运动目标跟踪(入门级)剖析
健身计划的跟踪与数据分析

健身计划的跟踪与数据分析健身对于保持身体健康和增强体质至关重要。
然而,在忙碌的生活中,如何管理和跟踪自己的健身计划成为一个挑战。
幸运的是,现代科技为我们提供了各种跟踪和数据分析工具,使我们能够更好地了解自己的健身状况,以及如何调整和优化自己的计划。
一、跟踪工具的选择和使用1. 健身追踪应用如今,市面上有许多专门为健身目的而设计的应用程序,这些应用可以帮助你记录自己的锻炼活动、心率、卡路里消耗和身体参数等。
选择一款适合自己的应用,将每日的锻炼活动输入其中,系统会自动生成详细的报告和分析结果。
2. 智能手环或智能手表智能手环或智能手表能够实时监测你的心率、步数、睡眠质量等数据,并将这些数据同步到你的手机应用中。
通过这些设备,你可以更方便地实时监控自己的健康状况并进行数据分析。
3. 健身设备的内置跟踪功能一些现代化的健身设备,如跑步机、动感单车等,都具备内置的跟踪功能。
这些设备会自动记录你的运动数据,包括距离、速度、时间等,以帮助你分析自己的运动成果。
二、数据分析的重要性1. 健康状况的评估通过跟踪和分析自己的健身数据,你可以了解自己的身体状况以及健康水平的提高情况。
例如,你可以通过监测心率变化来评估自己的有氧能力,通过记录体重和身体参数的变化来了解自己的身体变化情况。
2. 计划调整的依据通过数据分析,你可以了解自己的运动偏好和效果,从而调整自己的健身计划。
例如,如果数据显示你的肌肉力量不足,你可以增加力量训练的频率和强度;如果数据显示你的有氧能力较强,你可以将重点转移到其他方面的锻炼上。
3. 目标设定和挑战自我你可以利用跟踪数据来设定自己的健身目标,并为实现这些目标而努力。
将数据作为参考,通过检查自己的进展和挑战自己,你会更有动力和毅力去坚持健身计划。
三、跟踪与数据分析的应用实例1. 跟踪锻炼时间和消耗卡路里通过跟踪自己的锻炼时间和消耗的卡路里数,你可以判断自己的训练强度和效果。
通过数据分析,你可以调整自己的锻炼时间和强度,以达到更好的训练效果。
运动目标跟踪

运动目标跟踪运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,例如视频监控、交通监控、自动驾驶等。
运动目标跟踪的目标是识别和跟踪视频中的感兴趣目标,并在目标移动、形状变化、遮挡等复杂场景下保持准确的跟踪。
跟踪的过程一般包括目标检测、目标定位和目标跟踪三个步骤。
首先,目标检测是从视频中检测出所有可能的目标区域。
常用的目标检测算法包括基于深度学习的目标检测算法,如Faster R-CNN、YOLO等。
这些算法可以快速准确地检测出目标区域,并生成候选框。
然后,目标定位是确定目标在当前帧中的准确位置。
目标定位一般采用基于特征的方法,通过计算目标候选框与目标模板之间的相似度来确定目标的位置。
常用的目标定位算法包括颜色直方图、HOG特征等。
这些算法可以通过算法模型进行目标定位,并快速准确地输出目标的位置。
最后,目标跟踪是在视频序列中持续追踪目标,并在目标发生变化或遮挡时进行目标重新定位和跟踪。
常用的目标跟踪算法包括基于粒子滤波器的跟踪算法、卡尔曼滤波器跟踪算法等。
这些算法可以利用目标模型和观测模型进行目标跟踪,并实时更新目标的位置和状态。
运动目标跟踪的关键技术包括目标检测和定位、目标跟踪和状态估计、特征提取和匹配等。
当前,随着深度学习技术的发展,基于深度学习的运动目标跟踪方法已经取得了很大的突破。
这些方法可以通过大规模的数据训练模型,实现更加准确和鲁棒的目标跟踪效果。
总之,运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,并且随着深度学习技术的发展,其性能和效果正在不断提高。
将来,运动目标跟踪技术有望在各个领域得到更广泛的应用。
常用运动目标跟踪方法介绍

2.6.常用运动目标跟踪方法介绍2.6.1基于区域匹配的跟踪方法如绪论中所介绍,基于区域匹配的跟踪方法14 6J的基本思想是将检测阶段经过目标分割后获得的含有运动目标的区域提取出来,并作为跟踪匹配的模板,同时定义目标的匹配度量方法。
在后续序列的待搜索图像帧中,通过匹配度量全图搜索与模板达到最佳匹配的区域,找到的使得匹配度量值最小的位置即可确定为目标在当前帧的位置,从而达到运动目标跟踪的目的。
可以看出,基于区域匹配的跟踪算法的关键在于搜索方法以及匹配度量方法的定义,选取合适的搜索算法和匹配距离的度量方法成为这类算法中不断改进的突破点。
目前常用的搜索算法一般被归为全局搜索和局部搜索这两大类。
全局搜索主要是针对整幅图像进行全图搜索,这种搜索算法可以保证搜索的准确性,匹配的准确率高。
但其对于大幅图像来讲,搜索全图十分耗时,难以应用到实际的跟踪系统中;局部搜索相比于全局搜索的逐点扫描,需要预先检测当前帧中的运动目标,然后只针对运动目标所存在的区域进行匹配,从而实现了运动目标的跟踪。
局部搜索省去了全图搜索所耗费的大部分时间,因此实时性很好,但其对于目标检测的精确度要求较高。
局部搜索还有一个难点问题在于,其抗遮挡性能低,如果运动目标在检测过程中互相遮挡或是被背景等遮挡,则易导致跟踪精度大大降低,严重时甚至会出现目标丢失的情况。
因此采用局部搜索方法时一般还需研究专门的遮挡消除算法。
该方法的另一个关键点在于如何定义匹配度量方法。
目前常用的匹配度量方法有亮度匹配法、形态距离匹配法以及外部轮廓匹配法等等。
亮度匹配主要是利用与颜色相关的特征如灰度、颜色值等,进行匹配度量;外部轮廓匹配主要是以目标的纹理、大致形状等为基准进行匹配度量。
基于区域匹配的跟踪方法由于提取了比较完整的目标模板,获得了更多的目标信息,因此其相比于其他跟踪算法,其更多的被用来对较小的或对比度较低的运动目标进行跟踪,尤其在军事领域有比较广泛的应用。
但其缺点也不容忽视:全局搜索的运算量大,局部搜索的遮挡问题等等,因此人们将运动预测方法结合到基于区域匹配的方法中,如Kalman预测,通过预测运动动目标在下一帧中可能出现的运动范围,进行局部搜索,从而提高了搜索的效率;而对于遮挡和阴影问题,则提出了利用彩色以及纹理等来解决。
运动目标检测与跟踪的

条件随机场是一种基于概率图模型的目标跟踪方法,它利用观测序列与标记序 列之间的条件概率关系建立模型。通过对模型参数的学习和优化,可以实现运 动目标的准确跟踪。
基于深度学习的方法
卷积神经网络
卷积神经网络是一种深度学习方法,具有强大的特征提取能力。在运动目标跟踪 中,可以利用卷积神经网络提取目标的特征表示,进而实现目标的跟踪。
研究背景与意义
• 随着社会的快速发展,视频数据在社会生活和工业生产中的应用越来越广泛。如何自动地从海量视频数据中提取出有用的 信息,成为了一个亟待解决的问题。运动目标检测与跟踪技术可以从视频中提取出运动目标,并对目标的运动轨迹进行跟 踪,为后续的视频分析和理解提供基础数据。因此,研究运动目标检测与跟踪技术对于推动计算机视觉领域的发展,提高 视频数据的利用效率具有重要意义。
传感器数据融合:利用激光雷 达、摄像头等多传感器数据,
实现运动目标的准确检测。
决策与规划:根据运动目标的 轨迹预测结果,进行自动驾驶 车辆的决策和路径规划。
目标轨迹预测:基于运动目标 的历史轨迹,预测其未来一段
时间的运动轨迹。
自动驾驶中的运动目标检测与 跟踪技术提高了车辆的感知能 力,增强了行驶安全性,为自 动驾驶技术的实用化奠定了基 础。
的鲁棒性。
缺点
需要大量标注数据进行 训练,模型复杂度较高 ,计算量大,实时性较
差。
03
运动目标跟踪方法
基于滤波的方法
卡尔曼滤波
卡尔曼滤波是一种高效的递归滤波器,它采用线性动态系统 状态空间模型,通过对系统输入输出观测数据对系统状态进 行最优估计。在运动目标跟踪中,卡尔曼滤波可用于预测目 标的运动轨迹。
运动目标检测与跟踪 的
汇报人: 日期:
运动目标跟踪(十七)--一些跟踪算法简述及跟踪牛人资料整理2018-8-12未

运动目标跟踪(十七)--一些跟踪算法简述及跟踪牛人资料整理2018-8-12未转载自:https:///app_12062011/article/details/52250146 这篇文章,主要记录一些效果和时间不是很优秀的跟踪算法,以备用。
很想全部列出来,发现网上基本没有资料,都要去看论文,自己又不做研究,所以,先这样吧。
L1APG:原文:/pixel/archive/2012/10/17/2728243 .html以防原文链接失效,引用:最近在看有关将L1范数最小化运用到视频跟踪上的文章,这里是文章和实现代码的下载地址,有兴趣的同学可以关注一下,并且希望和各位多多交流。
我把它的代码好好看了一下,并且对多组图像做了实验,效果还好。
下面是我对其代码的剖析:第一阶段:模板基底T的初始化1.手动选定第一个目标模板t12.在高斯分布下随机扰动t1角点的坐标,得到其它9个目标模板t2,t3,...,t93.通过图像的仿射变换,将十个目标模板从原图像中“拿出”(crop),并缩放为同样大小的十幅目标模板图像(如12*15大小)。
具体做法如下:对每个目标模板,都首先计算出仿射变换参数R=[R(1,1), R(1,2), R(2,1), R(2,2), R(1,3), R(2,3)]。
然后,输入R,原图像,和目标模板图像大小,即可通过图像仿射变换处理得到目标模板图像。
4.将每幅目标模板图像都写作向量形式,并作正规化处理,得到最终的初始化T第二阶段:粒子样本S的初始化1设定粒子样本数为N(如600)2初始化S为对应t1模板的R,即每个粒子样本都初始化为对应t1模板的R第三阶段:1.在高斯分布下随机扰动St生成同St具有相同均值与方差的St+12. 对每个粒子样本,输入St+1中对应的仿射参数,通过图像仿射变换处理得到对应的候选模板图像yt+1(i),图像大小等于目标模板图像大小.3.将每幅候选模板图像都写作向量形式,并作正规化处理第四阶段:最小误差限1.求解最小二乘问题(9)2.算得上限qi,并按降序排列之.第五阶段:解l1最小化问题(11)1.对qi满足阈值的候选模板yi,用APG方法解(11),并算出对应的观测概率pi。
第二章 运动目标监测和跟踪

第二章运动目标监测和跟踪2.1运动目标检测运动目标检测(Motion Detection)是指在输入视频图像中判断与背景图像相比是否存在相对运动的前景目标和物体,并根据灰度、边缘、纹理等二维图像特征将运动前景进一步分割为若干独立目标。
在实际应用中,一个好的运动目标检测算法,通常应该具有以下几个特征【12】:◆不受环境的变化(如天气和光照变化等)而影响结果;◆不受背景中个别物体的运动(如水波、风吹树动等)而影响结果;◆不受目标及背景中的阴影而影响结果;◆对复杂背景和复杂目标仍然有效;◆检测的结果应满足后续处理(跟踪分析)的精度要求;图2-1描述了检测算法的一般流程图。
常见的运动目标检测算法有:帧间差分法、背景差分法及光流法等,以下将分别进行介绍。
Fig.2—1Flow chart of detection algorithm2.1.1帧间差分法帧间差分法[23-241就是将视频序列中相邻的两帧或几帧做象素域上的减法运算,以得到帧间的不同图像的信息。
在摄像头固定的情况下,对连续的图像序列中的相邻两帧图像采用基于像素的帧差法来提取图像中的运动区域,设k 帧和第k+l 帧(或者看做21t t 和时刻)采集到同一背景下的两幅运动图像的灰度值为1),(+k k f y x f 和,则差分图像的定义为:),(),(),(11y x f y x f y x D k k k -=++ (2.1)对上式的差分结果进行阈值处理,就可以提取出运动物体。
对差分图像),(y x f d 二值化,当某一像素的灰度值大于给定阈值T 时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。
这一步的目的就是为了区分背景像素和目标像素,得到:T y x D T y x D k k k y x R >≤+++=),(),(10111{),( (2.2)其中,l 表示前景像素值,0表示背景像素值。
然后再对),(1y x R k +进行连通性分析,就可以得到连通区域的面积。
运动目标检测与跟踪知识讲解

移动平台下的目标跟踪
先前帧
特征熵
抽取的特征区域
Approach
? Covariance Matching
R (x, y)
G ( x, y)
B (x, y)
I xy ( x, y )
Covariance matrices
d ( x, y)
D
t
(x,
y)
=
??1,
? ?
0,
I(t x, y)- It-1 otherwise
(x,
y) > T
Default:T=60
优点:鲁棒性好,运算量小,易于软件实现 缺点:对噪声有一定的敏感性,运动实体内部也容易产生空洞现 象,阈值 T缺乏自适应性,当光照变化时,检测算法难以适应环境 变化
背景相减法
检测实例:
(a)第 1帧图像
(b)第 2帧图像
( c)变化区域图像
(d)提取出的背景图像 (e)变化区域与背景差分图像 (f)运动目标检测结果
国内外对此类问题的解决办法:
基于目标建模定位:
目标建模
相似度度量
目标定位
基于滤波、数据关联: Kalman Filter , Particle Filter, PDAF
帧间差分法
这种方法就是将前后两帧图像对应像素点的灰度值相减 ,在环境亮度变化不大的情况下,如果对应像素灰度相差很 小,可以认为此处景物是静止的,如果图像区域某处的灰度 变化很大,可以认为这是由于图像中运动物体引起的,将这 些区域标记下来,利用这些标记的像素区域,就可以求出运 动目标在图像中的位置。
2020/6/11
形状上下文(shape context):
运动目标跟踪算法及其应用分析

运动目标跟踪算法及其应用分析随着计算机技术的不断发展,图像处理技术也得到了极大的发展。
图像处理技术可以将图像进行分析和处理,并且可以将这些信息转换为数字化数据。
图像处理技术不仅可以用于医学诊断、生物学、工业监控等领域,而且也广泛应用于计算机视觉领域。
在计算机视觉领域中,运动目标跟踪技术是一项基础技术,它可以追踪视频图像中的目标并提供与目标相关的信息。
一、运动目标跟踪算法运动目标跟踪算法是和计算机视觉技术紧密相连的一种技术,主要是基于视频图像跟踪技术的实现。
一般来说,运动目标跟踪算法可以分为两个步骤:目标检测和目标跟踪。
(1)目标检测目标检测是指在一个给定的时间段内,将目标从背景中检测出来并确定其位置、大小和形状等信息。
其中,检测算法和图像质量有着密切关系。
一般来说,目标检测算法可以分为两种:基于特征的目标检测算法和基于匹配的目标检测算法。
基于特征的目标检测算法主要是根据目标的特定外观特征进行识别和分类。
常用的特征包括Haar-like特征、SIFT特征、HOG特征等。
这些方法在实际应用中具有较高的准确性和鲁棒性,但是计算量比较大,需要消耗较多的计算资源。
基于匹配的目标检测算法主要是根据目标与背景之间的差异进行匹配和检测。
常用的匹配法包括基础匹配、Viterbi匹配、CAMshift算法等。
这些算法基于目标的运动状况,能够较好地适应不同的背景干扰和情况。
(2)目标跟踪目标跟踪技术是指在已经检测到目标的基础上,通过运用特定的算法,对目标进行跟踪。
常用的目标跟踪算法包括:Kalman滤波方法、Mean Shift方法和Template Matching方法等。
Kalman滤波方法是利用观测值来估计状态值的一种滤波方法。
它可以通过观察目标的位置和速度来预测后续帧中的目标位置。
Mean Shift方法是一种基于概率密度估计的跟踪方法,该方法通过目标物体在图像上的密度分布来进行目标跟踪。
Template Matching方法是一种基于模板匹配的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 光流法
2.2.2 邻帧差分法
将连续的两帧或三帧图像对应像素点的灰度 值相减,当环境亮度变化不大时,如果对应像 素相差很小,则认为这是由目标运动引起的, 该处像素标记为运动目标。
2.2.2 邻帧差分法
2.2.3 背景相减法
建立一个无运动目标的背景图像(第1帧无 运动目标的图像或前N帧无运动目标的图像的 均值或中值),然后将当前图像的像素值与背 景图像的像素值相减,通过设置一定的阈值, 风格运动目标。
2.2.3 背景相减法
2.2 动态背景下的运动检测
监控过程中,目标和背景都在发生运动或变化, 根据相机的运动形式分为以下两种 :
相机支架固定 相机置于移动设备之上
3 运动目标跟踪处理三步骤
步骤一:目标的有效描述(特征提取)
提取目标的特征来达该目标,例如:图像的 边缘、轮廓、形状、纹理、区域、直方图、矩 特征、变换系数等
3.1 Mean-Shift (均值偏移)
1. 2. 3. 4.
选择窗口的大小和初始位置 计算此时窗口内的质心 调整窗口的中心到质心 重复2和3,直到每次窗口移动的距离小于一 定的阈值
3.2 Kalman滤波
卡尔曼滤波器是一个有噪声线性动态系统状 态预估的递归算法,它是一个不断预测与校正 的过程。当假设系统状态模型和观测模型都是 线性且符合高斯分布,同时假设噪声也是高斯 分布,线性卡尔曼滤波器是最优的滤波器。
1 概述
安防监控领域的应用
1 概述
交通管理领域的应用
1 概述
军事领域的应用
2 运动目标检测
运动目标检测是运动目标跟踪的前提;运动 目标检测,依据目标与摄像机之间的关系可以 分为:
静态背景下的运动检测 动态背景下的运动检测
2.1 静态背景下的运动检测
整个监控过程中只有目标在运动,常用方法:
3 运动目标跟踪处理三步骤
将目标分片,建立目标分片表现模型(模板)。在目 标上一帧的位置周围遍历搜索,找到与目标模板相似 度最高的候选目标作为跟踪结果。
3 运动目标跟踪处理三步骤
实时更新的模板
3.1 Mean-Shift (均值偏移)
彩色直方图作为匹配特征,Mean-Shift跟踪 算法反复不断的把数据点朝向mean-Shift矢量 方向移动,最终收敛到某个概率密度函数的极 值点。 Mean-Shift跟踪算法中,相似度函数用于刻 画目标模板和候选区域所对应的两个核函数直 方图的相似性。因此,这种方法将跟踪问题转 化为Mean
背景差方法 帧间差方法 光流场法
2.1.1 光流法
光流场是空间运动物体被观测表明上的像素 点运动产生的瞬时二维速度场,包含了物体表 面结构和动态行为的重要信息。 光流法是给图像中的每一个像素点赋予一个 光流矢量(即速度矢量),当物体和图像背景 存在相对运动时,运动物体所形成的速度矢量 必然和邻域背景速度矢量不同,通过对序列图 像光流场的分析,计算出运动场后,对场景进 行分割,从而检测出运动目标。
3 运动目标跟踪处理三步骤
运动目标的准确分割对于获取特征信息很重要
原图
阈值分割
高斯模型分割
3 运动目标跟踪处理三步骤
步骤二:相似性度量计算(目标建模) 常用的方法有:欧式距离、马氏距离、棋盘 距离、加权距离、相似系数、相关系数等
3 运动目标跟踪处理三步骤
步骤三:目标区域搜索匹配(特征匹配) 常见的预测算法有:Kalman滤波、粒子滤 波、Mean-Shift等 。
运动目标跟踪
1 概述
运动目标跟踪在军事制导,视觉导航,机 器人,智能交通,公共安全等领域有着广泛的 应用。例如,在车辆违章抓拍系统中,车辆的 跟踪就是必不可少的。在入侵检测中,人、动 物、车辆等大型运动目标的检测与跟踪也是整 个系统运行的关键所在。所以,在计算机视觉 领域目标跟踪是一个很重要的分支。
3.3 粒子滤波
当假设系统状态模型和观测模型都是非线性且 符合不高斯分布,同时假设噪声也不是高斯分 布,粒子滤波器是比较合适的滤波器。
4 最简单的例子——模板匹配法
把全图的所有子区域和目标模板比较一下, 找到最像目标模板的子区域,即目标的位置 。
4 最简单的例子——模板匹配法
假设目标模板是一个10*10的图像,可以被看作是 一个100维的向量,每一维是一个像素点的灰度值。 然后把这个向量和图像中的每一个子区域作比较,找 出相关系数最大的子区域,目标的位置就找到了。
4 最简单的例子——模板匹配法
需要考虑的问题:
相关系数 算法加速 搜索策略 模板大小
5 基于卡尔曼滤波器的跟踪方法
利用前一帧获得的参数作为Kalman滤波的状 态变量,当前帧获得的参数作为观测值,通过 Kalman滤波推到获得估计值 用估计值预测下一时刻目标的位置 目标匹配搜索 卡尔曼滤波器参数的修正