偏微分方程数值解法试题与答案

合集下载

偏微分方程数值解期末试题及标准答案

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B )参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称,定义)(),(),(21)(n R x x b x Ax x J ∈-=,)()(0x x J λλϕ+=.若0)0('=ϕ,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分)反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的展开式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)(),,(|{11=∈=a u b a H u u H E为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v E ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdu p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u E ∈,使)(m in )(1*u J u J EH u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧-====⨯=∈=∂∂+∂∂====x u u u u G y x y u x u y y x x 1||,0|,1|)1,0()1,0(),(,010102222 (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

偏微分方程数值解法试题与答案

偏微分方程数值解法试题与答案

一.填空(1553=⨯分)1.若步长趋于零时,差分方程的截断误差0→lmR ,则差分方程的解lm U 趋近于微分方程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{})(,,),()(21Ω∈''=ΩL f f f y x f H y x关于内积=1),(g f _____________________是Hilbert 空间;3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________;5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。

二.(13分)设有椭圆型方程边值问题用1.0=h 作正方形网格剖分 。

(1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题xut u ∂∂=∂∂ , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。

试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。

1.所选用的差分格式是: 2.计算所求近似值:四.(12分)试讨论差分方程()ha h a r u u r u u k l k l k l k l ττ+-=-+=++++11,1111逼近微分方程0=∂∂+∂∂xu a t u 的截断误差阶R 。

思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。

思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格式。

偏微分方程数值解试题参考答案

偏微分方程数值解试题参考答案

偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

数学偏微分方程的数值解法

数学偏微分方程的数值解法

数学偏微分方程的数值解法当然可以。

这里是根据标题“数学偏微分方程的数值解法”出的20道试题,包括选择题和填空题,每道题目都有详细的序号介绍:1. 选择题:偏微分方程的数值解法主要适用于哪类方程?A. 常微分方程B. 偏微分方程C. 代数方程D. 差分方程2.填空题:数值解法中常用的一种基础方法是______________。

3.选择题:有限差分法是一种适用于哪种类型的偏微分方程的数值解法?A. 椭圆型B. 抛物型C. 双曲型D. 超越型4.填空题:偏微分方程的数值解法通常要求将空间区域离散化为___ ___________。

5. 选择题:哪种方法适合处理偏微分方程的初始值问题?A. 有限元法B. 有限差分法C. 傅里叶变换法D. 辛普森法则6.填空题:数值解法中,常用的稳定性分析方法包括_____________ _。

7.选择题:对于偏微分方程的边值问题,常用的数值方法是_______ _______。

A. 有限体积法B. 辛普森法则C. 椭圆积分法D. 有限元法8.填空题:描述一种常见的数值解法的收敛性条件______________。

9.选择题:哪种方法在处理时间依赖性偏微分方程时特别有效?A. 隐式方法B. 显式方法C. 中心差分法D. 前进差分法10.填空题:数值解法中的矩阵求解通常利用______________方法。

11.选择题:在有限元法中,通常要对空间区域进行如何划分?A. 正交分解B. 三角剖分C. 曲面划分D. 直角分割12.填空题:有限差分法的精度通常与______________相关。

13.选择题:哪种方法适合处理非线性偏微分方程的数值解?A. 变分法B. 有限元法C. 辛普森法则D. 显式方法14.填空题:对于稳定性的要求,常用的数值方法需要满足_________ _____条件。

15.选择题:哪种方法可以有效地处理多维偏微分方程的数值解?A. 傅里叶变换法B. 辛普森法则C. 多重网格法D. 变分法16.填空题:在求解偏微分方程数值解时,通常需要考虑___________ ___问题。

偏微分方程数值习题解答

偏微分方程数值习题解答

偏微分⽅程数值习题解答李微分⽅程数值解习题解答 1-1 如果0)0('=?,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是⽅程组 b Ax =的解证明:由)(λ?的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλ?+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλ?+-=必要性:由0)0('=?,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλ?x Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的⼴义导数⼏乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的⼴义导数,由⼴义导数的定义可知,对于任意)()(0I C x ∞∈?,有-=ba ba dx x x f dx x x g )()()()('1?? ??-=ba ba dx x x f dx x x g )()()()('2?? 两式相减,得到)(0)()(021I C x g g ba ∞∈?=- 由变分基本引理,21g g -⼏乎处处为零,即21,g g ⼏乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的⼀阶⼴义导数,试⽤类似的⽅法定义)(x f 的k 阶导数,...2,1(=k ) 解:⼀阶⼴义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈?,有 ?-=bak kba dx x x f dx x x g )()()1()()()(??则称)(x f 有k 阶⼴义导数,)(x g 称为)(x f 的k 阶⼴义导数,并记kk dxfd x g =)(注:⾼阶⼴义导数不是通过递推定义的,可能有⾼阶导数⽽没有低阶导数.2.利⽤)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|??f f x x f x f n ba n -≤-?00'''|||||||||)())()((|??f f dx x x g x f n ba n -≤-?对于任意的)()(0I C x ∞∈?,成⽴=∞a ba n n dx x x f dx x x f )()()()(lim ??=∞→ba b a nn dx x x g dx x x f )()()()(lim '??由?-=ba n ba ndx x x f dx x x f )()()()(''??取极限得到dx x x f dx x x g ba ba ??-=)()()()('??即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明⾮齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满⾜齐次边界条件.w 满⾜的⽅程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w Ew E ∈=∈其中),(),(21)(0*w Lu f w w a w J --=.⽽Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*⽽200)()(),(),(C b u b p u u a u Lu +-=-β从⽽**)()()(~)(C b u b p u Jw J +-=β则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建⽴虚功原理解:令)(0a x u -+=βα,0u u w -=,则w 满⾜)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈?0),(),(0=--v Lu f v Lw应⽤分部积分,+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈?,成⽴0)()(),(),(=--b v b p v f v u a β注:形式上与⽤v 去乘⽅程两端,应⽤分部积分得到的相同. 5试建⽴与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈⽤v 乘⽅程两端,应⽤分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu⽽??-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx vd dx u d b a =+?定义dx uv dxvd dx u d v u a ba ][),(2222+=?,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈?),(),(v f v u a =1-41.⽤Galerkin Ritz -⽅法求边值问题==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==π?解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满⾜齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1,其中),...2,1(n i c i =满⾜的Galerkin Ritz -⽅程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑= ⼜xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ?-=+=+=ππππππππ)cos()cos(2)sin()sin()cos()cos()(),(1010210''-+πππjx ix sin sin 21由三⾓函数的正交性,得到≠=+=j i j i i a j i ,0,212),(22π??⽽]1)1[()(2)sin()1(),(3102--=-=-?jj j dx x j x x x x ππ? 于是得到+-=-=为偶数为奇数j j j j a x x c j j j j 0 )1()(8),(),(2232ππ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,⽤0)1(=u 代替右边值条件,)(x u n 是⽤Galerkin Ritz -⽅法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -⽅程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分⽅程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分⽅程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分⽅程为dx v qu x pv b v b p v f v w a ba ?--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz ⽅程为∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβ?β??+=ba j i j i j i dx q p a ][),(''取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==221)(21)()()(21a b a b a b a b d -=---+-=ββ, )(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=3222)(34)(4),(a b dx a x a ba -=-=3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=??ββββ得到⽅程组为 --=----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有= 31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型⽅程有限元法§1.1 ⽤线性元求下列边值问题的数值解: 10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数. Galerkin 形式的变分⽅程为),(),(v f v Lu =,其中+-=10210"4),(uvdx vdx u v Lu π,?=1)(2sin 2),(dx x xv v f π⼜dx v u dx v u v u vdx u =+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''?+=π在单元],[1i i i x x I -=中,应⽤仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?-+++=++=1022210222222'111)1(41]41[]4[),(1021ξξπξξπ?πd h d hh dxa x x x x取2/1=h ,则计算得124),(211π??+=a122)1(41[),(210221πξξξπ??+-=-+-=?d h h a-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπ?d d h h f ??-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπ?d h f ?+=102)2121(2sin 2),(代数⽅程组为= ),(),(),(),(),(),(212122212111f f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,⽅程为4,3,2,1),(),(41==∑=j f ua j i iji应⽤局部坐标ξ表⽰,-+++=10221022])1(41[)41(),(ξξπξξπ??d hh d h h a j j248]88[21022πξξπ+=+=?dξξξπ??d hh a j j ])1(41[),(1021?-+-=++964)1(164212πξξξπ+-=-+-=?d 964),(21π??+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=??ξξξξ?d h d h f j-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπd h x h d h x h f j j j -++++=1010)1)](4 41(2sin[21)]44(2sin[42ξξξπξξξπd j d j++?=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就⾮齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元⽅程.解:设⽅程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈?)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表⽰为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =? 则有限元⽅程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=具体计算使⽤标准坐标ξ.。

偏微分方程数值解法期末考试题答案

偏微分方程数值解法期末考试题答案

偏微分⽅程数值解法期末考试题答案期末考试试题答案及评分标准学年学期:专业:数学与应⽤数学班级:数学课程:偏微分⽅程数值解法教学⼤纲:《偏微分⽅程数值解法》教学⼤纲(⾃编,2006)使⽤教材:《偏微分⽅程数值解法》教材作者:陆⾦甫、关治出版社:清华⼤学出版社⼀、判断题(每⼩题1分,共10分) 1、(O ) 2、(O ) 3、(X ) 4、(X ) 5、(O ) 6、(O ) 7、(O ) 8、(X )9、(X ) 10、(O )⼆、选择题(每⼩题2分,共10分) 11、(D ) 12、(A ) 13、(C ) 14、(B )15、(C )三、填空题(每⼩题2分,共20分)16、22222212nx x x +++ 17、A=[4 5 9;23 5 17;11 23 1] 18、y=exp(-t/3)*sin(3*t) 19、help 20、zeros(m,n) 21、inva(A)*b 或者A/b 22、A=sym('[cos(x-y),sin(x+y);exp(x-y),(x-1)^3]')23、22221[()]2()()[()]0a s b s s c s '''-+= 24()i xv e d λλλ+∞-∞25、1(,)(,)j n j n u x t u x t τ+-四、计算题:(每⼩题12分,共36分)26、写成对流⽅程0u ua t x+=(,0x R t ∈>)的有限差分⽅程(两层显⽰格式,⽤第n 层计算第n+1层),并把有限差分⽅程改写为便于计算的迭代格式/h λτ=为⽹格⽐。

解:在点(,)j n x t 处,差分⽅程为110n n n nj jj ju u u u ahτ++--+=(0,1,2,j =±±,0,1,2,n =)(8分)便于计算的形式为11()n n n n j j j j u u a u u λ++=--,/h λτ= (4分)27、写出扩散⽅程22u ua t x=的有限差分⽅程(中⼼差分格式,⽤第n 层计算第n+1层),并把有限差分⽅程改写为便于计算的迭代格式,2/h µτ=为⽹格⽐。

偏微分方程数值解期末试题及参考答案

偏微分方程数值解期末试题及参考答案

《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

偏微分方程数值解法题解

偏微分方程数值解法题解

偏微分方程数值解法(带程序)例1 求解初边值问题22,(0,1),012,(0,]2(,0)12(1),[,1)2(0,)(1,)0,0u ux t t x x x u x x x u t u t t ⎧⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩∂∂=∈>∂∂∈=-∈==>要求采用树脂格式 111(2)n n n n nj j j j j u u u u u λ++-=+-+,2()tx λ∆=∆,完成下列计算: (1) 取0.1,0.1,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。

(2) 取0.1,0.5,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。

(3) 取0.1, 1.0,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。

并与解析解22()22181(,)sin()sin()2n t n u n x t n x e n ππππ∞-==∑进行比较。

解:程序function A=zhongxinchafen(x,y,la) U=zeros(length(x),length(y)); for i=1:size(x,2)if x(i)>0&x(i)<=0.5 U(i,1)=2*x(i); elseif x(i)>0.5&x(i)<1 U(i,1)=2*(1-x(i)); end endfor j=1:length(y)-1for i=1:length(x)-2U(i+1,j+1)=U(i+1,j)+la*(U(i+2,j)-2*U(i+1,j)+U(i,j)); end endA=U(:,size(U,2))function u=jiexijie1(x,t) for i=1:size(x,2) k=3;a1=(1/(1^2)*sin(1*pi/2)*sin(1*pi*x(i))*exp(-1^2*pi^2*t));a2=a1+(1/(2^2)*sin(2*pi/2)*sin(2*pi*x(i))*exp(-2^2*pi^2*t));while abs(a2-a1)>0.00001a1=a2;a2=a1+(1/(k^2)*sin(k*pi/2)*sin(k*pi*x(i))*exp(-k^2*pi^2*t));k=k+1;endu(i)=8/(pi^2)*a2;endclc; %第1题第1问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.001:t1];y2=[0:0.001:t2];y3=[0:0.001:t3];la=0.1;subplot(131)A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5);line(x,u3,'color','b','linewidth',1); title('例1(1)');subplot(132);line(x,u1,'color','b','linewidth',1);line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解');subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5);line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第2问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.005:t1];y2=[0:0.005:t2];y3=[0:0.005:t3];la=0.5;subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(2)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第3问 clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.01:t1];y2=[0:0.01:t2];y3=[0:0.01:t3];la=1.0; subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold on line(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2) line(x,A2,'color','r','linestyle',':','linewidth',1.5); line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3) line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(3)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解'); 运行结果:表1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解例2 用Crank-Nicolson 格式完成例1的所有任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
1 •若步长趋于零时,差分方程的截断误差
R m 0,则差分方程的解 U i m 趋近于微分方
程的解U m •此结论 ________ (错或对);
1
2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?()
关于内积(f,g )1 _____________________________________ 是Hilbert 空间;
3 •对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4•写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________
_____ ____ ______________ _ ____ ________ ; 5 •隐式差分格式关于初值是无条件稳定的 •此结论 ________ (错或对)。

(13分)设有椭圆型方程边值问题
0.1作正方形网格剖分。

(1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3)
整理后的差分方程组为
U C
三.(12)给定初值问题
u x,0 x 1
取时间步长
0.1,空间步长h 0.2。

试合理选用一阶偏心差分格式(最简显格式)
2 u ~2 x
2
u ~2 y
0 x 0.3
0.2
x 0.3
2y
1, — u n
2x
y 0.2
并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。

x
1.所选用的差分格式是: 2 .计算所求近似值:
1 a k 1
四.(12分)试讨论差分方程
u l 1
k
k
k 1
u |
r u | 1
u |
, r h a
1 h
逼近微分方程
u
a u 0 t x
的截断误差阶R 。

思路一:将r 带入到原式,展开后可得格式是在点(
l+1/2,k+1/2 )展开的。

思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

2
—2 ,考虑 Du Fort-Frankel 格式
X
试论证该格式是否总满足稳定性的 Von-Neumann 条件?
六. (12分)(1 )由Green 第一公式推导 Green 第二公式:
(2) 对双调和方程边值问题
n 2
选择函数集合(空间)为:
推导相应的双线性泛函和线性泛函:
A (u,v )
F (v )
相应的虚功问题为: 极小位能问题为
七. ( 12分)设有常微分方程边值问题
y y f (x ) , a x b
y a 1, y b 1
五.(12分) 对抛物型方程
U |k1 U |k 2
|k
1
(U |k1 U |k1) U |k
1
)
2
(u)vdxdy
G
(u)
u vdxdy :[v
v
u ]ds n
f (x,y) (x,y)
g 1(x , y),
g 2(x, y)
(x,y),
将区间[a , b ]作剖分:
a x 0 x 1 x 2 x n b
1 •若要求节点基函数为分段三次多项式且有一阶连续导数,试写出基函数所应满足的插值条
件: 2.画出基函数在[a , b ]上的图形: 3 •将有限元解y h 用基函数的形式表示出来: 八.(12分)设有常微分方程边值问题
y y x 2, 0 x 1
y(0) 0, y(1) 1
1.转化为相应的变分问题
选择函数集合(空间)为: 推导相应的双线性性泛函和线性泛函:
A(y,z)
2.将[0,1] 二等分,采用线性元的有限元方法,导出有限元方程并求解。

参考解答
2U A 4.2U B U D 0.599 ⑺ U B 2U C 4.2U D 0.52 或
1
h 7
(U 01 U c U 10
U B
4U A )
(1) h
A

1
(U A U 31 U 20 U D 4U C ) 0.1
h
4U A U B U C 1.8 u A
4u C u D 1.801
4U A 3.2U B 1.04 4U C 3.2U D 1.08
4 1 (3)2
1 1 0 4 4.
2 0 1
2
U A
1 U B 1 U C 4.
2 U D
1.8 1.801 或
0.599 0.52
4 1
1
0 U
A 1.8
1.801 1
2h h
1 0 4 1
U B
1.801
1.04 1 4h 2
4 3.2 0
u c
1.04
1.08 1
8h 2
4 3.2
U
D
1.08
u 21 (1 r)u 11
ru 1) (1 r)2u 0
1 2r(1 r)u ° r u 1
0.25U 01 0.5U : 0.25U 0 1.1
四. Box 格式,二阶 五. 练习题。

总满足。

①将U 与V 位置对换,并进一步换 U U
②在原Green 公式中换u u
1
极小位能:求u
H F ,使 1 u
A u , u 2
虚工问题:求u H
F ,使A u ,v F v
F u
m H n 丨u
七. 1. i (A j )
i
(A j )
0,i
0,1,
,n 1
六.1.在Green 第一公式
G
U Vd
U x V x U y V y d
G
u :——vds
2 .取 H F
u u H 2
, u
u g 1
,

n
1
g 2
・・2
c u
u u H , u
0,— 1 2 >
n
u v

u v d
ds f vd
G 2
n
n
G
ds
A(u,v)
u v d
G
^v ds , n n
F (v) fvd
G
ds
i 0,1,2, ,n 1
1 2
2 0
2 2
v H o ,由 Green 第二公式有
u, v f, v
1 0
192 12 2
八. 2.
i ⑴
(A j )
d i ⑴ dx
1,2, ,n
i 1,2,
,n
2
- y h (x )
1.取 H E
y i
y i
i
(x)
i
(x)
H 1,y
,作内

m i
i 0
n
(x)
0,
y,
(1) i
(x)
(1)
y 1
(x)
n
m i
1
⑴/ 、 i
(x)
H
H 1, y 0 y 1 0
分部积分
dx
°
x 2 dx
y,
虚工冋题:
极小位能:
H E , H E

构造分段线性的结点基函数
2
*
y i
i 0
i
(x) y 1
2x 2 2x
0.5
有限兀方程为:
13 *
25
23 + — (理论解为:y(x)
0.5
A(
131 64
,y
m H n I y
1
,并补充
F( 1) Y
1
0.47236
2x
A(
1 , 2
)
0 x 0.5 0.5 x 1
/ x 1 e (e
x
) x 2 2, y(0.5)
0.47636 )。

相关文档
最新文档