中文分词技术研究

合集下载

中文信息处理的研究内容

中文信息处理的研究内容

中文信息处理的研究内容中文信息处理是计算机领域中的一个重要研究方向。

它旨在解决中文信息在计算机中的输入、输出、转换和处理等一系列问题。

下面,我将依次介绍中文信息处理的研究内容。

一、中文输入法中文输入法是中文信息处理的关键部分之一。

它是将汉字转换为计算机可以识别的数字代码的软件。

不同的中文输入法采用不同的汉字输入方式,如五笔、拼音、笔画等。

中文输入法的研究内容包括汉字输入方式的改进、输入法的智能化、语音输入等。

二、中文分词技术中文分词是将一段中文文本按照词语进行划分的过程,它是其他中文信息处理任务的基础。

中文分词技术的研究内容包括分词算法、分词准确率提高、未登录词的识别等。

三、中文信息检索中文信息检索是通过计算机对大量文本信息进行匹配,将用户的查询需求与最相关的文本信息匹配,并返回给用户的过程。

中文信息检索技术的研究内容包括检索算法、搜索引擎优化、语义分析等。

四、中文语音识别中文语音识别是将人类语音转化为计算机可以理解的文字或者指令的技术。

中文语音识别技术的研究内容包括语音样本的输入和处理、语音识别算法、语音指令转换等。

五、中文机器翻译中文机器翻译是指将一种语言的文本翻译成另一种语言的技术。

中文机器翻译技术的研究内容包括语言模型的建立、翻译规则的设计、翻译结果的优化等。

六、中文信息抽取中文信息抽取是指从海量中文文本中,得出有价值的信息。

中文信息抽取技术的研究内容包括实体识别、关系抽取、事件抽取等。

综上所述,中文信息处理是一个广泛而又深入的领域。

在未来,我们可以期待更多的技术创新和研究成果的涌现,为中文信息处理提供更加强大的工具和平台。

汉语分词技术研究现状与应用展望

汉语分词技术研究现状与应用展望
系统可以面向解决实际问题 的需求和真实语料 中使用的频繁程度来规定 “ 分词单位” 分词单位可 以是同 . 词表中词完全一致 , 也可以是包含未登录词识别 以及一些词法分析的切分单位 , 例如 , 一些人名 、 地名 、 机 构名 、 国人译名 , 外 一些动词和形容词重叠结构 、 附加词都可以作为分词单位予以识别 和切分. 因此 , 于 对
续的字符串( , C )输 出是汉语的词 串( . CC C… ,
2 1 通用 词表和 切分 规范 .
… ) 这里 , 可 以是单字词也可 以是多字 ,
词. 那么 , 在这个过程中, 我们所要解决 的关键问题是什么 , 我们又有什么样 的解决方案呢? 至今为止 , 分词系统仍然没有一个统一的具有权威性的分词词表作为分词依据. 这不能不说是分词系
要 解决 的重要 问题 ,
除了同音词的自动辨识 , 汉语的多音字 自动辨识仍然需要分词 的帮助. 例如 : 校 、 、 、 、 等都 “ 行 重 乐 率” 是多音字. 无论是拼音 自动标注还是语音合成都需要识别出正确的拼音. 而多音字的辨识可以利用词以及
句子中前后词语境 , 即上下文来实现. 如下面几个多音字都可以通过所在的几组词得 以定音 : ) 、 z n ) 重(hn ) 快乐(e/ jo 对 行( ag 列/ x g 进 重(h g 量/ cog 新、 i n o 1)音乐 (u ) 率 (h a) 效 ye 、 sui领/
率( ) 1. v
2 汉语分词所面临 的关键 问题
汉语分词是由计算机 自动识别文本中的词边界的过程. 从计算机处理过程上看 , 分词系统的输入是连
定义两个字的互信息计算两个汉字结合程互信息体现了汉字之间结合关系的紧密程度需要大量的训练文本用以建立模型的参数到底哪种分词算法的准确度更高目前尚无定论对于任何一个成熟的分单独依靠某一种算法来实现都需要综合不同的算法汉语分词技术的应用国内自80年代初就在中文信息处理领域提出了自动分词从而产生了一些实用京航空航天大学计算机系1983年设计实现的cdws分词系统是我国第一个实用的自度约为625开发者自己测试结果下同早期分词系统机系研制的abws自动分词系统和北京师范大学现代教育研究所研制的书面汉语这些都是将新方法运用于分词系统的成功尝试具有很大的理论意义随后比较有代表性的有清华大学seg和segtag分词系统复旦分词系统州大学改进的mm分词系统北大计算语言所分词系统分词和词类标注相结合在自然语言处理技术中中文处理技术比西文处理技术要落后很大一段距离文不能直接采用就是因为中文必需有分词这道工序汉语分词是其他中文信息处理是汉语分词的一个应用语音合成自动分类自动摘要要用到分词因为中文需要分词可能会影响一些研究但同时也为一些企业带来机会参考文献汉语信息处理词汇01部分朱德熙

中文分词技术的研究

中文分词技术的研究
应运 而生 。 信息 过 滤[ 就是 根据 用户 的信 息需 求 , 1 ] 利用

至关重 要 的因素 。 所周 知 , 众 中文 文本与英 文文本 的表 示 方法 有 所不 同 , 英文 文本 中词 与词 中间都 由空 格或
标 点符 号隔开 , 因而 词与词 之间 的界限很 明显 , 以很 可 容 易地 获 取关键 词 , 中文 文 本 中词 与词则 元 明显 的 而
第2卷 3
第 3 期
电 脑 开 发 与 应 用
文章 编 号 :0 35 5 ( 0 0 0 -0 10 1 0—8 0 2 1 )30 0 — 3
中文 分 词技 术 的研 究
Re e r h o i s o d S g e a i n Te hn q e s a c n Ch ne e W r e m nt to c i u s
依 赖 于 分词 词典 的好 坏 , 于无 词典 的分 词算 法 不需 基 要利 用词 典 信息 , 通过 对 大规 模 的生语 料库 进 行 统 它 计分析 , 自动 地 发现 和学 习词汇 , 分词精 度 来 看 , 从 基
于词典 的分 词算法 要大 大优于无 词典 的分词算 法 。
3 1 基 于足 够 的词 来供 分 析程 序处 理 , 计
算 机如何 完成这 一过 程 ? 其处 理过程 就称为分 词算 法 。
现 有的分 词 算法 按 照 是否 使用 分词 词典 来 分 , 可 分 为基 于 词 典 的 分 词 算 法 和 基 于 无 词 典 的 分 词 算
定 的工 具从 大规 模 的动 态信 息流 中 自动筛 选 出满足
用户 需求 的信 息 , 同时 屏蔽 掉无 用信 息 的过程 。 目前很

面向专利文献的中文分词技术的研究

面向专利文献的中文分词技术的研究

面 向专 利 文 献 的 中 文 分 词 技 术 的 研 究
张桂 平 , 东 生 , 刘 尹宝 生 , 徐立 军 , 雪 雷 苗
( 阳 航 空工 业 学 院 知识Байду номын сангаас二 程 中心 ,辽 宁 沈 阳 1 0 3 ) 沈 r 1 0 4

要 : 对 专利 文 献 的 特 点 , 文提 出 了一 种 基 于 统计 和 规 则相 结合 的 多 策略 分 词 方 法 。该 方 法 利 用 文 献 中潜 针 该
c e e od r s t n t e co e a d o nng ts ,w ih i pr ve n u hiv sgo e uls i h ls n pe i e t t m o s o nkn w n w o d e o nii s w e1 o r s r c g ton a l. Ke r s:c y wo d omput ra e ppl a i i ton; Chie e i o ma i o e sn c n s nf r ton pr c s i g; Chi s wo d s gm e t ton; pa e t o um e ; ne e r e nai t n d c nt c nt x n or a in o e ti f m to
Re e r h o i e e W o d S g e a i n f r Pa e tDo u e t s a c n Ch n s r e m nt to o t n c m n s Z HANG Gupn ,L U o g h n YI B o h n ,XU i n lig I D n s e g, N a s e g Lj ,M I ee u AO Xu li
lr e s a ec r u n h p cfcc n e ti f r t n h sme h d e fc i ey s l e h r b e o h u — fv — a g c l o p s a d t e s e i o tx n o ma i ,t i i o t o fe tv l o v s t e p o l m ft eO t - o o

中文分词技术的研究及在Nutch中的实现

中文分词技术的研究及在Nutch中的实现

O 引 言
I Anlzr中 文 分 词 器 采 用 字 典 分 词 法 并 结 合 正 反 向 全 切 分 以 K aye
擎排序算法都是保 密的, 我们无法知道搜索出来的排序结果是如何算 P o ig a zr分 词 器 , 然 后 是 MMa a zr分 词 器 ,最 慢 的 是 adnAnl e y nl e y 出来 的不 同 , 任何人都 可以查看 N t ue h的排序算 法 , 而且一 些搜索 引 I A aye 分 词器 k n lz r 擎的排名还有很多商业 因素 , 比如 百 度 的 排 名 就 和竞 价 有 关 . 样 的 这
An lz r lzr aye ̄ y e; ma
11 测 试 文 本 的 选 择 .
对 准确 度 进 行 测 试 用 句 为 : “ 北 科 技 大 学 坐 落 在 太 行 山 东 麓 的河 北 省 省 会 石 家庄 市 .9 6 河 1 9 年 由河 北 轻 化 工 学 院 、 北 机 电 学 院 和 河北 省 纺织 职 工 大 学 合 并 组 建 河
CJ KAn lzr I C nl e 、 ay e 、K a a zr y MMAnlzr E 、adnAnlzr。 a e( )P o ig ayey y J
_
中 文分 析 部 分 ( 询 和 索 引 )将 下载 的 中 文 分 词 包 放 到 11 查 : . 目录 } 下, 打开 N t D e m nA aye.v , uc ou e tn l raa 修改 tkn t a 方 法 如 下 h z j o eSr m e p biTk n t a tk nt a Sr gilN me R a e ed r u l o eSr m oe Sr m(tnf d a , edr ae) c e e i e r {

中文分词与词性标注技术研究与应用

中文分词与词性标注技术研究与应用

中文分词与词性标注技术研究与应用中文分词和词性标注是自然语言处理中常用的技术方法,它们对于理解和处理中文文本具有重要的作用。

本文将对中文分词和词性标注的技术原理、研究进展以及在实际应用中的应用场景进行综述。

一、中文分词技术研究与应用中文分词是将连续的中文文本切割成具有一定语义的词语序列的过程。

中文具有词汇没有明确的边界,因此分词是中文自然语言处理的基础工作。

中文分词技术主要有基于规则的方法、基于词典的方法和基于机器学习的方法。

1.基于规则的方法基于规则的中文分词方法是根据语法规则和语言学知识设计规则,进行分词操作。

例如,按照《现代汉语词典》等标准词典进行分词,但这种方法无法处理新词、歧义和未登录词的问题,因此应用受到一定的限制。

2.基于词典的方法基于词典的中文分词方法是利用已有的大规模词典进行切分,通过查找词典中的词语来确定分词的边界。

这种方法可以处理新词的问题,但对未登录词的处理能力有所限制。

3.基于机器学习的方法基于机器学习的中文分词方法是利用机器学习算法来自动学习分词模型,将分词任务转化为一个分类问题。

常用的机器学习算法有最大熵模型、条件随机场和神经网络等。

这种方法具有较好的泛化能力,能够处理未登录词和歧义问题。

中文分词技术在很多自然语言处理任务中都起到了重要的作用。

例如,在机器翻译中,分词可以提高对齐和翻译的质量;在文本挖掘中,分词可以提取关键词和构建文本特征;在信息检索中,分词可以改善检索效果。

二、词性标注技术研究与应用词性标注是给分好词的文本中的每个词语确定一个词性的过程。

中文的词性标注涉及到名词、动词、形容词、副词等多个词性类别。

词性标注的目标是为后续的自然语言处理任务提供更精确的上下文信息。

1.基于规则的方法基于规则的词性标注方法是根据语法规则和语境信息,确定每个词语的词性。

例如,根据词语周围的上下文信息和词语的词义来判断词性。

这种方法需要大量的人工制定规则,并且对于新词的处理能力较差。

中文分词技术的研究现状与困难

中文分词技术的研究现状与困难

四、解决方案
为了克服中文分词技术的研究困难,以下一些解决方案值得:
1、优化分词算法:针对分词算法的复杂性问题,可以尝试优化算法的设计和 实现,提高其效率和准确性。例如,可以通过引入上下文信息、利用语言学知 识等方式来改进算法。
2、改进信息检索技术:在信息检索领域,可以尝试将先进的排序算法、推荐 系统等技术引入到检索过程中,以提高检索效果。此外,还可以研究如何基于 用户行为和反馈来优化检索结果。
3、缺乏统一的评价标准:中文分词技术的评价标准尚未统一,这使得不同研 究之间的比较和评估变得困难。建立通用的中文分词技术评价标准对于推动相 关研究的发展至关重要。
4、特定领域的应用场景:中文分词技术在不同领域的应用场景中面临着不同 的挑战。例如,在金融领域中,需要分词技术对专业术语进行精确识别;在医 疗领域中,需要处理大量未登录词和生僻字。如何针对特定领域的应用场景进 行优化,是中文分词技术的重要研究方向。
3、建立大型标注语料库:通过建立大型标注语料库,可以为分词算法提供充 足的训练数据,提高其准确性和自适应性。此外,标注语料库也可以用于开发 基于规则的分词方法和测试集的构建。
4、研究跨领域的应用场景:针对不同领域的应用场景,可以研究如何将中文 分词技术进行迁移和适配。例如,可以通过知识图谱等技术将不同领域的知识 引入到分词过程中,以提高分词效果。
然而,各种分词方法也存在一定的局限性和不足。例如,基于规则的分词方法 需要人工编写规则和词典,难以维护和更新;基于统计的分词方法需要大量标 注语料库,而且训练模型的时间和计算成本较高;基于深度学习的分词方法虽 然取得了较好的效果,但也需要耗费大量的时间和计算资源进行训练。
三、研究困难
中文分词技术的研究面临着诸多困难和挑战,以下是一些主要词方法:该方法主要依靠人工编写的分词规则来进行分词。 代表性的工作包括台湾大学开发的中文分词系统“THULAC”和北京大学开发 的“PKU中文分词系统”。这些系统均基于词典和规则,具有较高的准确率和 召回率。

基于深度学习方法的中文分词和词性标注研究

基于深度学习方法的中文分词和词性标注研究

基于深度学习方法的中文分词和词性标注研究中文分词和词性标注是自然语言处理中的重要任务,其目的是将输入的连续文字序列切分成若干个有意义的词语,并为每个词语赋予其对应的语法属性。

本文将基于深度学习方法对中文分词和词性标注进行研究。

一、深度学习方法介绍深度学习是一种基于神经网络的机器学习方法,在自然语言处理领域中应用广泛。

经典的深度学习模型包括卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)、长短时记忆网络(LongShort-Term Memory, LSTM)和门控循环单元(Gated Recurrent Unit, GRU)等。

在对中文分词和词性标注任务的研究中,CNN、RNN以及LSTM均被采用。

CNN主要用于序列标注任务中的特征提取,RNN及LSTM则用于序列建模任务中。

GRU是LSTM的一种简化版本,在应对大规模文本序列的过程中更为高效。

二、中文分词中文分词是将一段连续的汉字序列切分成有意义的词语。

传统的中文分词方法主要包括基于词典匹配的分词和基于统计模型的分词。

基于词典匹配的分词方法基于预先构建的词典,将待切分文本与词典进行匹配。

该方法精度较高,但需要较为完整的词典。

基于统计模型的分词方法则通过学习汉字之间的概率关系来进行分词。

该方法不依赖于完整的词典,但存在歧义问题。

深度学习方法在中文分词任务中也有较好的表现,通常采用基于序列标注的方法。

具体步骤如下:1. 以汉字为单位对输入文本进行编码;2. 使用深度学习模型进行序列标注,即对每个汉字进行标注,标记为B(词的开头)、M(词的中间)或E(词的结尾),以及S(单字成词);3. 将标注后的序列按照词语切分。

其中,深度学习模型可以采用CNN、RNN、LSTM或GRU等模型。

三、中文词性标注中文词性标注是为每个词语赋予其对应的语法属性,通常使用含有标注数据的语料库进行训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1பைடு நூலகம்基 于字 符 串 匹配 的分 词 算 法 .
基 于 字符 串 配 的分 词 方 法 也 称 为 机 械 切分 方 法 。它 是 基 于 规 则 的切 分 方 法 ,按 照 一 定 的策 略 将 待分 析 的字 符 串与 充 分 大 的机 器 词 典 中 的词 条 进 行 匹 配 ,若 在 词 典 中找 到某 个 字 符 串 ,则 配 成
中 图 分 类 号 :T 3 11 P9. 文 献 标 识 码 :A 文 章 编 号 : 10 ~0 1 ( 0 0 0 —0 4 -0 09 3 2 2 l) 5 0 0 5
随 着科 学技 术 的飞速 发 展 ,我 们 已经进 入 了数 字 信息 化 时代 。Itre 作 为 当今 世 界上 最 大 的信 nen t
第5 期
于 洪 波 :巾 文分 词技 术研 究
41
2 中 文分 词 的 几 种 算 法
近几 年来 ,人们 对 中文 分词 技 术 有 了 一定 的研 究 ,先 后 提 m 了多 种有 效 的分 词算 法 。这 些算 法 主
要 分 为 _大 类 :基于 字符 串匹 配 的分 词 方法 、基 于统 计 的分词 方法 和 基于 知识 理 解 的分词 方法 二 。
因此 ,进行 中文信息过滤 ,首先就要对 文本预处理 ,进行 中文分词 ,将其表示成可计算和推理 的模型。中文 自动分词是对 中文文本进行 自动分类 的第一步 ,也是中文文本处理 的重要环节。中文
分词就是将连续 的字序列按照一定的规范重新组合成词序列的过程。其主要任务就是通过计算机 自 动 完成 对 中文句 子 的切分 ,识 别 独 立 的词 ,并在 词 与词 之 间用 空 格 分 割 开 。
文 和英 文 在语 法 规 则 、词 的结 构 上都 不 一 样 ,因此 针 对 中文 分词 的算 法 就 不 能 简 单 地 套 用英 文 的 分
词算法 ,必须根据中文词本 身的特点重新设计 。中文 自动分词是中文信息处理的关键所在,因为在中 文信 息 处理 中 ,只要 是涉 及 句法 、语 义 等 的研 究 ( 如机 器翻译 、 自然 语 言 处理 、搜索 引擎 、信 息检 索 等 ),都要 以词 为基本 单位 。所 以 良好 的 中文分词将 对众 多相关 学 科领 域 的发展 有很 大 的推动作 用 。
第 1卷 第 5P 7 1 , l 21 0 0年 l 0月
J URN AL OF DONGGU AN O UN I VERS TY I 0F TECHNo L0G Y
东 莞 理 T 学 院 学 报
Vo 1 No5 l 7
Oc 2 l t O O
中 文 分 词 技 术 研 究
功 ,切 出 该 词 ,否 则 进 行 其 他 相 关 处 理 。按 照 扫 描 方 向的 不 同 ,字 符 串 配 可 以分 为 正 向 配 和逆 向 匹配 ;按 照 不 同 长 度 优 先 配 的情 况 ,可 以分 为 最 大 配 和 最 小 匹 配 ;按 照 与词 性 标 注 过 程是 否
1 中文 分 词 的 必 要 性
分词只是 中文信息处理 的一部分 ,分词本身并不是 目的 ,而是后续处理过程 的必要 阶段 ,是中 文信 息处理的基础技术 。中文分词技术 的产生是中文搜索质量提高 的至关重要 的因素。众所周知 , 中文文本与英文文本 的表示方法有所不 同 ,英文文本 中词与词中间都 由空格或标点符号隔开 ,因而 词与词之间的界 限很 明显 ,可以很容易地获取关键词 ,而 中文文本是 以字为单位 ,所有的字连起来 才能捕述一个意思 ,而对于词 则没有一个形式上的分界符 ,词与词无 明显 的界 限,这就影响 了关键 词 的获取和 匹配…。所 以中文 分词 比英 文分词 要 复杂得 多 ,困难 得 多 。例 如 ,英 文句 子 I m a a t ce,用 中文则为 : “ e hr a 我是一名教师 ”。计算机可 以很简单通过空格知道 t c e 是一个单词 ,但 e hr a 是不能很容易明白 “ 教” 、 “ 师”两个字合起来才表示一个 词。把 中文的汉字序列切分成有意义的 词 ,就是 中文分词 ,也称为切词 。 “ 我是一名教师”的分词结果 是 : “ 是\ 我\ 一名\ 教师 ”。 由于中
息库 ,已成为人们 获取信息的最主要手段 。由于网络上 的信息资源有着海 量 、动态 、异构 、半结构 化等特点 ,且缺乏统一 的组织和管理 ,所 以如何快速 、准确地从海 量的信 息资源 中寻找到 自己所需 的信息已经成为网络用户需要迫切解决的一大难题 。由于计算机无法直接从 大量的信息 中根 据关键 词找到对应的文本及信息 ,从而无法完成对汉语信息的收集 、分类 等T作 ,只有 实现 了中文分词技 术 ,计算机才可能具有这些能力。
于 洪 波
(牡 丹 江 大 学 信 息 与 电 气 T 程 系 ,黑 龙 江 牡 丹 江 1 7 01 5 1)
摘 要 : 随着 网络 信息 资源 呈指数级 增 长,我们 已经进入 了信 息化 时代 ,信 息技 术 已渗透到我 们社会 生活的方方 面面。 中文文本分词技 术作 为 中文信息 处理 中的重要环 节 ,其作 用就 显得 越 来越 重要 对 中文 分 词的必要性 、存在的 困难进行 了综述 ,并分析 了几种 分词方 法的原理 、特 点和 算法 实现 。 关键 词 : 中文分词 ;分词 方法 ;算法
譬如 ,对于搜索引擎来说 ,最重要 的并不是找到所有结果 ,而是把最相关最有价值的结果排在最前 面,这也称为相关度排序 。中文分词的准确与否 ,会直接影响到对搜索结果 的相关度排序。
收 稿 日期 :01 — 0 — 2 2 0 7 9
作 者 简 介 : 洪 波 ( 9 9 ) ,女 ,黑 龙 江牡 丹 江 人 ,讲 师 ,硕 二 ,主 要 从 事wE 信息 处 理 和计 算 机 语 i 于 17 一 i : B p学研 究 。
相关文档
最新文档