羰基化过程

合集下载

第八章 羰基化过程

第八章 羰基化过程

进展1—催化剂的均相固相化
为了克服铑膦催化剂制备和回收复杂的缺点,↓消耗量,↓产 品分离步骤等,进行了均相催化剂固载化的研究,即把均相 催化剂固定在有一定表面的固体上,使反应在固定的活性位 上进行,催化剂兼有均相和多相催化的优点。 固 相 化 方 法 化学键合法
通过各种化学键合把络合催化剂负载于高分子载体上 (eg:苯乙烯和二乙烯基苯共聚物 、离子交换树脂 )

HxMy(CO)zLn
中心原子 配体
中心原子
工业上采用的羰基合成催化剂的中心原子主要为:
钴和铑
配位体
CO、PR3(膦)、 P(OR)3 (亚磷酸酯)、 AsR3 (胂)、 SbR3 (锑) R——烷基、芳基、环烷基、杂环基等
反应相
一类是将配位催化剂固载化,使用液体或气体原料进行多 相反应,最终实现产物与催化剂分离的目的。 另一类是催化剂和反应产物处于互不相溶的两种液相之中, 反应后只需进行简单的相分离,便可达到分离催化剂的目 的——两相催化体系。
物理吸附法
吸附于硅胶、氧化铝、活性炭、分子筛等无机载体 上,或将催化剂溶于高沸点溶剂后,再浸于载体上
目前活性金属流失问题成为阻碍固相络合催化剂实际应用的 主要障碍 !
进展2-非铑催化剂

铑是稀贵资源,故利用受到限制。 国外除对铑催化剂的回收利用进一步研究外,对 非铑催化剂的开发也非常重视。其中铂系催化剂 有很好的苗头:我国研究了Pt-Sn-P系催化剂。日
主要包括加氢和产品精制两个过程
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
a. 温度
T↑ →r丁醛↑ ,r副↑ ,催化剂失活速度↑
T↓ →催化剂活性低,用量大
100-110℃
b.压力

最新8羰基化过程汇总

最新8羰基化过程汇总
主要缺点是催化剂铑的资源有限,设备用的耐腐蚀材料昂贵。
8.3 烯烃的氢甲酰化 一.化学原理
(1)主、副反应(丙烯) 主:
副:a.异构醛
b.加氢生成丙烷
平行反应
c.醛加氢生成醇--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化 剂和工艺条件促进主反应
d.催化剂 HRh(Co)x(PPh3)y
x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
羰基化反应。
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下:
反应速度常数为3.5×106e-14.7/RTL/mol·s,式中活化 能的单位是kJ/mol。Leabharlann (3)催化剂①羰基钴
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑
缺点:正异构醛比例低,催化剂热稳定性差
②膦羰基钴
配位基膦(PR3) 特点:
a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.副产物少 e.适应性差
③膦羰基铑
选择性好,活性高,异构化性能高 催化剂稳定,可在较低压力下操作
(3)氢酯化(与CO和ROH反应)
(4)不对称合成
生成单一对映体的醛 某些结构的烯烃进行羰基合成反应能生成含有对映 异构体的醛。若使用特殊的催化剂,使生成的两种 对映体含量不完全相等,理想情况下仅生成某种单 一对映体,这样的反应称作不对称催化氢甲酰化反 应。

有机化工-丁辛醇-工艺流程

有机化工-丁辛醇-工艺流程
的气泡进入,与其中的含有三苯基膦铑催化剂反应液混合而进行反应。 由反应器出来的气流经雾沫分离器除去催化液后,再经冷凝器,未冷凝的气
体循环使用,液体经稳定塔处理将其中的气体驰放后,再经异构物分离塔除 去异丁醛;正丁醛塔除去重组分而从塔顶获得正丁醛产品。 2.正丁醛的加氢和缩合生产丁辛醇: 正丁醇的生产可直接加氢后经精馏而获得。辛醇则需要先经缩合再加氢而得 到。(现以辛醇的生产为例介绍) 正丁醛送入缩合反应器中,反应在氢氧化钠下发生缩合和脱水,反应生成辛 烯醛水溶液经冷却后进入分离器利用密度差分为油层和水层。水层送碱性污 水池处理。
一、丁辛醇的生产方法:
1、发酵法: 以粮食为原料,由丙酮-丁醇菌为发酵剂而得。该法设备简单,投资
少,但消耗粮食太多。 2、醇醛缩合法:
以乙醛为原料经缩合、酸化、蒸馏、脱水成为丁烯醛,再经催化加氢 得正丁醇。此法操作压力低,无异构体产生,但流程长、步骤多、设 备腐蚀严重,总收率低,目前只有少数工厂采用此法生产。 3、雷普法:
主要原因。同时用膦化物取代络合物中的羰基配位体,可提高
催化剂的热稳定性,并使正构醛含量增加,还可降低反应中所

需的压力。
(二)工艺条件:
1.反应温度: 钴413~453K, 铑373~383K 温度升高,反应速率加
快,生产能力提高但正、 异构体比例却随之降低, 副反应加剧,选择性下 降,催化剂失活速率加 快。
以丙烯、一氧化碳和水为原料,在催化剂五羰基化铁的作用下,一 步合成丁醇。此法产品单一,灵活性差而没有得到广泛应用。 4、共聚法:
用两种低级烯烃共聚生成高碳的烯烃,然后以此进行羰基合成而获 得辛醇。特点:组成复杂,产品不纯,异构物较多。 5.丙烯羰基合成法:
以丙烯和合成气为原料在催化剂作用下进行羰基化反应生成脂肪醛, 再经加氢、蒸馏而得产品。特点:灵活性好,反应速度快,产品收每 高,环境污染少而得到广泛应用。

羰基化过程

羰基化过程

• 用这种方法改变催化剂的性能称之为催化剂的改 性,引入的新配体也叫作改性剂。改变配位体的研 究构成了羰基合成催化剂研究的重要方面。
化 学 工 程 与 工 艺 教 研 室
化 学 工 艺 学 电 子 教 案
8.2.2 配位体
• 三价膦(PR3)的改性效果最为优越,已被工业采用。 • 羰基钴催化剂的主要问题是在较高的CO压力下才能稳定, 且产物的n/i不高。改性目标首先是克服这两个缺点。与 CO配体相比,三价膦是强的δ电子给予体,弱的π电子接 受体,PR3取代CO与钴配位后,增大了钴原子上的负电荷 密度。钴将增强的负电荷密度再通过适当轨道反馈给未取 代的CO,从而加强了钴对CO的配合能力,使整个分子的 稳定性增加。从而使改性后的催化剂可以在较低的压力下 进行反应,但同时造成剐作用是反应速度下降很多,必须 以提高催化剂浓度等方法加以弥补。三价膦是一个不等性 sp3杂化轨道构型,配位后呈四面体结构,因此比原先直线 形的CO配体产生更强的定向效应。大的方向位阻有利于生 成正构醛,使反应的正异比增加。另外对于羰基钴来说, 三价膦改性剂大大增加催化剂的加氢活性,一方面可以使 生成的醛直接加氢为醇,省去了加氢步骤,另一方面烯烃 加氢成烷烃的副反应也明显增加。
化 学 工 程 与 工 艺 教 研 室
化 学 工 艺 学 电 子 教 案
8.3.1 甲醇羰化反应合成醋酸的基本原理 • BASF高压法与Monsanto低压法甲醇羰化反 应合成醋酸化学原理基本相同,反应过程大 同小异,也都有一个催化剂循环和一个助催 化剂循环。并且都采用第Ⅷ族元素为催化 剂,碘为助催化剂,但因具体金属元素不同. 活性、中间体组成相异,催化效果有差别, 反应动力学、反应速率控制步骤也有所不同。 化
化 学 工 程 与 工 艺 教 研 室

8 羰基化过程

8 羰基化过程

化工工艺学

随着一碳化学的发展,有一氧化碳参与 的反应类型逐渐增多,通常将在过渡金 属配合物(主要是羰基配合物)催化剂存在 下,有机化合物分子中引入羰基的反应 均归入羰化反应的范围,其中主要有两 大类。
化工工艺学

过渡金属络合物(主要是羰基化合物)
催化剂下,有机化合物引入羰基。

均相反应,反应条件温和,选择性好。

(4)不对称合成生Fra bibliotek单一对映体的醛
化工工艺学
2.甲醇的羰化反应
(1)合成醋酸 孟山都法(Monsanto acetic acid process)

(2)合成醋酐
化工工艺学

(3)合成甲酸

(4)合成草酸酯、碳酸二甲酯、乙二醇
化工工艺学
8.2羰基化反应的理论基础

在催化反应中,凡催化剂以配合物的 形式与反应分子配位使其活化,反应分 子在配合物体内进行反应形成产物,产 物自配合体中解配,最后催化剂还原, 这样的催化剂称为配位(络合)催化剂,这 样的催化过程被称之为配位(络合)催化过 程。羰基合成反应是典型的配位催化反 应。
化工工艺学
b.在碱存在下缩合为辛烯醛
c.
化工工艺学
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
100-110℃ b.压力
1.8MPa
c.原料配比
H2 ↑ ,丙烯↑ ,丙烷↑ ,原料损失↑ ∴ 控制H2和丙烯的量

压力
PCO ↑ ,r ↓ 总压不变: 钴: PCO ↑ ,正/异↑ 铑: PCO ↑ ,正/异↓ PH2 ↑ ,r ↑ ,正/异↑

第8章 羰基化过程

第8章 羰基化过程
工业上应用:钴和铑
配位体: CO基团--HM (CO)m 改变配位体影响整个配位化合物的电子结构和空 间结构
配位体改性:大多是第V主族元素的三价化合物。 提供孤对电子与配合物的中心原子 配位。
HM(CO)m+L→HM(CO)m-1L+CO HM(CO)m-1L+L→HM(CO)m-2L2+CO HM(CO)m-2L2+L→HM(CO)m-3L3+CO
艺条件促进主反应
(3)催化剂
①羰基钴
2Co + 8CO
Co2(CO)8
H2 2HCo(CO)4
催化剂稳定,必须保持足够高的CO 分压
T ↑ ,催化剂稳定所需PCO ↑ 催化剂↑ ,催化剂稳定所需PCO ↑
T( ℃) 20 150 150
PCO(MPa) 0.05 4 8
催化剂用量 0.2% 0.2% 0.9%
采用水溶液膦配位体改性的水溶性铑膦催化剂
8.2 烯烃的氢甲酰化
1.化学原理
(1)主、副反应(丙烯)
主: CH3CH=CH2 + H2 + CO 副: a.异构醛
b.加氢生成丙烷
CH3CH2CH2CHO
平行反应
c.醛加氢生成醇、缩醛--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化剂和工
催化剂:以过渡金属M为中心的羰基氢化物 HxMy(CO)zLn
羰基合成催化剂评价
活性: 单位金属浓度在单位时间内催化产生的目 的产物量
选择性:化学选择性 区域选择性(醛基的位置--正构醛和 异构醛的摩尔比) 对映体选择性(不对称合成)
中心原子

丙烯羰基化反应合成丁醛工艺流程

丙烯羰基化反应合成丁醛工艺流程

丙烯羰基化反应合成丁醛工艺流程1.首先将丙烯和一定量的一氧化碳通入反应釜中。

First, propylene and a certain amount of carbon monoxide are introduced into the reactor.2.然后加入催化剂,催化剂可选择硫或者钨。

Then add a catalyst, which can be sulfur or tungsten.3.反应釜中不断搅拌并加热至适当温度。

The reactor is constantly stirred and heated to the appropriate temperature.4.反应过程中可以同时加入溶剂如甲醇或乙醇,以促进反应进行。

During the reaction, solvents such as methanol or ethanol can be added to facilitate the reaction.5.反应进行时,可以通过监测反应产物来控制反应时间和温度。

During the reaction, the reaction time and temperature can be controlled by monitoring the reaction products.6.当反应完成后,将反应混合物经过冷却,使得产物沉淀。

After the reaction is completed, the reaction mixture is cooled to allow the product to precipitate.7.过滤产物并洗涤,得到初步的丁醛产物。

Filter the product and wash it to obtain the initial butyraldehyde product.8.然后通过蒸馏、结晶等方法对丁醛产品进行纯化。

The butyraldehyde product is then purified by distillation, crystallization, etc.9.最终得到高纯度的丁醛作为最终产品。

羰基化过程——精选推荐

羰基化过程——精选推荐

羰基化过程第⼋章羰基化过程8.3 甲醇羰基化合成醋酸1.醋酸的⽤途:醋酸是重要的有机原料,主要⽤于⽣产醋酸⼄烯、醋酐、对苯⼆甲酸、聚⼄烯醇、醋酸酯、氯⼄酸、醋酸纤维素等。

醋酸也⽤于医药、农药、染料、涂料、合成纤维、塑料和黏合剂等⾏业。

⼯业上醋酸的⽣产⽅法有多种,但以甲醇为原料羰基合成醋酸⼯艺,不但原料价廉易得,⽽且⽣成醋酸的选择性⾼达99%以上,基本上⽆副产物;投资省,⽣产费⽤低,相对⼄醛氧化法有明显的优势。

8.3.1 甲醇羰化反应合成醋酸的基本原理甲醇羰化反应合成醋酸主要有BASF⾼压法与孟⼭都低压法,⼆种⽅法的化学原理基本相同,反应过程⼤同⼩异。

8.3.1.1 ⾼压法甲醇羰化反应合成醋酸基本原理BAsF⾼压法采⽤钴碘催化循环,过程如图所⽰。

整个催化反应⽅程式如下:Co2(CO)8(催化剂)CH3COOH + HI HCo(CO)4CH3I + H2O(络合物1)CHCOI (络合物5) CH3(络合物2)+ HICH3COCo(CO)4CH3COCo(CO)4(络合物4)(络合物3)对应反应式见P380(8-22)-(8-29).上述反应中,⾸先是Co2(CO)8(催化剂原位)与H2O +CO反应得到HCo(CO)4 (络合物1),CH3OH与HI反应得到CH3I(碘甲烷),CH3I(碘甲烷)⼜与HCo(CO)4 (络合物1)反应得到CH3Co(CO)4(络合物2)+ HI,HI完成⼀个循环。

CH3Co(CO)4(络合物2)与H2O反应转化为CH3COCo(CO)4(络合物3), CH3COCo(CO)4(络合物3)与CO反应得到CH3COCo(CO)4络合物4), (络合物4)与HI反应得到(络合物5), (络合物5)与H2O反应的到CH3COOH + HCo(CO)4 +HI,HI完成了另⼀个循环, HCo(CO)4(络合物1)也完成了⼀个循环.上述⼀系列复杂的反应过程要求在较⾼的温度下才能保持合理反应速率,⽽为了在较⾼温度下稳定[Co(CO)4]-(络合物1)]配位化合物,必须提⾼⼀氧化碳分压,从⽽决定了⾼压法⽣产⼯艺的苛刻反应条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

160~200 5~10 0.6 明显 醇/醛 8~9∶1
90~110 1~2 0.01-0.1 低 醛 12~15∶1
(5)烯烃结构的影响
①对反应速度影响 a.双键位置与反应速度密切相关,直链α –烯烃反应 最快 b.支链降低反应速度 ②对产物影响 a.环戊烯、环己烯反应无异构醛生成 b.双键位置对正/异比无影响 c.带支链:醛基加到α -碳原子
8.2 烯烃的氢甲酰化 1.化学原理
(1)主、副反应(丙烯) 主: 副:a.异构醛
b.加氢生成丙烷 பைடு நூலகம்.醛加氢生成醇--连串反应
平行反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化 剂和工艺条件促进主反应

(3)催化剂
①羰基钴
放空 净化 异丁醛 反应 净化 气液分离器
合成气
丙烯
正丁醛
丙烯低压氢甲酰化合成正丁醛流程
Ruhr/RP法低压合成丁醛流程
Ruhr/RP法低压合成丁醛流程
(3)反应器
不锈钢釜式反应器
搅拌器、冷却装置、气体分布器
(4)低压法特点
优点: 反应条件温和 副反应少,原料消耗少 催化剂易分离回收 污染少 缺点: 铑资源太少 配位体三苯基膦有毒
3.缩合与加氢
自学 P407
4.进展
(1)催化剂的均相固相化
(2)非铑催化剂
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
烯烃氢甲酰化产物及用途

(2)氢羧基化(与CO和H2O反应)

(3)氢酯化(与CO和ROH反应)

(4)不对称合成
生成单一对映体的醛
3.理论基础
配位催化 催化剂:HxMy(CO)zLn 中心原子 配体 相
常见膦配体
2.甲醇的羰化反应
烯烃结构与氢甲酰化反应速率的关系
(6)影响反应的因素

温度
T↑ ,r ↑ ,正/异↓ ,重组分及醇↑ T不宜过高,钴: 140-180℃ ,铑:100-110 ℃

压力
PCO ↑ ,r ↓ 总压不变: 钴: PCO ↑ ,正/异↑ 铑: PCO ↑ ,正/异↓ PH2 ↑ ,r ↑ ,正/异↑


(4)反应机理与动力学
P 391-394
膦羰基铑缔合催化过程
膦羰基铑解离催化过程
三种氢甲酰化催化剂性能比较
催化剂 温度,℃ 压力,MPa 催化剂浓度,% 生成烷烃量 产物 正/异比
HCo(CO)4 HCo(CO)3P(n-C4H9)3 HRh(CO)(PPh3)3
140~180 20~30 0.1-1.0 低 醛/醇 3~4∶1
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑

缺点:正异构醛比例低,催化剂热稳定性差
羰基钴催化过程
②膦羰基钴
配位基膦(PR3) 特点:


a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.副产物少 e.适应性差
③膦羰基铑
选择性好,活性高,异构化性能高 催化剂稳定,可在较低压力下操作
溶剂
a.溶解催化剂 b.反应在气相中进行 c.移走反应热
溶剂对氢甲酰化速率/选择性的影响
8.3 丙烯氢甲酰化合成丁、辛醇
1.丁、辛醇用途及合成路线 (1)用途 (2)合成路线
①乙烯为原料,乙醛缩合法 ②氢甲酰化法 a. 液相法 催化剂:羰基钴-高压 膦羰基铑-低压
b.在碱存在下缩合为辛烯醛
c.
丙烯高压氢甲酰化合成正丁醛
①羰基钴
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑

T( ℃)
PCO(MPa)
催化剂用量
20 0.05 0.2% 150 4 0.2% 150 8 0.9% 缺点:正异构醛比例低,催化剂热稳定性差
丙烯高压氢甲酰化合成正丁醛流程
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
(1)合成醋酸 (2)合成醋酐 (3)合成甲酸 (4)合成草酸酯、碳酸二甲酯、乙二醇

甲醇羰化制醋酸
1.化学原理 (1)主副反应 主: CH3OH + CO CH3COOH 副: 酯 二甲醚 CO + H2O CO2 + H2

高压法

反应基本过程
甲醇羰基化高压法制乙酸工艺流程
第八章 羰基化过程

过渡金属络合物(主要是羰基化合物)催化剂 下,有机化合物引入羰基。


均相反应,反应条件温和,选择性好。
中心原子: 钴(羰基钴) 铑(羰基铑)
主要配体: 三价膦 ( PR3 )
8.1 反应类型
1.不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个氢和 一个甲酰基(-HCHO) ①烯烃的氢甲酰化
低压法

活性组分 [Rh+(CO)2I2]助剂:HI、CH3I、I2
甲醇羰基化低压法制乙酸工艺流程
(3)工艺流程
反应 精制 轻组分回收 催化剂制备与再生

优缺点
优点: (1)原料多样化 (2)S和X高 (3)催化系统稳定 (4)反应和精制系统合为一体 (5)Ni-Mo合金耐腐蚀 (6)计算机控制保持最佳 (7)副产物少 (8)操作安全可靠 缺点:铑资源少,设备昂贵
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
100-110℃ b.压力
1.8MPa
c.原料配比
H2 ↑ ,丙烯↑ ,丙烷↑ ,原料损失↑ ∴ 控制H2和丙烯的量
d.催化剂
HRh(Co)x(PPh3)y x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
(2)工艺流程
相关文档
最新文档