=4, ∴﹣y ×2x=4, ∴xy=﹣, ∴k=xy=,故答案为:﹣.五、解答题(本大题共30分)26.(8分)工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形. (1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米?(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,元,问裁掉的小正方形边长是多少分米时,问裁掉的小正方形边长是多少分米时,问裁掉的小正方形边长是多少分米时,总费用最低,总费用最低,总费用最低,最低费用最低费用为多少元?【解答】解:(1)设裁掉一个小正方形的边长为x分米,(10﹣2x)(8﹣2x)=48,解得,x1=1,x2=8(舍去),答:裁掉一个小正方形边长是1分米;(2)设裁掉的小正方形边长是a分米时,总费用为w元,w=0.5×[2×(8﹣2a)a+2×(10﹣2a)a]+2(8﹣2a)(10﹣2a)=4a2﹣54a+160=4(a﹣)2﹣,∵的长方体容器的底面长不大于底面宽的3倍,∴10﹣2a≤3(8﹣2a),得a≤3.5,∴当a=3.5时,w取的最小值,此时w=20,答:裁掉的小正方形边长是3.5分米时,总费用最低,最低费用为20元.27.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D 为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)如图2,在∠EDF绕点D旋转的过程中,①求证:AB2=4CE•CF②若CE=8,CF=4,求DN的长.【解答】(1)证明:∵在△ABC中,∠ACB=90°,AC=BC,CD是中线,∴△ABC为等腰直角三角形,∴∠ACD=∠BCD=45°,AB=2CD,∴∠DCF=∠DCE=135°.在△DCF和△DCE中,,∴△DCF≌△DCE(SAS),∴DE=DF.(2)①证明:∵∠DCF=135°,∴∠CDF+∠CFD=45°.∵∠EDF=∠CDF+∠CDE=45°,∴∠CFD=∠CDE.又∵∠DCF=∠ECD=135°,∴△CFD∽△CDE,∴=,即CD2=CE•CF.又∵AB=2CD,∴AB2=4CE•CF.②解:∵CE=8,CF=4,∴CD=4.如图2,过点D作DP⊥BC于点P,则DP∥CE,DP=CP=CD=4,∴△CNE∽△PND,∴==,∴PN=CP=DP=.在Rt△DPN中,∠DPN=90°,DP=4,PN=,∴DN==.28.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P 在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点Oʹ,∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形, ∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上, 设Q (2,2n ),则M 坐标为(2﹣n ,n ), ∵点M 在抛物线y=﹣x 2+2x +6的图象上, ∴n=﹣(2﹣n )2+2(2﹣n )+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q 有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,如图,在直线在直线l 上依次摆放着七个正方形上依次摆放着七个正方形(如图所示)(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.的长.EABCD4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为点坐标为 (1,0)。

2018年四川省成都市中考数学二模试卷(含答案)

2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013 5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95 人数 4 6 8 5 7对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN =.14.(4分)把直线y =﹣x ﹣1沿x 轴向右平移1个单位长度,所得直线的函数解析式为 .三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x ﹣2+)÷,其中x =﹣. 17.(8分)如图,飞机沿水平线AC 飞行,在A 处测得正前方停泊在海面上某船只P 的俯角∠CAP (从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km 到达B 处,在B 处测得该船只的俯角∠CBP =52°,求飞机飞行的高度(精确到1m )18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED =4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a ≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95 人数 4 6 8 5 7对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l 2016的长.【解答】解:根据题意得:l 1==,l 2==,l 3===π,则L 2016=,故选:B .【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l 2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x +y =4,x ﹣=1,则4x 2﹣y 2= 8 .【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x ﹣=1,∴2x ﹣y =2,则4x 2﹣y 2=(2x +y )(2x ﹣y )=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 .【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2 .【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC 的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED =4,求EF的长.【分析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD;(2)由(1)求得AB的长,又由BD为⊙O的直径,即可得∠A=90°,由DF是⊙O的切线,可得∠BDF=90°,在Rt△ABD中,求得tan∠ADB 的值,即可求得∠ADB的度数,即可证得△DEF是等边三角形,则问题得解.【解答】解:(1)证明:∵点A是劣弧BC的中点,∴∠ABC=∠ADB.(1分)又∵∠BAD=∠EAB,∴△ABE∽△ADB.(2分)∴.∴AB2=AE•AD.(2)解:∵AE=2,ED=4,∵△ABE∽△ADB,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4 .【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9 .【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF= 4 ;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF 是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB ﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档