近三年高考计算题:动力学、能量、动量

合集下载

高考动量和能量定律计算题

高考动量和能量定律计算题

高考动量和能量定律计算题例1A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为p B =7kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是:( )A .p A =6kg·m/s 、pB =6kg·m/s B .p A =3kg·m/s 、p B =9kg·m/sC .p A =-2kg·m/s 、p B =14kg·m/sD .p A =5kg·m/s 、p B =17kg·m/s解析:动量守恒四个选项都满足,那么第二个判断依据是速度情景:A 的动量不可能原方向增大,A 错;第三个判断依据是能量关系:碰后系统总动能只能小于等于碰前总动能。

计算得BC 正确D 错。

碰前总动能为 2222A B k A Bp p E =+m m ,由于5kg m/s 7kg m/s A A A B B B p =m υ=,p =m υ=⋅⋅,A 要追上B ,则有A B υυ>,即5757A B A B >,m <m m m .对B 项,有222239572222A B A B++m m m m ≤,得2B A m =m ,满足57A B m <m ,B 正确;对C ,有()2222214572222A B A B -++m m m m ≤,14721213B A A m =m =m ,同样满足57A B m <m ,C 正确.答案:BC点拨:判断的优先顺序为:动量守恒→速度情景→动能关系,动量守恒最容易判断,其次是速度情景,动能关系要通过计算才能作结论,简捷方法是先比较质量关系,再比较动量的平方,如果两物体质量相等,则可直接比较碰撞前后动量的平方和。

考点2、爆炸和反冲⑪爆炸时内力远大于外力,系统动量守恒;⑫由于有其它形式的能转化为动能(机械能),系统动能增大。

动量、动力学和能量观点在力学中的应用(原卷版)--高一物理专题练习(内容+练习)

动量、动力学和能量观点在力学中的应用(原卷版)--高一物理专题练习(内容+练习)

动量、动力学和能量观点在力学中的应用高一物理专题练习(内容+练习)一、解决力学问题的三个基本观点和五个规律三个基本观点对应规律公式表达动力学观点运动学v=v0+at,x=v0t+12at2等牛顿第二定律F合=ma能量观点动能定理W合=ΔE kW合=12m v22-12m v12机械能守恒定律mgh1+12m v12=mgh2+12m v22动量观点动量定理F合t=p′-pI合=Δp动量守恒定律m1v1+m2v2=m1v1′+m2v2′二、力学规律的选用原则1.如果物体受恒力作用,涉及运动细节可用动力学观点去解决.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究的对象为几个物体组成的系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.一、单选题1.如图所示,半径为R、竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。

圆心O点正下方放置质量为2m的小球A,质量为m的小球B以初速度0v向左运动,与小球A发生弹性碰撞。

碰后小球A 在半圆形轨道运动时不脱离轨道,则小球B 的初速度0v 不可能为(重力加速度为g )()A .BC .D .2.天花板下用轻弹簧悬挂一个质量为m 的平板B ,初始时B 静止(设此时B 的重力势能为0),在B 正下方有一个质量也为m 的物块A ,将其向上抛出并以速度v 0与B 发生弹性碰撞,设碰撞后B 的速度为v 、加速度为a 、动能为E k 、机械能为E 机,则在B 上升至最高点的过程中,各物理量随时间t 或位移x 的变化图像可能正确的是()A .B .C .D .3.如图所示,某趣味游戏中小球从圆柱形水杯口边缘沿直径方向水平射入,设球与杯壁的碰撞是弹性碰撞,不计空气阻力.则小球入水前的运动轨迹情景图可能正确的是()A .B .C .D .4.弹玻璃球是小孩子最爱玩的游戏之一,一次游戏中,有大小相同、但质量不同的A 、B 两玻璃球,质量分别为A m 、B m ,且A B m m ,小朋友在水平面上将玻璃球A 以一定的速度沿直线弹出,与玻璃球B 发生正碰,玻璃球B 冲上斜面后返回水平面时与玻璃球A 速度相等,不计一切摩擦和能量损失,则A m 、B m 之比为()A .1:2B .1:3C .1:4D .1:55.如图所示,OMN 是竖直平面内固定的光滑轨道,MN 水平且足够长,OM 下端与MN 相切。

动量能量计算题专项训练及答案

动量能量计算题专项训练及答案

动量能量计算题专项训练【注】该专项涉及规律:牛顿定律、动量定理、动量守恒、动能定理、机械能守恒 1、(2009天津)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。

物块与车面间的动摩擦因数 =0.5,取g =10 m/s 2,求(1) 物块在车面上滑行的时间t ;(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少。

2、(2005天津)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。

木板突然受到水平向右的12N s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能为0.50J ,重力加速度取10m/s 2,求⑴瞬时冲量作用结束时木板的速度v 0; ⑵木板的长度L 。

3、(2007天津)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。

可视为质点的物块从A 点正上方某处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行至轨道末端C 处恰好没有滑出。

已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。

求:⑴物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍?⑵物块与水平轨道BC 间的动摩擦因数μ。

4、( 2010新课标)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。

重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ。

近三年高考全国卷二计算题:力与运动能量、动量

近三年高考全国卷二计算题:力与运动能量、动量

(2015)如图,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点。

已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°。

不计重力。

求A、B两点间的电势差。

(2015、25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。

某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示。

假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变。

已知A开始运动时,A离B下边缘的距离l=27m,C足够长。

设最大静摩擦力等于滑动摩擦力。

取重力加速度大小g=10m/s2。

求:(1)在0~2s时间内A和B加速度的大小;(2)A在B上总的运动时间。

(2016二卷25题)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l,现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径l的光滑半圆轨道BCD相切,半圆的直径RD竖直,如图所示,物块P与AB间的动摩擦因数μ=.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动,重力加0.5速度大小为g.⑴若P的质量为m,求P到达B点时的速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;⑵若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.(2017二卷)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1<s0)处分别设置一个挡板和一面小旗,如图所示。

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关动力学、动量和能量观点在力学中的应用1.动量和能量综合应用例 1 (多选)如图甲所示,质量M=0.8kg的足够长的木板静止在光滑的水平面上,质量m=0.2kg的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F,4 s后撤去力F.若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10m/s2,则下列说法正确的是()A.0∼4s时间内拉力的冲量共为3.2N⋅sB.t=4s时滑块的速度大小为9.5m/sC.木板受到滑动摩擦力的冲量共为2.8N⋅sD.木板的速度最大为2m/s练习1-1如图所示,带有圆管轨道的长轨道水平固定,圆管轨道竖直(管内直径可以忽略),底端分别与两侧的直轨道相切,圆管轨道的半径R=0.5 m,P点左侧轨道(包括圆管)光滑,右侧轨道粗糙.质量m=1 kg的物块A以v0=10 m/s的速度滑入圆管,经过竖直圆管轨道后与直轨道上P处静止的质量M=2 kg的物块B发生碰撞(碰撞时间极短),碰后物块B在粗糙轨道上滑行18 m后速度减小为零.已知物块A、B与粗糙轨道间的动摩擦因数均为μ=0.1,取重力加速度大小g=10 m/s2,物块A、B均可视为质点.求:(1)物块A滑过竖直圆管轨道最高点Q时受到管壁的弹力;(2)最终物块A静止的位置到P点的距离.2.综合分析多过程问题例2如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:(1)小物块到达C点时的速度大小;(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(3)要使小物块不滑出长木板,木板的长度L至少多大.练习2-1如图所示,半径为R的四分之一光滑圆弧轨道竖直固定在水平地面上,下端与水平地面在P点相切,一个质量为2m的物块B(可视为质点)静止在水平地面上,左端固定有水平轻弹簧,Q点为弹簧处于原长时的左端点,P、Q间的距离为R,PQ段地面粗糙、动摩擦因数为μ=0.5,Q点右侧水平地面光滑,现将质量为m的物块A(可视为质点)从圆弧轨道的最高点由静止开始下滑,重力加速度为g.求:(1)物块A沿圆弧轨道滑至P点时对轨道的压力大小;(2)弹簧被压缩的最大弹性势能(未超过弹性限度);(3)物块A最终停止位置到Q点的距离.课后检测1. 质量为1 kg的物体静止在水平面上,t=0时受到水平拉力F的作用开始运动,F随时间t 变化的关系图象如图所示.已知t=4 s时物体刚好停止运动,取g=10m/s2,以下判断正确的是()A.物体所受摩擦力为3 NB.t=2 s时物体的速度最大C.t=3 s时物体的动量最大D.物体的最大动能为2 J2. 粗糙水平地面上的物体,在一个水平恒力作用下做直线运动,其v-t图象如图所示,下列物理量中第1 s内与第2 s内相同的是()A.摩擦力的功B.摩擦力的冲量C.水平恒力的功D.水平恒力的冲量3. 如图所示,质量均为m的两带电小球A与B,带电荷量分别为+q、+2q,在光滑绝缘水平桌面上由静止开始沿同一直线运动,当两带电小球运动一段时间后A球速度大小为v,在这段时间内,下列说法正确的是()A.任一时刻B的加速度比A的大B.两球均做加速度增大的加速运动C.两球组成的系统电势能减少了mv2,但动能和电势能之和不变D.两球动量均增大,且总动量也增大4.如图所示,质量为m、带有半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB 的长度为2R,现将质量也为m的小球从距A点正上方为h的位置由静止释放,然后由A点ℎ(不计空气阻力),则() 进入半圆形轨道后从B点冲出,在空中上升的最大高度为12A.小球冲出B点后做斜上抛运动B.小球第二次进入轨道后恰能运动到A点C.小球第一次到达B点时,小车的位移大小是RmgℎD.小球第二次通过轨道克服摩擦力所做的功等于125.光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则()A.物块B的加速度大小为a时弹簧的压缩量为x3xB.物块A从开始运动到刚要离开弹簧时位移大小为23mv2C.物块开始运动前弹簧的弹性势能为32D.物块开始运动前弹簧的弹性势能为3mv26. “飞针穿玻璃”是一项高难度的绝技表演,曾度引起质疑.为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是()A.测出玻璃厚度和飞针穿越玻璃前后的速度B.测出玻璃厚度和飞针穿越玻璃所用的时间C.测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D.测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度7.如图,立柱固定于光滑水平面上O点,质量为M的小球a向右运动,与静止于Q点的质量为m的小球b发生弹性碰撞,碰后a球立即向左运动,b球与立柱碰撞能量不损失,所有碰撞时间均不计,b球恰好在P点追到a球,Q点为OP间中点,则a、b球质量之比M:m=()A.3:5B.1:3C.2:3D.1:28. (多选)如图,在光滑的水平面上有一个长为L的木板,小物块b静止在木板的正中间,小物块a以某一初速度v0从左侧滑上木板.已知物块a、b与木板间的摩擦因数分别为μa、μb,木块与木板质量均为m,a、b之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力.下列说法正确的是()mv02A.若没有物块从木板上滑下,则无论v0多大整个过程摩擦生热均为13B.若μb<2μa,则无论v0多大,a都不会从木板上滑落μa gL,则ab一定不相碰C.若v0≤√32D.若μb>2μa,则a可能从木板左端滑落9.(多选)如图所示,甲、乙两个小滑块(视为质点)静止在水平面上的A、B两处,B处左侧水平面光滑,右侧水平面粗糙.若甲在水平向右的拉力F=kt(其中k=2N/s)的作用下由静止开始运动,当t=3s时撤去力F,随后甲与乙发生正碰而粘合在一起,两滑块共同滑行2.4m后停下,已知甲的质量为1kg,两滑块与粗糙水平面间的动摩擦因数均为0.75,取g=10m/s2,则()A.0∼3s内,力F的冲量大小为18N⋅sB.撤去力F时甲的速度大小为9m/sC.两滑块正碰后瞬间的速度大小为4.5m/sD.乙的质量为0.5kg10. 如图所示,质量为M的木块位于光滑水平面上,在木块与墙壁之间用轻质弹簧连接,当木块静止时刚好位于A点,现有一质量为m的子弹以水平速度v0射向木块并嵌入其中(作用时间极短),求:(1)当木块回到A点时的速度大小;(2)从开始到木块回到A点的过程中,墙壁对弹簧的冲量.11. 如图所示,一轻质弹簧的一端固定在小球A上,另一端与小球B接触但未连接,该整体静止放在离地面高为H=5m的光滑水平桌面上.现有一小球C从光滑曲面上离桌面ℎ= 1.8m高处由静止开始滑下,与小球A发生碰撞(碰撞时间极短)并粘在一起压缩弹簧推动小球B向前运动,经一段时间,小球B脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出.小球均可视为质点,忽略空气阻力,已知m A=2kg,m B=3kg,m C=1kg,g=10m/s2.求:(1)小球C与小球A碰撞结束瞬间的速度;(2)小球B落地点与桌面边缘的水平距离.12. 如图所示,在水平桌面上放有长度为L=2m的木板C,C上右端是固定挡板P,在C 中点处放有小物块B,A、B的尺寸以及P的厚度皆可忽略不计.C上表面与固定在地面上半径为R=0.45m的圆弧光滑轨道相切,质量为m=1kg的小物块A从圆弧最高点由静止释放,设木板C与桌面之间无摩擦,A、C之间和B、C之间的滑动摩擦因数均为μ,A、B、C(包含挡板P)的质量相同,开始时,B和C静止,(g=10m/s2)(1)求滑块从释放到离开轨道受到的冲量大小;(2)若物块A与B发生碰撞,求滑动摩擦因数μ应满足的条件;(3)若物块A与B发生碰撞(设为完全弹性碰撞)后,物块B与挡板P发生碰撞,求滑动摩擦因数μ应满足的条件.13.一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.14. 如图所示,水平光滑地面上有两个静止的小物块A和B(可视为质点),A的质量m=1.0 kg,B的质量M=4.0 kg,A、B之间有一轻质压缩弹簧,且A、B间用细线相连(图中未画出),弹簧的弹性势能E p=40 J,弹簧的两端与物块接触但不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A、B分离后立即撤去弹簧,物块A与墙壁发生弹性碰撞后,A在B未到达斜面前追上B,并与B相碰后结合在一起向右运动,g取10 m/s2,求:(1)A与弹簧分离时的速度大小;(2)A、B沿斜面上升的最大距离.15. 如图所示,半径R1=1 m的四分之一光滑圆弧轨道AB与平台BC在B点平滑连接,半径R2=0.8 m的四分之一圆弧轨道上端与平台C端连接,下端与水平地面平滑连接,质量m =0.1 kg的乙物块放在平台BC的右端C点,将质量也为m的甲物块在A点由静止释放,让其沿圆弧下滑,并滑上平台与乙相碰,碰撞后甲与乙粘在一起从C点水平抛出,甲物块与平台间的动摩擦因数均为μ=0.2,BC长L=1 m,重力加速度g取10 m/s2,不计两物块的大小及碰撞所用的时间,求:(1)甲物块滑到B点时对轨道的压力大小;(2)甲和乙碰撞后瞬间共同速度的大小;(3)粘在一起的甲、乙两物块从C点抛出到落到CDE段轨道上所用的时间.16. 如图所示,一圆心为O、半径为R的光滑半圆轨道固定在竖直平面内,其下端和粗糙的水平轨道在A点相切,AB为圆弧轨道的直径.质量分别为m、2m的滑块1、2用很短的细线连接,在两滑块之间夹有压缩的短弹簧(弹簧与滑块不固连),滑块1、2位于A点.现剪断两滑块间的细线,滑块1恰能过B点,且落地点恰与滑块2停止运动的地点重合.滑块1、2可视为质点,不考虑滑块1落地后反弹,不计空气阻力,重力加速度为g,求:(1)滑块1过B点的速度大小;(2)弹簧释放的弹性势能大小;(3)滑块2与水平轨道间的动摩擦因数.17. 汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.。

2025版高考物理一轮复习专题十一电磁感应第28练电磁感应中的动力学能量动量问题pptx课件

2025版高考物理一轮复习专题十一电磁感应第28练电磁感应中的动力学能量动量问题pptx课件
速运动,棒G做加速度越来越小的减速运动,结合棒G的速度-时间图线可知,2~3 s时间段内
物块A速度始终大于棒G滑行速度,绳子始终松弛(1分)
在2~3 s内对棒G分析,由动量定理可得

B LΔt=m 2 −3 (1分)
由法拉第电磁感应定律和闭合电路欧姆定律可得




Δt=
+
1
1

2
2
则有Q2=( mv′m - mv' ) (1分)
2
2
+
t3时间内有v'=at3(1分)
1
2
x'3= a32 (1分)
Q3=I2rt3(1分)
又x'1+x'2+x'3=7 m
Q总=Q1+Q2+Q3
联立解得Q总=0.4 J(1分)
7.[2022福建·
15,16分,难度★★★★☆]
联立解得 vH-vG=6.5 m/s(1分)
由于两棒的速度差保持不变,这说明两棒具有相同的加速度且均为a,对棒H由牛顿第二定
律有F-FA=ma(1分)
解得 F=1.7 N(1分)
由v-t图象可知t=1.5 s时,棒G的速度大小为vG=3 m/s,则此刻棒H的速度大小为vH=9.5 m/s
拉力F的瞬时功率 PF=FvH=16.15 W(1分)
平行.从t=0开始,H在水平向右拉力
作用下向右运动;t=2 s时,H与挡板
M、N相碰后立即被锁定.G在t=
1 s后的速度-时间图线如图(b)所示
,其中1~2 s段为直线.
已知磁感应强度大小B=1 T,L=0.2 m,G、H和A的质量均为0.2 kg,G、H的电阻均为0.1 Ω;

素养培优6 电磁感应中动力学、能量和动量的综合-2025高考物理素养培优

素养培优6 电磁感应中动力学、能量和动量的综合-2025高考物理素养培优
2 2 0
2 2 0
解得a1=
,a2=
3
3
由右手定则和左手定则可知加速度方向都水平向右。
0
3
1
(3) m0 2
18
(2)ab棒向左做减速运动,cd棒向右做加速运动,当电路中的电流
为零时,两导体棒达到稳定状态,做匀速直线运动,设此时速度分
别为v1和v2,则
BLv1=B×2Lv2
分析得两导体棒加速度在任意时刻都相等,则
v1=v0-t,v2=t
2
0
解得v1= v0,v2= 。
3
3
1
1
1
2
2
(3)产生的总热量Q= m0 - m1 - ×2m2 2
2
2
2
1
又Qab= Q
3
1
解得产生的热量为Qab= m0 2 。
18
动量观点在电磁感应中的应用
角度1
动量定理在电磁感应中的应用
-BILΔt+F其他Δt=mv2-mv1,
即-BLq+F其他Δt=mv2-mv1,
已知电荷量q、F其他(F其他为恒力)
时间
B2 L2 t

+F其他Δt=mv2-mv1,

2 2
即-
+F其他Δt=mv2-mv1,

已知位移x、F其他(F其他为恒力)
【典例3】 (多选)(2024·山东聊城一模)如图所示,四条光滑的足够
1
I1=

经分析知整个金属环在运动过程中可视为长度为L、电阻为Rc的金属
棒,设金属环刚开始运动时所受的安培力大小为F1、加速度大小为
a,则
F1=I1LB
由牛顿第二定律得
F1=2ma
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2014全国卷一)公路上行驶的两汽车之间应保持一定的安全距离,当前车实然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。

通常情况下,人的反应时间和汽车系统的反应时间之和为1s ,当汽车在睛天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。

设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。

(2015全国卷一)如图,一长为10cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V 的电池相连,电路总电阻为2Ω。

已知开关断开时两弹簧的伸长量均为0.5cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm ,重力加速度大小取210m s 。

判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。

(2015、25全国卷一)一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a)所示。

0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。

已知碰撞后1s 时间内小物块的v t -图线如图(b)所示。

木板的质量是小物块质量的15倍,重力加速度大小g 取210m s 。

求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ;(2)木板的最小长度;(3)木板右端离墙壁的最终距离。

(2016全国卷一)如图,两固定的绝缘斜面倾角均为θ,上沿相连。

两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。

右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g,已知金属棒ab匀速下滑。

求(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小。

(2017全国卷一)一质量为8.00×104 kg的太空飞船从其飞行轨道返回地面。

飞船在离地面高度1.60×105 m处以7.5×103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。

取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2。

(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。

(2019全国卷一)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。

t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。

物块A运动的v–t图像如图(b)所示,图中的v1和t1均为未知量。

已知A的质量为m,初始时A 与B的高度差为H,重力加速度大小为g,不计空气阻力。

(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。

求改变前面动摩擦因数的比值。

(2016一卷、25)如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为56R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直面内。

质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高点到达F点,AF=4R,已知P与直轨道间的动摩擦因数1=4μ,重力加速度大小为g。

(取34sin373755︒=︒=,cos)(1)求P第一次运动到B点时速度的大小。

(2)求P运动到E点时弹簧的弹性势能。

(3)改变物块P的质量,将P推至E点,从静止开始释放。

已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点。

G点在C点左下方,与C点水平相距72R、竖直相距R,求P运动到D点时速度的大小和改变后P的质量。

(2015)如图,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点。

已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°。

不计重力。

求A、B两点间的电势差。

(2015、25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。

某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示。

假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变。

已知A开始运动时,A离B下边缘的距离l=27m,C足够长。

设最大静摩擦力等于滑动摩擦力。

取重力加速度大小g=10m/s2。

求:(1)在0~2s时间内A和B加速度的大小;(2)A在B上总的运动时间。

(2016二卷25题)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l,现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径l的光滑半圆轨道BCD相切,半圆的直径RD竖直,如图所示,物块P与AB间的动摩擦因数μ=.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动,重力加0.5速度大小为g.⑴若P的质量为m,求P到达B点时的速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;⑵若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.(2017二卷)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1<s0)处分别设置一个挡板和一面小旗,如图所示。

训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗。

训练要求当冰球到达挡板时,运动员至少到达小旗处。

假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1。

重力加速度大小为g。

求(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度。

(2016)如图,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.0t =时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B ,方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求⑴ 金属杆在磁场中运动时产生的电动势的大小;⑵ 电阻的阻值.(2018二卷)汽车A 在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B ,立即采取制动措施,但仍然撞上了汽车B 。

两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动了4.5 m ,A 车向前滑动了2.0 m ,已知A 和B 的质量分别为32.010⨯kg 和31.510⨯kg ,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小2g 10m /s =.求(1)碰撞后的瞬间B 车速度的大小;(2)碰撞前的瞬间A 车速度的大小。

(2019二卷)如图,两金属板P 、Q 水平放置,间距为d 。

两金属板正中间有一水平放置的金属网G ,PQG 的尺寸相同。

G 接地,PQ 的电势均为ϕ(ϕ>0)。

质量为m ,电荷量为q (q>0)的粒子自G 的左端上方距离G 为h 的位置,以速度v0平行于纸面水平射入电场,重力忽略不计。

(1)求粒子第一次穿过G 时的动能,以及她从射入电场至此时在水平方向上的位移大小;(2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?(2019二卷)一质量为m=2000 kg的汽车以某一速度在平直公路上匀速行驶。

行驶过程中,司机忽然发现前方100 m处有一警示牌。

立即刹车。

刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线。

图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8 s;t1~t2时间段为刹车系统的启动时间,t2=1.3 s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t2时刻开始,汽车第1 s内的位移为24 m,第4 s内的位移为1 m。

(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;(2)求t2时刻汽车的速度大小及此后的加速度大小;(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?(2016三卷)如图,在竖直平面内由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接。

AB 弧的半径为R ,BC 弧的半径为2R 。

一小球在A 点正上方与A 相距4R 处由静止开始自由下落,经A 点沿圆弧轨道运动。

(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点。

(2017三卷)如图,两个滑块A 和B 的质量分别为 1 kg A m =和 5 kg B m =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4m kg =,与地面间的动摩擦因数为20.1μ=。

相关文档
最新文档