8羰基合成新详解
最新8羰基化过程汇总

8.3 烯烃的氢甲酰化 一.化学原理
(1)主、副反应(丙烯) 主:
副:a.异构醛
b.加氢生成丙烷
平行反应
c.醛加氢生成醇--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化 剂和工艺条件促进主反应
d.催化剂 HRh(Co)x(PPh3)y
x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
羰基化反应。
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下:
反应速度常数为3.5×106e-14.7/RTL/mol·s,式中活化 能的单位是kJ/mol。Leabharlann (3)催化剂①羰基钴
T ↑ ,PCO ↑ 催化剂↑ ,PCO ↑
缺点:正异构醛比例低,催化剂热稳定性差
②膦羰基钴
配位基膦(PR3) 特点:
a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.副产物少 e.适应性差
③膦羰基铑
选择性好,活性高,异构化性能高 催化剂稳定,可在较低压力下操作
(3)氢酯化(与CO和ROH反应)
(4)不对称合成
生成单一对映体的醛 某些结构的烯烃进行羰基合成反应能生成含有对映 异构体的醛。若使用特殊的催化剂,使生成的两种 对映体含量不完全相等,理想情况下仅生成某种单 一对映体,这样的反应称作不对称催化氢甲酰化反 应。
羰基化的定义

羰基化是指有机化合物中存在羰基(C=O)的反应或转化过程。
羰基是由碳和氧组成的官能团,常见于各种有机化合物中,如醛、酮、酸酐等。
羰基化过程可以是化学反应的一部分,其中羰基发生改变,通常与其他分子中的特定官能团进行反应。
以下是一些羰基化的例子:
1. 醛和酮的还原:醛和酮中的羰基可以被还原成相应的醇。
这种还原通常涉及氢气和催化剂,如氢气和铂催化剂。
2. 醇的氧化:醇中的羟基(-OH)可以被氧化为羰基,形成醛或酮。
这可以通过氧气或氧化剂来实现。
3. 酰基化反应:酸酐或酸氯等羰基化合物可以与其他化合物中的醇或胺反应,形成酯或酰胺。
4. 卡宾反应:卡宾是一种具有未成对电子对的碳的中间体,它可以与羰基化合物反应,形成新的有机化合物。
这些只是羰基化反应的一些例子,实际上,这一领域涉及到多种不同的反应和转化。
具体的羰基化定义可能会根据上下文和化学反应的类型而有所不同。
8 羰基化过程

化工工艺学
随着一碳化学的发展,有一氧化碳参与 的反应类型逐渐增多,通常将在过渡金 属配合物(主要是羰基配合物)催化剂存在 下,有机化合物分子中引入羰基的反应 均归入羰化反应的范围,其中主要有两 大类。
化工工艺学
过渡金属络合物(主要是羰基化合物)
催化剂下,有机化合物引入羰基。
均相反应,反应条件温和,选择性好。
(4)不对称合成生Fra bibliotek单一对映体的醛
化工工艺学
2.甲醇的羰化反应
(1)合成醋酸 孟山都法(Monsanto acetic acid process)
(2)合成醋酐
化工工艺学
(3)合成甲酸
(4)合成草酸酯、碳酸二甲酯、乙二醇
化工工艺学
8.2羰基化反应的理论基础
在催化反应中,凡催化剂以配合物的 形式与反应分子配位使其活化,反应分 子在配合物体内进行反应形成产物,产 物自配合体中解配,最后催化剂还原, 这样的催化剂称为配位(络合)催化剂,这 样的催化过程被称之为配位(络合)催化过 程。羰基合成反应是典型的配位催化反 应。
化工工艺学
b.在碱存在下缩合为辛烯醛
c.
化工工艺学
2.丙烯低压氢甲酰化合成正丁醛
(1)反应条件
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
100-110℃ b.压力
1.8MPa
c.原料配比
H2 ↑ ,丙烯↑ ,丙烷↑ ,原料损失↑ ∴ 控制H2和丙烯的量
压力
PCO ↑ ,r ↓ 总压不变: 钴: PCO ↑ ,正/异↑ 铑: PCO ↑ ,正/异↓ PH2 ↑ ,r ↑ ,正/异↑
8 醛、酮、醌

醛羰基中的氢原子直接连在羰基碳上,它表现出 与其它碳氢键上氢原子不同的性质。在化学性质 上最大的区别是醛基氢原子非常容易被氧化,而 其它碳氢键上的氢原子较难被氧化。 醛酮C=O双键的化学反应,主要有: (1) 羰基上 的反应; (2) 羰基α-H的反应; (3) 醛基氢的 反应。
3.1 羰基上的加成反应
脂肪族亚胺不稳定,易分解为原料,而芳香族亚胺稳定 H+对反应有两种作用,①活化作用:与醛酮形成 RR’C=O+H,增大羰基碳的正电性,有利于含氮亲核试剂 进攻,且H+催化脱水。②钝化作用:H+与NH2-G形成 +NH -G,降低含氮亲核试剂的亲核性,不利于反应。因 3 此,反应体系需要有一个最适宜pH值。不同醛酮化合物 与不同含氮化合物的反应,所需的pH值不同。例如,由 丙酮制丙酮肟,pH=4.5最合适。 醛酮与氨衍生物的加成反应在有机分析中很有用,肟、苯 腙及缩氨脲绝大多数都是白色固体(与2,4-二硝基苯肼 生成的2,4-二硝基苯腙为金黄色固体),具有固定的结 晶形状和熔点,通过测定熔点就可确定原来的醛、酮;另 外,肟、腙、苯腙及缩氨脲在稀酸作用下,又能够水解为 原来的醛、酮,因而又可利用这种性质来分离和提纯醛酮。
CH 3CHO + 2C2H5OH 无水CaCl 2 CH 3CH(OC 2H5)2 + H2O
乙醛缩二乙醇
分子量大的醛与醇反应需要加苯蒸馏,把生成的 水带出,使平衡向右移动,提高缩醛产率。
酮与醇难形成类似的半缩酮或缩酮,但用乙二醇,丙三 醇或原甲酸三乙酯代替醇,可以形成缩酮。
C6H5CH2COCH 3 + HC(OC 2H5)3
缩醛和缩酮较稳定,不与碱反应,也不与RMgX 和金属氢化物反应,但在稀酸中加热,变为原来 的醛酮,缩醛 ( 酮 ) 这一性质在有机合成上很有 用。通过生成缩醛和缩酮,可使羰基在化学反应 中不被破坏而被保护起来。对于多官能团分子进 行某些反应,如果不需羰基发生反应,但羰基又 干扰反应进行,可先使之变为缩醛或缩酮,在反 应结束后,再酸性水解,恢复原来的羰基。
8.羰基化过程

2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下: 反应速度常数为3.5×106e-14.7/RTL/mol· s,式中活化 能的单位是kJ/mol。
二 丙烯氢甲酰化合成丁、辛醇
1.丁、辛醇用途及合成路线 (1)用途 (2)合成路线
①乙烯为原料,乙醛缩合法 ②氢甲酰化法 a. 液相法 催化剂:羰基钴-高压 膦羰基铑-低压
b.在碱存在下缩合为辛烯醛
c.
2.丙烯低压氢甲酰化合成正丁醛 (1)反应条件
a. 温度
T↑ ,r丁醛↑ ,r副↑ ,催化剂失活速度↑ T↓ ,催化剂活性低,用量大
一.甲醇羰化反应合成醋酸的基本原理
1 高压法甲醇羰化反应合成醋酸基本原理
BASF高压法采用钴碘催化循环,过程如下图所示。
要求温度较高,为了在较高温度下稳定[Co(CO)4]-络合物,必须提 高CO分压,为了提高高压羰基化法的经济竟争力,BASF及Shell公 司在钴、碘催化系统中加入Pd、Pt、Ir、Ru以及Cu的盐类或络合物, 实现了在较低温度80~200℃、较低的压力7.1~30.4MPa下进行甲醇 羰基化反应。
烯烃与合成气(CO/H2)或一定配比的一氧化碳及氢 气在过渡金属配合物的催化作用下发生加成反应,生 成比原料烯烃多一个碳原子的醛。这个反应被命名为 羰基合成 (oxo synthesis),也称作Rö elen反应。 过渡金属络合物(主要是羰基化合物)催化剂下,有 机化合物引入羰基。 均相反应,反应条件温和,选择性好。
羰基化学合成的新技术分析及应用

羰基化学合成的新技术分析及应用王㊀鹏,汤永飞摘㊀要:化工技术在工业体系中发挥的作用越来越大,很多化工产品在社会中的需求量较大,其中羰基化学品及其合成物是重要的化学产品㊂首先,分析了羰基化学合成技术的基本概念,其次,阐述了羰基化学合成的具体新技术,并对羰基化学合成技术的相关应用情况进行了分析㊂关键词:羰基;化学合成;新技术一㊁引言羰基化学品在化工体系中占有重要的地位,如对羰基苯甲醛是一种较为精细化的化工品㊂在该化工品中,羰基和醛基较为活泼,容易发生化学反应,并可以用来合成其他多种类型的化学产品㊂文章系统分析了丁辛醇羰基合成催化剂化学再生方法㊁羧酸及其衍生物的合成等羰基化学合成技术,及其在实际应用中所具备的优势㊂二㊁羰基化学合成羰基化学合成是化工系统中常采用的方法,丁醇和辛醇可以在同一套装置中用羟基合成的方法生产,故习惯称为丁辛醇㊂丁辛醇是合成精细化工产品的重要原料,主要用于生产增塑剂㊁溶剂㊁脱水剂㊁消泡剂㊁分散剂㊁浮选剂㊁石油添加剂及合成香料等㊂中国丁辛醇产业已处产能过剩边缘,行业饱和度整体处于较高水平,基本实现自给自足格局㊂通过羰基化学合成反应,研发上述化学产品,在实际应用中具有重要意义㊂三㊁羰基化学合成的新技术分析(一)丁辛醇羰基合成催化剂化学再生方法对于丁辛醇羰基合成催化剂化学再生方法,它包括以下步骤:第一,除掉丁辛醇羰基合成催化剂母液中游离状态的S2-和Cl-;第二,除掉丁辛醇羰基合成催化剂母液中杂质与贵金属络合形成的贵金属络合物中的杂质;第三,然后将再生剂C加入催化剂母液中和过量的再生剂B,再生剂C为有机酸;第四,用再生剂A反复洗涤丁辛醇羰基合成催化剂母液数次,直至洗掉母液中残余的再生剂B和再生剂C为止㊂采用这种方法降低了丁辛醇羰基合成催化剂中金属离子Fe3+,Ne2+和S2-等金属离子,降低了丁辛醇羰基合成催化剂中永久性中毒的离子,激发了催化活性㊂在丁辛醇羰基合成催化剂化学再生方法中,在非生产状态下的丁辛醇羰基合成反应工艺条件下,将再生剂A与丁辛醇羰基合成催化剂母液均匀混合,对存在于丁辛醇羰基合成催化剂母液中的游离状态的S2-和Cl-进行洗涤,使催化剂母液中产生丁辛醇羰基合成催化剂相和再生剂A相分层,S2-和Cl-转移到再生剂A相中,保留丁辛醇羰基合成催化剂相,排掉再生剂A相,再生剂A相为脱盐水㊂(二)β-取代羧酸及其衍生物的合成从现有的报道来看,构建重要的有机合成中间体与众多药物活性分子的核心骨架的β-羰基取代的羰基类化合物利用脱羧-Aldol反应来实现㊂但是,由于对该类反应认识的局限,存在底物结构受限㊁产物收率很低㊁对映选择性差等缺陷㊂在此基础上,设计开发新的底物结构,实现一类结构新颖的β羰基酸类化合物的合成具有重要的理论研究意义和实际应用价值㊂此外,现有的报道具有诸多局限,构建高立体选择性的β羰基酸类化合物以及含多官能团的β羰基酸类化合物的报道极少㊂基于此,进一步了解脱羧加成反应的性质,拓展该反应类型和应用,为β羰基酸骨架结构分子提供了新的技术和途径㊂为此可以采用一种β羰基酸类化合物的合成方法,该方法操作简单㊁产品质量好,具有较高的推广及应用价值㊂在该方法的技术方案中,以α,β不饱和酮酸酯类化合物与丙二酸为原料,在有机溶剂A中,加入金属与手性配体以摩尔比1ʒ1 1.5混合反应10 120分钟得到催化剂,在0 60ħ温度的条件下直接充分反应3 120小时,反应完毕后经过分离纯化得到所述脱羧aldol加成的β羰基酸类化合物㊂四㊁羰基化学合成新技术的应用羰基化学合成新技术在实际中的应用较为广泛,丁辛醇羰基合成装置中的催化剂母液从原始投料运行后,随着催化剂母液的长时间运行,催化活性会慢慢降低,同时由于反应原料(合成气㊁丙烯)㊁溶剂(丁醛)带入的一些毒剂㊁抑制剂(如S㊁ci等),会造成催化活性迅速降低㊂对毒剂而言,生产工艺中对原料(合成气㊁丙烯)中的有毒成分都有严格的控制指标,且丁辛醇羰基合成反应工艺对原料设计了净化装置,实行严格的脱毒工艺,催化剂的活性只会缓慢下降㊂抑制剂能引起催化剂活性降低,但这种降低不是永久性的㊂在反应系统中的主要抑制剂包括:羧酸(丁酸)㊁乙基丙基丙烯醛(EPA)㊁丙基二苯基膦(ropp)㊁丁二烯/丙二烯等㊂故在实际应用中可以采用一种从烯烃淡基化催化剂废液中回收金属铑的方法㊂该方法采用减压蒸馏㊁蒸发和灰化的方法对金属铑进行回收,特别对于低浓度铑废液中铑的回收效果较为理想㊂回收铑粉后,再合成铑配合物催化剂㊂该方法是基于铑配合物催化剂废液中铑粉的再回收,工艺流程长,铑粉在整个回收过程中损失大㊂通过化学合成反应,最终合成所需要的产品,满足实际应用需求㊂五㊁结语随着羰基化学品合成技术水平的提高,近年来,在化工生产实际中也采用了很多羰基化学合成新技术,对于推动羰基化学合成技术水平的提高具有重要的一样㊂文章所分析的羰基化学合成技术,在实际的化工生产中可以加以采用㊂参考文献:[1]付双滨,秦玉升,乔立军,等.高伯羰基含量聚(碳酸酯-醚)多元醇的制备[J].高分子学报,2019,v.50(4):20-25.[2]罗米娜,朱鹏飞,陈馥,等.2-羰基-1-萘甲醛缩邻苯二胺席夫碱及其铜(II)配合物的合成及组成测定:介绍一个大学化学综合实验[J].大学化学,2019,35(4):65-67.[3]姚坤,刘浩,袁乾家,等.钯催化三组分烯丙基串联反应:化学专一性合成N-酰亚甲基-2-吡啶酮[J].化学学报,2019(10):45-47.作者简介:王鹏,汤永飞,南京诚志清洁能源有限公司㊂491。
第8章 羰基化过程

配位体: CO基团--HM (CO)m 改变配位体影响整个配位化合物的电子结构和空 间结构
配位体改性:大多是第V主族元素的三价化合物。 提供孤对电子与配合物的中心原子 配位。
HM(CO)m+L→HM(CO)m-1L+CO HM(CO)m-1L+L→HM(CO)m-2L2+CO HM(CO)m-2L2+L→HM(CO)m-3L3+CO
艺条件促进主反应
(3)催化剂
①羰基钴
2Co + 8CO
Co2(CO)8
H2 2HCo(CO)4
催化剂稳定,必须保持足够高的CO 分压
T ↑ ,催化剂稳定所需PCO ↑ 催化剂↑ ,催化剂稳定所需PCO ↑
T( ℃) 20 150 150
PCO(MPa) 0.05 4 8
催化剂用量 0.2% 0.2% 0.9%
采用水溶液膦配位体改性的水溶性铑膦催化剂
8.2 烯烃的氢甲酰化
1.化学原理
(1)主、副反应(丙烯)
主: CH3CH=CH2 + H2 + CO 副: a.异构醛
b.加氢生成丙烷
CH3CH2CH2CHO
平行反应
c.醛加氢生成醇、缩醛--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化剂和工
催化剂:以过渡金属M为中心的羰基氢化物 HxMy(CO)zLn
羰基合成催化剂评价
活性: 单位金属浓度在单位时间内催化产生的目 的产物量
选择性:化学选择性 区域选择性(醛基的位置--正构醛和 异构醛的摩尔比) 对映体选择性(不对称合成)
中心原子
简述羰基法的基本原理

简述羰基法的基本原理羰基法是有机合成中常用的一种反应方法。
它的基本原理是利用羰基化合物(包括酮和醛)与亲核试剂发生加成或取代反应,从而得到新的有机化合物。
羰基化合物是指含有碳氧双键的有机化合物,最常见的就是酮和醛。
酮的结构中有两个碳原子与氧原子通过双键相连,而醛则只有一个碳原子与氧原子相连。
这种碳氧双键的存在使得羰基化合物具有一定的活性,容易与其他化合物发生反应。
羰基法的基本原理是利用亲核试剂的亲核性,通过攻击羰基化合物的羰基碳原子,从而打开碳氧双键,形成新的化学键。
亲核试剂可以是含有活泼氢原子的化合物,如醇、胺等;也可以是含有亲核性的阴离子,如氢氧根离子、碱金属离子等。
在羰基法中,亲核试剂与羰基化合物发生反应后,羰基碳原子上的氧原子会成为一个亲核试剂的官能团,而亲核试剂的官能团则会连接到羰基碳原子上,形成一个新的化学键。
这个过程通常需要在适当的温度和溶剂条件下进行。
羰基法在有机合成中有着广泛的应用。
通过选择不同的亲核试剂,可以合成不同类型的有机化合物。
例如,醛和胺反应可以得到相应的胺化合物;酮和醇反应可以得到醚化合物;酮和硫醇反应可以得到硫醚化合物等等。
羰基法的优点在于反应条件温和,反应选择性高,产率较高。
同时,羰基法也存在一些局限性,例如需要选择合适的亲核试剂和反应条件,需要考虑立体化学效应等。
此外,羰基法还可以和其他反应方法(如还原、氧化、羟醛化等)结合使用,从而实现更复杂的有机合成。
羰基法是一种常用的有机合成方法,基于羰基化合物与亲核试剂的加成或取代反应。
通过合理选择亲核试剂和反应条件,可以合成多样化的有机化合物。
在有机合成中,羰基法起着重要的作用,为合成出具有特定结构和功能的化合物提供了可行的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1 概述
主要内容:
1、基本概念(重点) 2、羰基合成反应类型(重点) 3、羰基合成反应催化剂
基本概念
1、羰基合成定义 :
烯烃与合成气(CO/H 2)或一定配比的一氧化碳 及氢气在过渡金属配合物的催化作用下发生加成反应, 生成比原料烯烃多一个碳原子的醛。这个反应被命名 为羰基合成 (oxo synthesis) ,也称作R? elen反应(即罗 兰反应)。
P(OR)3
3、各类催化剂的特点
①羰基钴催化剂 羰基钴催化剂的活性组分、热稳定性
差、容易分解;异构化活性高
P(OR)3
3、各类催化剂的特点
②膦羰基钴催化剂 热稳定性增加,对直链产物的选择性
增高,加氢的活性较高,副产物少, 不足:活性降低,对烯烃的氢甲酰化
反应的适应性较差。
P(OR)3
3、各类催化剂的特点
基本概念
3、羰基化反应(亦称羰化反应) 随着一碳化学的发展,有一氧化碳参与的反应类
型逐渐增多,通常将在过渡金属络合物(主要是羰基络 合物)催化剂存在下,有机化合物分子中引入 羰基 (>C=O) 的反应均归入羰化反应的范围。
羰基合成的重要性
①羰基合成的初级产品是醛。 在有机合成中醛是最活 泼的基团之一,可进行加氢成醇、氧化成酸、氨化成 胺以及歧化、缩合、缩醛化等一系列反应; ②原料烯烃的多种多样和醇、酸、胺等产物的后续加 工,由此构成 以羰基合成为核心的内容十分丰富的产 品网络,应用领域涉及化工领域的多个方面。
(2)烯烃衍生物的氢甲酰化
不饱和醇、醛、酯、醚,含卤素、含氮化合物等中的 双键都能进行羰基合成反应,但官能团不能参加反应。
HO
?
CH 2
?
CH
?
CH 2
?
CO
?
H2
?
HOCH2 ? CH2 ? CH2CHO
HO ? CH2 ? CH ? CHO? H2 ? HOCH2 ? CH2 ? CH2 ? CH2OH
(3)不饱和化合物的氢羧基化
CH2
?
CH 2
?
CO ?
H2O
?
CH3CH3COOH
(4)不饱和化合物氢酯化
RCH ? CH2 ? CO? R?OH ? RCH2CH2COOR?
(5)不对称催化合成
生成单一对映体的醛 某些结构的烯烃进行羰基合成反应能生成含有 对 映异构体的醛。理想情况下仅生成某种单一对映体, 这样的反应称作不对称催化氢甲酰化反应。
(COOCH 3) 2 + 2H2O ? (COOH) 2+ 2CH 3OH 醋酸
(COOCH 3) 2 + 4H2 ? (CH 2OH) 2 + 2 CH 3OH 乙二醇
参与羰化反应的CO 、H2、CH 3OH 等属于碳一化工产品, 羰基化反应是碳一化工开发下游产品的重要手段
8.1.2 羰基合成反应催化剂
8.1.1 羰基化反应类型
羰基化反应主要类型: 不饱和化合物的羰基化反应和甲醇的羰基化反应。 8.1.1.1 不饱和化合物的羰基化反应 (1)烯烃的氢甲酰化
制备比原料烯烃多一个碳原子的饱和醛或醇 例如 CH 2=CH 2+CO+H 2→CH 3CH 2CHO → CH 3CH 2CH 2OH
HO ? CH2 ? CH ? CHO ? H 2 ? HOCH2 ? CH 2 ? CH 2 ? CH2OH
第8章 羰基合成
8.1.概述 8.2.甲醇低压羰基化合成醋酸 8.3.丙烯羰基化合成丁辛醇
第8章 羰基合成
基本要求 1、理解羰基合成的定义、类型; 2、掌握羰基合成反应催化剂结构、类型; 3、了解醋酸和丁辛醇主要生产方法; 4、掌握甲醇低压羰基化反应原理、工艺流程 及其优缺点,丙烯羰基化合成丁辛醇原理、催 化剂、工艺条件。
主要内容:
1、催化剂结构与类型 2、催化剂的改性 3、催化剂的类型及特点
8.1.2 羰基合成反应催化剂
1、催化剂结构与类型 (1)典型结构:
以过渡金属( M)为中心原子的羰基氢化物 通式: HxMy(CO) zLn,其中(M)为中心原子金属 和(L)为配位体。
8.1.2 羰基合成反应催化剂
2、催化剂的改性: 定义:过渡金属的羰基氢化物中一个或 几个CO 基团被其他配位体L取代,从而 改变催化剂性能; 改性剂:引入的新配体
反应式 RCH=CH2十CO+H2 →RCH2CH2CHO+RCH(CHO)CH3
烯烃羰基化
基本概念
2、氢甲酰化反应 反应式: RCH=CH2十CO+H2 →RCH2CH2CHO+RCH(CHO)CH3
上式反应可以看作烯烃双键两端的C原子上分别加 上一个氢和一个甲酰基(-CHO) ,因此又称作氢甲酰 化反应。
(3) 甲醇羰化合成甲酸
CH 3 OH ? CO ? HCOOCH 3
HCOOCH3 ? CH3OH ? HCOOH
8.1.1.2 甲醇的羰化反应
(4) 甲醇羰化氧化合成碳酸二甲酯、草酸二甲酯或乙二醇
CH 3OH + CO + O 2 ? CO(OCH 3) 2+ H2O 碳酸二甲酯
CH 3OH + CO + O 2 ? (COOCH 3) 2+ H2O 草酸二甲酯
③膦羰基铑催化剂 选择性好,催化剂性能比较稳定,
活性比羰基氢钴高102~104倍,正/异构 醛比例也高 。 (方法:改变配位基和中心原子)
8.2 甲醇低压羰基化合成醋酸
主要内容:
1、醋酸生产方法简介 2、甲醇低压羰基化合成醋酸
(原理、工艺流程及其优缺点)
醋酸的用途
醋酸是一种重要的 基本有机化工 原料,主要 用于生产醋酸乙烯、醋酐、对苯二甲酸、聚乙 烯醇、醋酸酯、氯乙酸、醋酸纤维素等。 醋酸 广泛用于基本有机合成 、医药、农药、染料、 涂料、塑料和粘合剂等诸多工业部分,醋酸工 业发展与国民经济各部分息息相关 ,其生产与 消费也日益引起各国普遍重视。
不对称合成目前在药物合成和天然 产物全合成中都有十分重要的地位。
8.1.1.2 甲醇的羰化反应
(1) 甲醇羰化合成醋酸---孟山都法
CH 3OH ? CO ? CH 3COOH
(2) 醋酸甲酯羰化合成醋酐CH3COOCH3 ? CO ? (CH3CO)2O 醋酸甲酯可由甲醇羰化再酯化制得
CH3OH ? CO ? CH3COOH ? C?H3O?H ? CH3COOCH3
具体如下:
HM(CO) m+L? HM(CO) m-1L+CO HM(CO) m-1L+L ? HM(CO) m-2L2+CO HM(CO) m-2L+L ? HM(CO) m-3L3+CO
改性配体 大多是第 V主族元素的三价化合物。 这是由于它们 可以提供孤对电子与配合物的中心 原子配位 。其中三价膦(PR3)的改性效果最为优 越,已被工业采用。