压敏电阻参数详解及设计指南
压敏电阻参数说明书,压敏电阻都有哪些参数?

压敏电阻参数说明书,压敏电阻都有哪些参数?压敏电阻最重要的几个参数包括:压敏电压、通流容量、结电容、响应时间等,压敏电阻是一种限压型保护器件,利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
压敏电阻参数说明(1)压敏电压(U1mA):当1mA的电流通过压敏电阻时所对应的电压,常用U1mA表示。
压敏电压的误差范围一般为±10%,在实验与实际操作过程中,也常用压敏电压从正常值下降10%以上来作为压敏电阻失效的判断依据。
(2)通流量(IP):也被称为最大冲击电流,指压敏电阻在8/20μs波下所能承受的最大冲击电流峰值。
在技术规格书中通常都给出了冲击一次的IP值。
注意:对压敏电阻进行冲击试验时,随着所要进行的冲击次数的增加,每次所施加的冲击电流要相应地减小。
(3)最大持续工作电压(Uac/Udc):指压敏电阻在正常工作下能够持续承受的最大交流电压(Uac)/最大直流电压(Udc)。
(4)漏电流(IL):指当施加给压敏电阻以最大直流电压(Udc)时,流过电阻的电流。
实际应用中,我们比较关心漏电流的稳定性。
在冲击试验或者高温条件下其变化率不超过一倍即认为其是稳定的。
(5)非线性指数(α):指电压的变化对电流的影响能力。
I=KUα或α=loglog由前式可见,α越大表明电压的变化对电流的影响能力越大,非线性特性越好。
由后式可见,α是伏安特性上各点斜率的倒数,特性越平坦的地方,α越大(漏电流区和饱和区α=1,又称低α区)。
用仪器测量时,一般设定I2=1mA,I1=0.1mA,所以αT=1/log(U1mA/U0.1mA) 。
(6)额定功率(Pm):指压敏电阻再输问下承受多次冲击,且歌词冲击之间间隔时间较短,因而又热累积效应的情况下,能够承受的最大平均功率。
尽管压敏电阻能承受很大的脉冲功率,但能承受的平均功率却很小。
怎么识别压敏电阻上的参数压敏电阻的参数识别问:我有一些压敏电阻,上面有这样的一些参数压敏电阻的识别问:LKD34S621KD&144上面的是压敏电阻上的参数 &是一个不认识...答:压敏电阻类型识别2压敏电阻的参数识别,反正样子都...答:VSR - 这颗是压敏电阻(Varistor) 如果是电容,产品名称估计是C 开头的。
压敏电阻规格参数

压敏电阻规格参数1. 压敏电阻的定义和原理压敏电阻(Varistor)是一种特殊的电阻器件,其电阻值随着电压的变化而变化。
它的主要原理是利用了氧化锌等半导体材料的特性,在特定电压范围内,电阻值非常高,可以达到几百兆欧姆;而在超过该电压范围时,电阻值会迅速减小到几十欧姆以下。
这种特性使得压敏电阻可以在电路中起到电压限制和过压保护的作用。
2. 压敏电阻的规格参数2.1 额定电压(Rated Voltage)额定电压是指压敏电阻能够正常工作的最大电压值。
超过额定电压的电压作用下,压敏电阻可能会受损或失去保护功能。
因此,在使用压敏电阻时,应选择额定电压大于或等于实际电路中最大电压的规格。
2.2 额定功率(Rated Power)额定功率是指压敏电阻能够连续工作的最大功率值。
超过额定功率的功率作用下,压敏电阻可能会过热、烧毁或失去保护功能。
因此,在使用压敏电阻时,应选择额定功率大于或等于实际电路中最大功率的规格。
2.3 电阻值(Resistance Value)电阻值是指压敏电阻在额定电压下的电阻大小。
电阻值决定了压敏电阻的电流分布和功耗。
电阻值通常以欧姆(Ω)为单位表示。
2.4 静电容量(Static Capacitance)静电容量是指压敏电阻两端之间的电容大小。
静电容量会影响压敏电阻的高频特性和响应速度。
静电容量通常以皮法(pF)为单位表示。
2.5 温度特性(Temperature Coefficient)温度特性是指压敏电阻电阻值随温度变化的程度。
温度特性通常用百分比(%)或每摄氏度(ppm/℃)表示。
温度特性对于某些应用场景中的精密测量和稳定性要求非常重要。
2.6 耐电压(Withstanding Voltage)耐电压是指压敏电阻能够承受的最大电压值,超过该电压值压敏电阻可能会击穿或损坏。
耐电压通常以伏特(V)为单位表示。
2.7 外观尺寸(Dimensions)外观尺寸包括压敏电阻的长度、宽度、厚度等。
压敏电阻α参数、

压敏电阻α参数、
摘要:
1.压敏电阻α参数的概念和意义
2.压敏电阻α参数的计算方法
3.压敏电阻α参数的应用实例
4.压敏电阻α参数的影响因素
正文:
压敏电阻,全称压电敏感电阻,是一种具有压电效应的电阻。
当受到外力作用时,其电阻值会发生变化。
压敏电阻α参数是描述压敏电阻压电特性的一个重要参数,其定义为压敏电阻的电阻值变化量与应变量变化量的比值。
具体来说,α参数反映了压敏电阻在受到压力变化时,其电阻值变化的程度。
计算压敏电阻α参数的方法有多种,其中较为常见的是利用压敏电阻的电压- 电流特性进行测量。
具体操作步骤为:首先,在给定的压力范围内,测量压敏电阻的电压- 电流特性;然后,通过计算特性曲线的斜率,得到压敏电阻的α参数。
压敏电阻α参数在实际应用中具有重要意义。
例如,在压力传感器的设计中,合理选择压敏电阻的α参数,可以提高传感器的灵敏度和分辨率。
此外,在应变式加速度计、压电式麦克风等器件中,α参数的选取也直接影响到器件的性能。
压敏电阻α参数受多种因素影响,如压敏电阻的材料、结构、尺寸等。
为了获得理想的α参数,需要在设计和制造过程中对这些因素进行综合考虑。
总之,压敏电阻α参数是描述压敏电阻压电特性的一个重要参数,其计算方法和应用在实际工程中具有重要意义。
压敏电阻参数知识大全

压敏电阻参数知识大全1.电阻值:压敏电阻的电阻值是指在无压力作用下的电阻大小。
根据应用的要求,压敏电阻的电阻值可以从几欧姆到几千欧姆不等。
2.公差:压敏电阻的公差是指制造过程中,所允许的电阻值与标准电阻值之间的偏差。
公差范围通常以百分比或绝对值来表示,常见的公差有±5%,±10%等。
3.电压系数:压敏电阻的电压系数是指在额定电压下,其电阻值与电压之间的变化关系。
一般来说,压敏电阻的电压系数越小越好,以保证电路的稳定性。
4.功率系数:压敏电阻的功率系数是指在额定功率下,其电阻值与功率之间的变化关系。
功率系数越小,压敏电阻的耐功率能力越好。
5.响应时间:压敏电阻的响应时间是指压力作用后,电阻值达到目标值所需的时间。
响应时间越短,压敏电阻的反应速度越快。
6.率定数据:压敏电阻的率定数据是指在特定条件下,压力与电阻值之间的关系曲线。
通过率定数据,可以了解不同压力下的电阻值。
7.工作温度范围:压敏电阻的工作温度范围是指可以正常工作的温度范围。
一般来说,压敏电阻的工作温度范围越宽,适应性越强。
8.温度系数:压敏电阻的温度系数是指在不同温度下,电阻值与温度之间的变化关系。
温度系数越小,压敏电阻的稳定性越好。
9.漏电流:压敏电阻的漏电流是指在额定电压下,电阻器终端流过的额外电流。
漏电流越小,压敏电阻的电流特性越好。
10.介电强度:压敏电阻的介电强度是指在给定电压、时间和温度条件下,电阻器两个终端之间可以承受的最大电场强度。
介电强度越高,压敏电阻的耐压能力越强。
11.绝缘电阻:压敏电阻的绝缘电阻是指在给定电压下,电阻器终端之间的绝缘电阻值。
绝缘电阻越大,压敏电阻的绝缘性能越好。
12.导通电压:压敏电阻的导通电压是指电阻阻值由高变低时,所需的最低电压。
导通电压越低,压敏电阻的敏感性越好。
13.稳定性:压敏电阻的稳定性是指在不同压力下,电阻值的稳定性能。
稳定性好的压敏电阻可以保证电路的稳定运行。
总结:压敏电阻的参数涉及电阻值、公差、电压系数、功率系数、响应时间、率定数据、工作温度范围、温度系数、漏电流、介电强度、绝缘电阻、导通电压以及稳定性等方面。
压敏电阻参数详解及设计指南

压敏电阻参数详解及设计指南压敏电阻,也称为压力电阻、变阻器、力敏电阻等,是一种能够根据外部压力改变电阻值的材料,常用于电子设备和传感器中。
本文将对压敏电阻的参数和设计指南进行详细的介绍。
压敏电阻的参数主要包括材料参数、电气参数和机械参数等。
首先是材料参数。
压敏电阻的基本材料通常为含有大量压敏颗粒的陶瓷材料,如氧化锌、氧化锆等。
这些陶瓷颗粒具有高电阻的特性,在外力作用下,颗粒之间的距离会发生变化,从而导致电阻值的变化。
其次是电气参数。
压敏电阻的电气参数包括电阻值、额定功率、绝缘电阻、温度系数等。
电阻值是指在设定的工作条件下,电阻器的电阻大小;额定功率是指电阻器能够承受的最大功率;绝缘电阻是指电阻器之间以及电阻器与外部电路之间的绝缘能力;温度系数是指在温度变化时,电阻值的变化。
最后是机械参数。
机械参数主要包括外形尺寸、压力范围、响应时间等。
外形尺寸是指电阻器的形状和尺寸,根据具体应用需要选择合适的尺寸;压力范围是指电阻器能够承受的最大压力;响应时间是指电阻器的响应速度,即电阻值变化的时间。
在设计使用压敏电阻时,需要注意以下几点。
首先,选择合适的电阻值和额定功率。
根据具体应用的电流和电压要求,选择电阻值和额定功率,以确保电阻器能够正常工作。
其次,考虑温度系数。
由于温度变化会导致电阻值的变化,需要根据具体应用的温度条件选择合适的压敏电阻,或者进行温度补偿。
再次,注意机械参数。
根据具体应用的压力范围和响应时间要求,选择合适的压敏电阻。
此外,还需要进行电路设计和保护措施。
如在电路中使用压敏电阻时,可以添加保护电阻和限流电阻,以保护压敏电阻不被过流或过压损坏。
总结起来,压敏电阻是一种具有特殊功能的电阻器,根据外部压力改变电阻值。
在设计使用压敏电阻时,需要考虑材料参数、电气参数和机械参数等因素,并根据具体的应用需求进行选择和设计。
在安装和使用过程中,还需要注意电路设计和保护措施,以保证电阻器的正常工作和使用寿命。
压敏电阻α参数、

压敏电阻α参数、压敏电阻(Varistor)是一种半导体元件,具有非线性电阻特性,能够在电压发生突变时提供较高的电阻值,用于保护电路中其他元件不受过电压损害。
压敏电阻的性能参数中,α参数是其中一个重要的指标,本文将从α参数的定义、影响因素、计算方法以及应用等方面进行详细的介绍,以便更好地理解和应用压敏电阻。
一、α参数的定义α参数是指压敏电阻在额定工作电压下的电压-电流特性曲线斜率的倒数,通常用倒数的形式表示,即:α = (dV/dI)^-1dV表示电压的微小变化,dI表示相对应的电流变化。
α参数的大小反映了压敏电阻的非线性特性,也是评价压敏电阻性能的重要参数之一。
二、α参数的影响因素1. 材料压敏电阻的材料对α参数有着很大的影响,通常采用氧化锌等半导体材料制成的压敏电阻,不同的材料具有不同的α参数取值范围。
2. 结构压敏电阻的结构对α参数也有一定的影响,包括粒度、形状等因素都会影响α参数的取值。
3. 工艺生产工艺对压敏电阻的α参数也有影响,包括烧结温度、烧结时间、添加的杂质等因素会影响α参数的大小。
以上因素综合影响了压敏电阻的α参数取值,因此在选择和设计压敏电阻时需要考虑这些因素。
三、α参数的计算方法α参数的计算方法主要基于压敏电阻的电压-电流特性曲线。
通常可以通过实验方法获取曲线,然后利用两点法或多点法来计算α参数的值。
对于已知曲线的压敏电阻,可以通过斜率的倒数来得到α参数的数值。
四、α参数的应用1. 电压限制通过控制压敏电阻的α参数,可以实现对电路中电压的限制作用,保护其他元件不受到过电压的破坏,提高电路的稳定性和可靠性。
2. 泄漏电流衰减部分压敏电阻在一定条件下可以起到泄漏电流衰减的作用,通过调整α参数的大小可以实现对泄漏电流的控制。
3. 过电压保护利用压敏电阻的非线性特性,可以实现对电路中设备和元件的过电压保护。
通过合理地设计和选择α参数大小合适的压敏电阻,可以在电路中实现对电压的稳定控制和部分保护功能。
压敏电阻α参数、

压敏电阻α参数、
(原创版)
目录
1.压敏电阻的概念和作用
2.压敏电阻的α参数
3.α参数的影响因素
4.α参数的测量方法
5.α参数在实际应用中的重要性
正文
压敏电阻是一种能够随着电压变化而改变电阻值的电阻器,其主要应用于电压保护、限幅和信号处理等领域。
压敏电阻的性能参数主要有动态电阻范围、工作电压范围、响应速度等,而α参数则是衡量压敏电阻非线性特性的一个重要指标。
压敏电阻的α参数,也称为压敏指数,是指压敏电阻在电压变化时,电阻值变化的比例。
具体来说,α参数描述了压敏电阻在电压增加时,电阻值增加的速率。
α参数的取值范围通常在 0 到 1 之间,其中α=0 表示压敏电阻为线性电阻,α=1 表示压敏电阻为完全非线性电阻。
α参数的大小受到多种因素的影响,包括材料的性质、电阻器的结构和制造工艺等。
例如,对于碳化硅压敏电阻,其α参数通常在 0.5 到 0.8 之间;而对于氧化锌压敏电阻,其α参数则在 0.3 到 0.6 之间。
此外,α参数还受到温度、电压和频率等因素的影响。
测量压敏电阻的α参数一般采用静态电压 - 电流法。
具体操作步骤为:首先,在压敏电阻的两端施加一个直流电压,然后测量流过压敏电阻的电流。
通过改变施加的电压,可以得到压敏电阻在不同电压下的电流 - 电压特性,从而计算出α参数。
α参数在实际应用中具有重要意义。
不同的应用场景对压敏电阻的α参数有不同的要求。
例如,在电压保护领域,α参数的大小直接影响到压敏电阻的灵敏度和动作速度;在限幅器和信号处理领域,α参数则影响到信号的传输质量和系统稳定性。
压敏电阻参数

压敏电阻参数引言压敏电阻作为一种特殊的电阻器件,在电子领域中具有重要的应用。
它的主要特点是在一定电压范围内,电阻值会随着电压的变化而变化,因此被称为压敏电阻。
本文将重点介绍压敏电阻的参数,包括电阻值、额定功率、温度系数、容差等。
电阻值压敏电阻的电阻值是其最基本的参数,用来表示电阻器的阻抗大小。
根据不同的应用场景和要求,压敏电阻的电阻值可以有不同的取值。
常见的压敏电阻的电阻值范围在几欧姆到几兆欧姆之间。
额定功率额定功率是指压敏电阻能够承受的最大功率。
一般来说,额定功率越大,说明压敏电阻具有更好的耐久性和稳定性。
在选择压敏电阻时,需要根据实际应用情况和电路设计要求来确定所需的额定功率。
温度系数温度系数是指压敏电阻的阻值随温度变化的程度。
温度对电阻值的影响可以通过温度系数来描述。
压敏电阻的温度系数可以分为正温度系数和负温度系数。
正温度系数表示随着温度的升高,电阻值会增大;负温度系数表示随着温度的升高,电阻值会减小。
根据具体的应用需求,可以选择适合的温度系数的压敏电阻。
容差容差是指压敏电阻的阻值与其额定阻值之间的允许偏差。
容差决定了压敏电阻的精度。
容差一般以百分比来表示,例如,±5%表示允许的阻值偏差范围为额定阻值的5%。
在电子元器件的选型过程中,需要根据具体的应用要求和工程需求来选择适合的容差范围。
其他参数除了上述参数外,压敏电阻还有各种其他参数,如最大工作电压、最大工作电流、功率温度系数等。
根据实际需求,可以选择合适的压敏电阻。
结论压敏电阻的参数是选择和设计电路时必须考虑的关键因素。
通过了解压敏电阻的电阻值、额定功率、温度系数和容差等参数,可以选择和使用适合的压敏电阻,从而确保电路的正常运行和性能的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于压敏电阻的正确使用一、压敏电阻的原理压敏电阻意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。
相应的英文名称叫“V oltage Dependent Resistor”简写为“VDR”。
随着加在它上面的电压不断增大,它的电阻值可以从MΩ(兆欧)级变到mΩ(毫欧)级。
当电压较低时,压敏电阻工作于漏电流区,呈现很大的电阻,漏电流很小;当电压升高进入非线性区后,电流在相当大的范围内变化时,电压变化不大,呈现较好的限压特性;电压再升高,压敏电阻进入饱和区,呈现一个很小的线性电阻,由于电流很大,时间一长就会使压敏电阻过热烧毁甚至炸裂。
正常使用时压敏电阻处于漏电流区,受到浪涌冲击时进入非线性区泄放浪涌电流,一般不能进入饱和区压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。
现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。
所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。
二、压敏电阻的作用压敏电阻的最大特点是当加在它上面的电压低于它的阀值"UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。
利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。
压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。
压敏电阻器可以对IC 及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。
使用时只需将压敏电阻器并接于被保护的IC 或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC 或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。
三、压敏电阻的标称参数压敏电阻用字母“MY”表示,如加J 为家用,后面的字母W、G、P、L、H、Z、B、C、N、K 分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。
压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。
四、压敏电阻的特性参数①压敏电压UN(U1mA):通常以在压敏电阻上通过1mA直流电流时的电压来表示其是否导通的标志电压,这个电压就称为压敏电压UN。
压敏电压也常用符号U1mA表示。
压敏电压的误差范围一般是±10%。
在试验和实际使用中,通常把压敏电压从正常值下降10%作为压敏电阻失效的判据。
②最大持续工作电压UC:指压敏电阻能长期承受的最大交流电压(有效值)Uac或最大直流电压Udc。
一般Uac≈0.64U1mA,Udc≈0.83U1mA。
此电压分交流和直流两种情况,如为交流,则指的是该压敏电阻所允许加的交流电压的有效值,以ACrms表示,所以在该交流电压有效值作用下应该选用具有该最大允许电压的压敏电阻,实际上V1mA与ACrms间彼此是相互关联的,知道了前者也就知道了后者,不过ACrms对使用者更直接,使用者可根据电路工作电压,可以直接按ACrms来选取合适的压敏电阻。
在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。
上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。
对直流而言在直流回路中,应当有:min(U1mA) ≥(1.6~2)Udc,式中Udc为回路中的直流额定工作电压。
在信号回路中时,应当有:min(U1mA)≥(1.2~1.5)Umax,式中Umax 为信号回路的峰值电压。
压敏电阻的通流容量应根据防雷电路的设计指标来定。
一般而言,压敏电阻的通流容量要大于等于防雷电路设计的通流容量。
③通流量(最大冲击电流)IP:指压敏电阻能够承受的8/20μs波的最大冲击电流峰值。
“能够承受”的含义是,冲击后压敏电压的变化率不大于10%。
现行的技术规格书中通常都给出了冲击1次的IP值。
通流容量也称通流量,是指在规定的条件(以规定的时间间隔和次数,施加标准的冲击电流)下,允许通过压敏电阻器上的最大脉冲(峰值)电流值。
一般过压是一个或一系列的脉冲波。
实验压敏电阻所用的冲击波有两种,一种是为8/20μs波,即通常所说的波头为8μs波尾时间为20μs的脉冲波,另外一种为2ms的方波。
所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。
为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。
然而从保护效果出发,要求所选用的通流量大一些好。
在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20kA的产品。
如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电压不变,其通流量为各单只压敏电阻数值之和。
要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。
④最大箝位电压(限制电压)VC:技术规格书中给出的最大箝位电压值是指给压敏电阻施加规定的8/20μs波冲击电流IX(A)时压敏电阻上呈现的电压。
实际使用中,压敏电压越高,施加的冲击电流越大,限制电压(或称残压)就越高,可从产品给出的V-I曲线上查到。
最大限制电压是指压敏电阻器两端所能承受的最高电压值,它表示在规定的冲击电流Ip通过压敏电阻器两端所产生的电压此电压又称为残压,所以选用的压敏电阻的残压一定要小于被保护物的耐压水平Vo,否则便达不到可靠的保护目的,通常冲击电流Ip值较大,例如2.5A或者10A,因而压敏电阻对应的最大限制电压Vc相当大,例如MYG7K471其Vc=775(Ip=10A时)。
⑤额定能量E:额定能量是指压敏电阻能够承受规定波形的冲击电流冲击一次的最大能量(冲击后压敏电压的变化率不大于10%),可用下式表示: E=K*IP*VC*T式中:IP、VC见上,T为脉冲宽度,K为与波形有关的常数。
对于8/20μs波和10/1000μs波,K=1.4;对于2ms方波,K=1。
⑥额定功率(最大平均功率)Pm:指压敏电阻在室温下,连续承受多次冲击,且各次冲击之间间隔时间较短,因而有热积累效应的情况下,能够承受的最大平均功率。
尽管压敏电阻能承受很大的脉冲功率,但能承受的平均功率却很小。
⑦电容C0:指压敏电阻两电极间呈现的电容,在几pF~几百nF的范围内。
体积越小,压敏电压越高,电容越小。
⑧漏电流Il:给压敏电阻施加最大直流电压Udc时流过的电流。
测量漏电流时,通常给压敏电阻加上Udc=0.83U1mA的电压(有时也用0.75U1mA)。
一般要求静态漏电流Il≤20μA(也有要求≤10μA的)。
在实际使用中,更关心的不是静态漏电流值本身的大小,而是它的稳定性,即在冲击试验后或在高温条件下的变化率。
在冲击试验后或在高温条件下其变化率不超过一倍,即认为是稳定的。
⑨非线性指数α:指电压的变化对电流的影响能力,可用公式表示为: I=KUα或α=log log由前式可见,α越大表明电压的变化对电流的影响能力越大,非线性特性越好。
由后式可见,α是伏安特性上各点斜率的倒数,特性越平坦的地方,α越大(漏电流区和饱和区α=1,又称低α区)。
用仪器测量时,一般设定I2=1mA,I1=0.1mA,所以αT =1/log(U1mA/U0.1 mA)五、压敏电阻的降额特性对压敏电阻进行冲击试验时,随着所要进行的冲击次数的增加,每次所施加的冲击电流要相应地减小。
例如:Ф20基片的标准压敏电阻(U1mA≥82V的),其降额特性如下表所示(可从厂家给出的浪涌寿命次数定额曲线中查到):允许冲击次数 1次 2次 10次 100次 1000次 10000次每次冲击电流 6500A 4000A 2000A 1000A 430A 200A六、压敏电阻的测量测量时将万用表臵10k 档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损七、压敏电阻的选型压敏电阻的选用,一般选择标称压敏电压V1mA 和通流容量两个参数。
1、所谓压敏电压,即击穿电压或阈值电压。
指在规定电流下的电压值,大多数情况下用1mA 直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V 不等。
可根据具体需要正确选用。
一般1mA="1".5Vp="2".2V AC,式中,Vp 为电路额定电压的峰值。
V AC 为额定交流电压的有效值。
ZnO 压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。
如一台用电器的额定电源电压为220V ,则压敏电阻电压值V1mA="1".5Vp="1".5 × 1.414× 220V="476V" ,V1mA="2".2V AC="2".2×220V="484V",因此压敏电阻的击穿电压可选在470-480V 之间。
2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。
为了延长器件的使用寿命,ZnO 压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。
然而从保护效果出发,要求所选用的通流量大一些好。
在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA 的产品。
如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。
要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。
八、压敏电阻的使用压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。
压敏电阻在电路中,常用于电源过压保护和稳压。
电源防雷器的可靠性、安全性在很大程度上依赖于压敏电阻的正确使用,以下原则可供使用参考。
特别要指出的是,在电源防雷设计中还要考虑各个地方的电源质量差别、雷击频度和强度的差别、被保护设备的安装使用情况和冲击耐受能力等的差别,不能用一个公式照搬照套。
设计好的防雷保护装臵必须在现场使用条件下或尽可能接近真实情况的模拟条件下进行试验验证。