概率统计PPT浙大版
合集下载
概率论与数理统计(浙大版)第一章课件

然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科.
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)
概率论与数理统计第一章(浙大第四版)ppt课件

ppt课件
9
例:
概率论
一枚硬币抛一次
记录一城市一日中发生交通事故次数
记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
ppt课件
10
概率论
S={正面,反面}; S={0,1,2,…}; S={ x|a≤x≤b }
S={(x,y)|T0≤y≤x≤T1};
ppt课件
111
n—总试验次数。称 fn ( A) 为A
在这n次试验中发生的频率。
ppt课件
27
例:
概率论
中国男子国家足球队,“冲出亚洲”
共进行了n次,其中成功了一次,在
这n次试验中“冲出亚洲”这事件发
生的频率为 1 n;
ppt课件
28
概率论
某人一共听了16次“概率统计”课,其 中有12次迟到,记A={听课迟到},则
ppt课件
33
(二) 概率
概率论
定义1:fn ( A) 的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S ) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),
P( Ai ) P( Ai )
(1)从袋中随机摸一球,记A={ 摸到红 球 },求P(A).
(2)从袋中不放回摸两球,记B={恰是一 红一黄},求P(B).
ppt课件
47
概率论
解:(1)
S={1,2, ,8},A={1,2,3}
P
A
3 8
(2)P(B)
C31C51
《概率论与数理统计》浙大内部课件(全套).PPT

S
“和”、“交”关系式
n i 1
A
n
A
Ai=A1 A2 An;
Ai
n i 1
Ai A1
A2
An;
Ai
n i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则: A B {甲、乙至少有一人来} A B {甲、乙都来} A B AB {甲、乙都不来} A B AB {甲、乙至少有一人不来}
16
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
4
随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。 法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科 概率论在20世纪再度迅速地发展起来,则是由于科学技术 发展的迫切需要而产生的。1906年,俄国数学家马尔科夫 提出了所谓“马尔科夫链”的数学模型。1934年,前苏联 数学家辛钦又提出一种在时间中均匀进行着的平稳过程理有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。
“和”、“交”关系式
n i 1
A
n
A
Ai=A1 A2 An;
Ai
n i 1
Ai A1
A2
An;
Ai
n i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则: A B {甲、乙至少有一人来} A B {甲、乙都来} A B AB {甲、乙都不来} A B AB {甲、乙至少有一人不来}
16
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
4
随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。 法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科 概率论在20世纪再度迅速地发展起来,则是由于科学技术 发展的迫切需要而产生的。1906年,俄国数学家马尔科夫 提出了所谓“马尔科夫链”的数学模型。1934年,前苏联 数学家辛钦又提出一种在时间中均匀进行着的平稳过程理有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。
概率论与数理统计教学PPT浙大第三版

数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计
概率论与数理统计(浙大版)第二章课件PPT课件

P(X 3) P(AAA) 0.033 C330.033
P( X k) C3k 0.03k0.973k , k 0,1,2,3
这个分布其实就是将要介绍二项分布。我们先来 看一个重要的试验——伯努利(Bernoulli)试验。
•第21页/共105页
二、伯努利(Bernoulli)试验及二项分布 1、伯努利(Bernoulli)试验 (1)n次独立重复试验 将试验E重复进行n次,若各次试验的结果互 不影响,则称这n次试验是相互独立的. (2)n重伯努利试验 满足下列条件的试验称为伯努利(Bernoulli)试验: ①每次试验都在相同的条件下重复进行;
•第5页/共105页
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率: 例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的不同各
证明:在n重伯努利试验中,事件A在前k次出 现,而在后n-k次不出现的概率为:
•第23页/共105页
k
n k
__ __
__
P( AA A A A A) pk (1 p)nk
而事件A在n次试验中发生k次的方式为:Cnk
P(X k) Cnk pk (1 p)nk k 0,1,2,n.
n
由 于 Cnk pk (1 p)nk p (1 p) n 1, k0
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。 一、随机变量 引例: E1: 将一枚硬币连掷两次,观察正反面出现的情况。
P( X k) C3k 0.03k0.973k , k 0,1,2,3
这个分布其实就是将要介绍二项分布。我们先来 看一个重要的试验——伯努利(Bernoulli)试验。
•第21页/共105页
二、伯努利(Bernoulli)试验及二项分布 1、伯努利(Bernoulli)试验 (1)n次独立重复试验 将试验E重复进行n次,若各次试验的结果互 不影响,则称这n次试验是相互独立的. (2)n重伯努利试验 满足下列条件的试验称为伯努利(Bernoulli)试验: ①每次试验都在相同的条件下重复进行;
•第5页/共105页
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率: 例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的不同各
证明:在n重伯努利试验中,事件A在前k次出 现,而在后n-k次不出现的概率为:
•第23页/共105页
k
n k
__ __
__
P( AA A A A A) pk (1 p)nk
而事件A在n次试验中发生k次的方式为:Cnk
P(X k) Cnk pk (1 p)nk k 0,1,2,n.
n
由 于 Cnk pk (1 p)nk p (1 p) n 1, k0
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。 一、随机变量 引例: E1: 将一枚硬币连掷两次,观察正反面出现的情况。
浙大概率论与数理统计课件12章节

P(B C | A) P(B | A) P(C | A) P(BC | A) B C P(B | A) P(C | A)
二、乘法公式 当下面的条件概率都有意义时:
P(AB) P(A) P(B | A) P(B) P(A | B) P(ABC) P(A)P(B | A)P(C | AB) P( A1A2 An ) P( A1)P( A2 | A1)P( A3 | A1A2 ) P( An | A1 An1)
1 P( A2 | A1) 1 0.8 0.2
A={ 这人通过考核 }, A A1 A1A2 A1A2 A3
P( A) P( A1) P( A1A2 ) P( A1A2 A3)
P( A1) P( A1) P( A2 | A1) P( A1) P( A2 | A1)P( A3 | A1A2 )
25
0.50
24
0.48
21
0.42
18
0.36
24
0.48
27
0.54
31
0.62
n =500 nH fn(H)
251 0.502 249 0.498 256 0.512 253 0.506 251 0.502 246 0.492 244 0.488 258 0.516 262 0.524 247 0.494
实验者
德·摩根 蒲丰 K·皮尔逊 K·皮尔逊
表2
n
nH
2048
1061
4040
2048
12000
6019
24000
12012
fn(H) 0.5181 0.5069 0.5016 0.5005
15
§4 等可能概型(古典概型)
二、乘法公式 当下面的条件概率都有意义时:
P(AB) P(A) P(B | A) P(B) P(A | B) P(ABC) P(A)P(B | A)P(C | AB) P( A1A2 An ) P( A1)P( A2 | A1)P( A3 | A1A2 ) P( An | A1 An1)
1 P( A2 | A1) 1 0.8 0.2
A={ 这人通过考核 }, A A1 A1A2 A1A2 A3
P( A) P( A1) P( A1A2 ) P( A1A2 A3)
P( A1) P( A1) P( A2 | A1) P( A1) P( A2 | A1)P( A3 | A1A2 )
25
0.50
24
0.48
21
0.42
18
0.36
24
0.48
27
0.54
31
0.62
n =500 nH fn(H)
251 0.502 249 0.498 256 0.512 253 0.506 251 0.502 246 0.492 244 0.488 258 0.516 262 0.524 247 0.494
实验者
德·摩根 蒲丰 K·皮尔逊 K·皮尔逊
表2
n
nH
2048
1061
4040
2048
12000
6019
24000
12012
fn(H) 0.5181 0.5069 0.5016 0.5005
15
§4 等可能概型(古典概型)
浙江大学概率论与数理统计课件

个
样本点使 Ak
发生,
P( Ak
)C a1 n1 Nhomakorabea/ Cna
a
a b
解3:
原 来
将第k次摸到的球号作为一样本点:
此值不仅与k
这
S={
P(
解4:
①,②,…,n
Ak
)
a n
a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1
1i jn
P( Ai Aj Ak ) (1)n1 P( A1A2 An )
1i jk n
21
视 ① ②… n 的任一排列为一个样本点,每点出现的概率 相等。
P( Ak
)
a(a b 1)! (a b)!
a
a
b
----------与k无关
27
解2:
视哪几次摸到红球为一样本点
, , ,, 12 k n
总样本点数为
C
a n
,每点出现的概率相等,而其中有
C a1 n 1
B A AB P(B) P( A) P( AB)
P(B) P( A) P( AB) P(B A) 0 P(B) P(A)
3 概率的加法公式:P( A B) P( A) P(B) P( AB)
浙江大学概率论与数理统计ppt课件

e e dy
(
x1 )2 212
1 2(1 2
)
y2 2
x1 1
2
1
e
(
x1 )2 212
21
1
e dy
1
2
2 2
(1
2
)
y
2
2 1
(
x1
)
2
2 2 1 2
1
( x1 )2
e 212
x
即二维正态分布的 两个边缘分布都是
2 1
一维正态分布,
同理 fY ( y)
记为
P( X xi ) P( X xi,Y ) pij == pi• i 1, 2,
j 1
注意:
X Y y1
… y2
yj
… P X xi
记号pi•表示是由pij关于j求和 后得到的;同样p• j是由pij关于 i求和后得到的.
xp 1 11
xp
2
21
…
xp i i1 …
p
12
…
p
1j
FX (x) F(x, )
x
f
(t,
y)dydt
同理:
x
fX (t)dt
FY ( y) F(, y)
y
f
( x, t )dx dt
y
fY (t)dt
17
例1:对一群体的吸烟及健康状况进行调查,引入随机变量
0, 健康
0, 不吸烟
X 和Y如下:X 1, 一般 , Y 10, 一天吸烟不多于15支
由条件概率公式可得:
P( X
xi
|Y
yj)
f (x, y) 0,