混凝土中的断裂力学模型(言志超11102001)
第十一章 混凝土断裂力学

一、小范围塑性屈服时对应力强度因子的修正
由线弹性理论可知,Ⅰ型裂缝在平面应力状态下,其裂缝附近的主应力表达
式为:
1
K cos 1 sin
2r 2
2
2
K cos 1 sin
2r 2
2
3 0
为了确定塑性区的大小,这里采用米赛斯屈服条件,即:
应力随着r减小时趋向无限大就愈迅速。所以K可以反映出裂缝尖端附近的应力场 强度, 故称为应力强度因子。
线性断裂力学
2.应力强度因子的计算公式 对于带裂缝的无限大平板,Ⅰ型、Ⅱ型、Ⅲ型裂缝的应力强度因子分别为:
K a
K a
K l a
一般情况下,应力强度因子的大小与荷载性质、裂缝的几何形态等因素有关,
混凝土断裂力学
线性断裂力学 非线性断裂力学基础 复合型裂缝的断裂判据 混凝土断裂韧度 混凝土断裂的数值分析
线性断裂力学
一、概述
1.断裂力学的概念 断裂力学是研究含裂缝的构件在各种环境条件下(包括荷载作用、腐蚀性介
质作用、温度变化等)裂缝的平衡、扩展和失稳的规律,并且研究其强度条件的 一门科学。 2.断裂力学研究的问题 ①研究裂缝尖端区的应力状态、应变状态和位移状态; ②研究材料本身抵抗裂缝扩展的能力; ③研究测定材料本身抵抗裂缝扩展能力的方法和标准。 3.断裂力学的产生及其发展过程 产生:传统的强度理论、实际工程的破坏情况、是否有裂缝构件受力就断裂。
1
2 2
2
3 2
3
1 2
2
2 s
非线性断裂力学基础
式中 s为材料单轴受力条件下的屈服极限。将主应力代入此式可得屈服边界区的
混凝土的断裂力学及应用

混凝土的断裂力学及应用混凝土是一种广泛应用于建筑工程中的重要建材,在支撑结构和基础设施中占据着重要地位。
为了保证建筑物的安全性和可持续性发展,研究混凝土的断裂力学是至关重要的。
本文将重点探讨混凝土的断裂力学原理以及其在实际应用中的重要性。
一、混凝土的断裂力学原理混凝土的断裂力学主要涉及材料的力学性能和应力传递机制。
混凝土是由水泥粘结剂和骨料颗粒组成的复合材料,其力学性能受到多种因素的影响,如水泥的品种和用量、骨料的类型和粒径分布、混凝土的配合比和养护条件等。
1.1 断裂强度混凝土的断裂强度是指在受拉应力作用下,混凝土发生破坏的最大应力值。
不同混凝土配方和养护条件下的断裂强度不同,可以通过实验测试来获得。
断裂强度的大小直接影响着建筑物的抗震能力和结构的安全性。
1.2 断裂韧性混凝土的断裂韧性是指在受拉应力下,混凝土发生破坏前的塑性变形能力。
断裂韧性与混凝土的粘结能力密切相关,粘结力越强,混凝土的断裂韧性就越高。
断裂韧性的提高可以延缓混凝土的破坏过程,提高结构的抗震性能。
二、混凝土断裂力学的应用混凝土断裂力学的研究对于建筑工程的设计和维护具有重要意义,以下是几个常见的应用领域:2.1 结构设计混凝土的断裂力学可以用于建筑结构的设计和优化。
通过对混凝土的力学性能进行研究,可以确定合适的配筋、配合比和结构形式,从而提高建筑结构的承载能力和抗震性能。
2.2 施工工艺混凝土断裂力学的研究可以为建筑施工工艺提供理论依据。
在混凝土浇筑过程中,合理控制施工速度和浇筑顺序,避免应力集中和开裂现象的发生,保证混凝土结构的质量和耐久性。
2.3 维修与加固对老旧建筑的维修和加固也是混凝土断裂力学的重要应用领域。
通过研究混凝土的断裂韧性和脆性破坏机制,可以确定合适的维修材料和加固方法,延长建筑物的使用寿命。
2.4 抗震设计抗震设计是混凝土断裂力学应用的主要领域之一。
混凝土结构在地震作用下会受到复杂的力学影响,研究混凝土的断裂力学可以帮助工程师设计合适的结构形式和加固措施,提高建筑物的抗震性能。
混凝土断裂力学

混凝土断裂力学
混凝土断裂力学是研究混凝土在受外力作用下断裂行为的力学学科。
混凝土作为一种脆性材料,在受到外力作用时容易发生断裂。
混凝土断裂力学的研究旨在通过理论和实验方法,深入了解和描述混凝土断裂的机制、特征和规律,以便能够预测混凝土的断裂强度和断裂形态。
混凝土断裂力学涉及几个重要的概念和参数,包括:
1. 应力-应变曲线:通过施加不同的应力对混凝土进行拉伸或
压缩试验,得到的应力-应变曲线可以描述混凝土的力学性能,包括线性弹性阶段、塑性阶段和断裂阶段。
2. 断裂韧性:是混凝土在断裂前能够吸收的能量,可以通过计算应力-应变曲线下的面积来表示。
断裂韧性越大,表示混凝
土具有更好的抗断裂能力。
3. 断裂骨架:混凝土内部的骨架结构在断裂过程中起到重要作用。
混凝土断裂力学研究骨架的变形和破坏机制,以及不同因素对骨架的影响。
4. 断裂模型:为了描述混凝土断裂的过程和行为,研究者提出了各种断裂模型,如弹塑性模型、本构模型和损伤模型等。
这些模型可以用来预测混凝土的断裂形态和强度。
混凝土断裂力学的研究对于工程结构设计和材料性能评估具有重要意义。
通过深入了解混凝土断裂的机制和规律,可以提高
工程结构的安全性和可靠性,为混凝土材料的发展和改进提供科学依据。
第七章混凝土的强度裂缝及刚度理论分析

,
,
和
,
,
。
§7. 1.2 混凝土破坏准则
4、混凝土破坏准则
Ottoson 四参数准则
· 采用薄膜比拟法 , 当薄膜均匀受拉发生外凸变形时 , 其几何 方程可由二阶偏微分方程求解 。经转换后可得到混凝土破坏包 络面的方程 , 其以应力不变量表达为:
§7. 1.2 混凝土破坏准则
4、混凝土破坏准则
高等桥梁结构理论
第七章 混凝土的 强度 、裂缝及刚度理论
■ §7. 1.2 混凝土破坏准则
§7. 1.2 混凝土破坏准则
1 、混凝土破坏形态
对所有混凝土多轴试验的试件进行分析 , 可归纳为5种典型破坏形态:
· 拉断 发生这类破坏的应力状态 , 除了单轴 、双轴和三轴受拉(T,
T/T ,T/T/T) ,还有主拉应力较大( (T/C ,T/C/C ,T/T/C)等。
§7. 1.2 混凝土破坏准则
4、混凝土破坏准则
Pod gorski五参数准则
· 这一准则表达式与Otto son准则基本相同 , 只是将其中的主应 力不变量改为相应的八面体应力表示:
·其 中
· 式中的5个参数 ·
和 , 由5个特征强度值标定 。
· 破坏包络面的形状也与Otto son准则的相近 。
3、古典强度理论——Mohr-Coulomb理论(1900)
· 材料的破坏不仅取决于最大剪应力 ,还受剪切面上正应力的影 响 ,其表达式为:
· 这一破坏面是以静水压力轴为中心的六角锥面 ,但拉 、压子午
线有不同的斜角
。 因而可以反映材料的抗拉强度和抗压强
度不相等
的情况 , 是对最大剪应力理论的重要改善 ,适用
§7. 1.2 混凝土破坏准则
混凝土断裂能的分形尺寸效应模型

Ab ta t s r c :A a tla p o c o h ie efc nfa tr n r yo o c ee wa r s n e f ca p r a h frt e sz fe to cu e e e g fc n rt sp e e t d.Ba e n sz fe t r s d o ie efc
d n y u ig a s r l x e i n a aa T e a ay i r s l h w t e F E sf a i l n e ib e o e b s e a p r n i e me tld t. h n lss e u t s o S L i e s e a d r l l . s h b a
K e o ds ra t r n r ; sz f c ;fa t l o r t y w r :f c u e e e g y ie e f t r ca ;c nc ee e
材料 细观结 构几 何 特 征 的不 规 则性 可 以用 分 形 维数来表 征 . 凝 土 四点 剪 切 加载 试 件 … 、 点 混 三 弯 曲切 E梁 J楔入 劈 拉试 件 的 实验 表 明 , l 、 分形 维数 能够反 映混凝 土断裂 时能 量耗散 的特性 , 混凝 土材料 的断 裂能 随分形维 数 的增 加 而增 加 . 3种不
第2 4卷第 4期
21 00年 8月
江苏科技大学学报( 自然科学版)
Junl f i guU i r t o c neadTc nl y N tr cec dtn ora o J ns n esy f i c n eh o g ( a a Si eE io ) a v i S e o ul n i
Hu n i a ,L n q n a g Hay n u Ho g i
(完整版)裂缝模型说明

裂缝模型说明1 裂缝模型介绍在钢筋混凝土结构的有限元分析中,常用的裂缝模型有以下几种:1,弥散(分布)裂缝模型;2,离散裂缝模型;3,断裂力学模型。
除此之外,还有其他一些形式的模型。
那么,如何在种类繁多的开裂数学模型中选用合适的模型用于实际结构分析呢,这取决于有限元分析的对象以及需要得出哪些数据。
如果需要获得结构的荷载位移特性曲线,而不需要裂缝的实际分布图形及局部应力状况,那么,就可以选择所谓“弥散裂缝模型”。
如果研究的兴趣在于结构局部特性的细节,那么采用离散裂缝模型更为适合。
对于某些特殊类型的问题,采用基于断裂力学原理的开裂模型也许更为方便。
弥散裂缝模型也被称为分布裂缝模型,其实质是将实际的混凝土裂缝“弥散”到整个单元中,将混凝土材料处理为各向异性树料,利用混凝土的材料本构模型来模拟裂缝的影响。
这样,当混凝土某一单元的应力超过了开裂应力,则只需将材料本构矩阵加以调整,无需改变单元形式或重新划分单元网格,易于有限元程序实现,因此得到了非常广泛的应用。
Baza等提出的钝带裂缝模型则进一步发展了传统的弥散裂缝模型,通过引入裂缝带、断裂能等概念,使弥散裂缝模型和断裂力学相结合,减小了单元尺寸的影响。
现在的大型商用非线性有限元程序包里面基本都集成了弥散裂缝模型,用于模拟混凝土、岩石等材料的开裂。
离散裂缝模型是最早提出的模拟混凝土开裂的裂缝模型,其基本思想是:将裂缝处理为单元边界,一旦出现裂缝就调整节点位置或增加新的节点,并重新划分单元网格,使裂缝处于单元边界与边界之间。
这样,由裂缝引起的非连续性可以很自然的得到描述,裂缝的位置、形状、宽度也可以得到较清晰的表达。
由于离散裂缝模型是使用单元边界来模拟裂缝,因此随着裂缝的发生和发展,需要不断调整单元网格。
这是—项非常复杂的工作,需要消耗大量的计算机时,也是妨碍分离裂缝模型发展的主要原因。
对于一个有着大量裂缝的实际混凝土结构.用网格重划来逐个追踪裂缝几乎是不可能的。
混凝土的断裂

三点弯曲梁:
微裂缝区
2. 混凝土断裂力学 (线性)
(2) 亚临界扩展:
混凝土裂缝的扩展并不是一次完成, 而是经过由微裂纹的发展到一定程度才向 前扩展,这个长度叫亚临界扩展长度,大 体积混凝土其稳定值为20cm。
2. 混凝土断裂力学 (线性)
断裂力学在耐久性研究中的应用
钢筋混凝土的锈胀开裂 锈蚀钢筋混凝土构件的开裂及断裂
?
混凝土的尺寸效应(Size Effect)
混凝土为什么会有尺寸效应?
受弯构件的裂缝和裂缝宽度验算
一、产生裂缝的原因
由作用效应引起的裂缝,(M、V、T以及拉力等)主要 通过设计计算进行验算和构造措施加以控制 由外加变形或约束变形引起的裂缝,如混凝土收缩、温 度变化、基础不均匀沉降等外加变形或约束变形引起开 裂,主要通过采用构造措施和施工工艺加以控制。 筋锈蚀裂缝:采取构造措施(足够厚度的砼保护层和保 证砼的密实性,严格控制早凝剂的掺入量)
2. 混凝土断裂力学 (线性)
(4) 混凝土复合型裂缝的断裂判据:
种类: △ 最大周向应力,()max △ 最大应变能释放率判据(G) △ 比应变能判据( S判据) 可求出,但不太符合实际。因此,常用经验判据:Ⅰ + Ⅱ复合型(拉剪型)
2 2 K I2 4.2 K II K IC 2 KI 0 . 649 arctg 2 K
带椭圆孔 薄板的孔 边应力集 中问题
两个关键点: 1.最容易破坏的 裂隙方向; 2.最大应力集中 点(危险点)。 一个准则: 复合开裂准则。
在压应力条 件下裂隙开 裂及扩展方 向
混凝土材料的断裂性能评估

混凝土材料的断裂性能评估混凝土是一种广泛应用于建筑和基础设施工程中的常见材料。
其断裂性能评估对于确保结构的稳定性和安全性至关重要。
本文将重点讨论混凝土材料的断裂性能评估方法,并介绍一些常用的试验和计算方法。
一、混凝土的断裂行为混凝土材料在受到外力作用时,会发生裂缝和断裂。
其断裂行为可能由多种因素影响,例如混凝土的配比、强度、密实度和含水量等。
了解和评估混凝土的断裂性能是确保结构的耐久性和可靠性的重要步骤。
二、断裂性能评估的试验方法1. 拉伸试验拉伸试验是评估混凝土材料抗拉强度和断裂韧性的常用方法之一。
通过在试样上施加拉力,测量其应力-应变曲线,可以获得混凝土的拉伸强度和断裂韧性等参数。
2. 压缩试验压缩试验用于评估混凝土材料的抗压强度和断裂能力。
通过在试样上施加压力,测量其应力-应变曲线,可以获得混凝土的抗压强度和断裂行为等参数。
3. 破碎试验破碎试验是评估混凝土材料最大荷载和抗震性能的常用方法之一。
通过在试样上施加逐渐增大的荷载,观察其破坏模式和破坏荷载,可以评估混凝土的破坏强度和断裂性能。
三、断裂性能评估的计算方法除了试验方法外,还可以使用一些计算方法来评估混凝土材料的断裂性能。
常用的计算方法包括有限元分析、断裂力学模型和材料力学性质的估计等。
1. 有限元分析有限元分析是一种数值计算方法,可以模拟和预测混凝土材料的断裂行为。
通过建立混凝土材料的有限元模型,可以计算其应力分布、裂缝扩展和破坏模式等。
2. 断裂力学模型断裂力学模型是一种理论框架,用于描述材料的断裂行为和抗裂性能。
通过建立适当的数学模型和方程,可以计算混凝土材料的裂缝扩展速率、破坏强度和能量释放率等参数。
3. 材料力学性质的估计根据混凝土的材料力学性质,可以推导和计算其断裂性能。
例如,根据混凝土的抗拉和抗压强度,可以估计其断裂韧性和抗震性能。
四、断裂性能评估的应用混凝土材料的断裂性能评估在实际工程中具有重要的应用价值。
它可以帮助工程师设计和优化结构,确保其在使用寿命内具有足够的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种混凝土中的断裂力学模型研究
言志超1刘涛2胡一舟2
(重庆交通大学研究生院材料系400074)
摘要纵观断裂力学几十年的发展,经过前人的努力,无论在理论还是试验上都有了不少的进步,形成了不少较为完善的模型。
在工程上断裂力学的应用也非常广泛,本文将就混凝土断裂力学模型稍作归纳和总结。
关键词断裂力学混凝土模型
1研究的背景
1961年Kaplanl首先将断裂力学的概念引用到混凝土中,并进行了混凝土的断裂韧度试验"此后数十年间,国内外学者在该领域进行了大量的理论和试验研究,取得了许多成果,早期的混凝土断裂力学方面的研究大多是以线弹性断裂力学为基础的"线弹性断裂力学为是假定混凝土在断裂前是理想的弹性体,主要有以下两种分析方法:一种是能量法,即从能量平衡的观点出发.将能量释放率与形成单位裂纹表面所需要的能量进行比较"当前者小于后者时,裂纹稳定";另一种是应力强度因子法,即从裂纹尖端的应力场出发,利用裂纹尖端的应力强度因子来衡量构件或者结构的稳定与否。
线弹性断裂力学对混凝土断裂力学的发展起了一个开创的作用,在线弹性断裂力学的基础上,通过修正线弹性断裂力学建立起一系列的断裂模型"随着研究的进一步开展,大量的试验研究表明应力强度因子具有尺寸效应。
自此,人们逐渐把研究的重点转向非线性断裂力学,且伴随数值分析软件的开发,断裂力学逐渐结合数值分析方法,相继提出非线性数值模型,如虚拟裂缝模型、裂缝带模型、双参数模型、双K模型等。
2断裂模型研究
(1)双参数断裂模型
图1.1 素混凝土抵抗断裂过程的荷载—裂缝口位移曲线
如图 1.1(a),当P<0.5P max 时,P 一CMOD 曲线基本上处于线性阶段,此时
K 1<0.5K s
ic ;当P ≥0.5P max 时,混凝土带有明显的非线性,此时为非线性扩展阶段,
如图(b);当K j =K s
ic ,裂缝尖端位移也到达临界点。
考虑试件的加载方式和几何尺寸的不同,进一步的裂缝扩展可以在稳定的状态值K 下产生。
图1.2 两种类型试件的临界点和最大荷载的关系
对于任何加载形式的应力强度因子,应力强度因子可用公式表述:K l=K(P、a、试件的几何尺寸)如果dK I/da>0,即斜率大于零时,试件属于G型试件,此时当K l=K S 时,荷载P也达到最大值P max
,若斜率小于零,则试件属于N型试件,此类试件当K I=K S时,荷载并未达到最大值,而是在斜率等于零时,荷载到达最大值。
K S值通过实验所得到的峰值荷载和有效裂缝长度等来确定。
在拉荷载作用条件下,单边裂缝试件、双边裂缝试件、四点弯曲和三点弯曲的试验都属于G型试验。
(2)虚拟裂缝模型
虚拟裂缝模型由瑞典的Hillerborg教授等人提出,其基本思路是将混凝土断裂看成是混凝土中的微裂纹不断累积、扩大的结果,混凝土在裂纹失稳断裂前存在大量的微裂纹区,如图 1.3(a).此微裂区经试验表明是一条带状区域,它的出现削弱了混凝土裂缝前端传递应力的能力,此时材料出现软化.材料出软化后其传递应力能力的降低程度与微裂区的变形有关.微裂区的变形越大,传递应力的能力就越低;当变形达到一定程度时,传递的应力变为零,此时微裂纹转化为宏观裂纹"虚拟裂缝模型常结合有限元法使用,此模型所需要的参数包括断裂能极限抗拉强度和混凝土软化曲线等.
图1.3 虚拟裂缝模型的微裂区
用虚拟裂缝模型不能得到断裂区扩展长度的解析解,必须采用数值模拟的方法.采用这个模型计算裂缝扩展时,裂缝按单元边界扩展.故需要将裂缝扩展线上的节点一分为二;或重新划分裂缝通过的单元,让裂缝成为新的单元的边界.
(3)双K 断裂模型
在综合吸收双参数模型和虚拟裂缝模型思想的基础上,我国学者徐世烺,赵国番教授结合大量实验研究提出判断混凝土开裂的双K 断裂准则,其墓本思想是:混凝土从开始断裂到最终失稳断裂中间存在一个过程,即一个断裂扩展区。
当K I
<K ini IC 时,无裂缝扩展;当
K I =K ini IC 时,裂缝开始稳定扩展;当K ini IC ≤K I <K un IC 时,裂缝稳定扩展;当KI=K un IC 时,裂缝开始失稳。
当K I >K un IC 时,裂缝失稳断裂。
其中,K I 为应
力强度因子,K ini IC 为起裂韧度,K un IC 为失稳韧度.K ini IC 和K un
IC 称为双K 断裂参数。
由此可见,双参数模型对应的是混凝土的失稳断裂点。
3结论
双参数模型的优点是能够得出临界断裂判据的双参数的解析解,缺点是没有考虑到混凝土的断裂是一个从开始开裂到最终失稳是一个过程,即没有考虑到断裂过程中,断裂扩展区对最终的临界失稳的影响。
虚拟裂缝模型的优点是将混凝土断裂当成一个过程来看,从混凝土出现微裂区到最终的失稳断裂.即考虑了断裂扩展区对最终的失稳断裂的影响,缺点是只能结合数值方法求解,未能得到解析解。
双K 断裂模型相比双参数模型的优点是不仅能计算出混凝土失稳断点,还能预测混凝土的起始断裂。
参 考 文 献
[1] Kaplan M F.Crack propagation and the fracture of concrete.J. Of ACI,1961,58(5):591-609.
[2]王新友,吴科如.测定混凝土断裂参数的劈裂法研究.上海建材学院学报,1992,3(4):357-367.
[3]中国航空研究院主编.应力强度因子手册.北京:科学出版社.1981.
[4]叶志明.各向异性材料与混凝土断裂力学引论[M].北京:中国铁道出版社,2000.
[5]Bazant Z P,Chen E P.结构破坏的尺度律[J].力学进展,1999,29(3):383-433.。