羰基化过程

甲醇羰基化法

甲醇羰基化法 甲醇低压羰基化法的经济性集中表现在两点:其一,甲醇和一氧化碳在较低的压力就能反应,甲醇的转化率和选择性都高达99%,粗乙酸的浓度高,因此提纯简单,流程紧凑,催化剂长期运转安全可靠,排放的三废少,没有严重的污染;其二,羰基化工艺的初始原料为一氧化碳和甲醇原料来源广泛,价格低廉,不与其他化学加工争夺原料,由于是一步合成,能耗不高,因此生产成本较低。 1880年Geuther在研究甲醇与一氧化碳反应时就发现有痕量的乙酸。1925-1928年英国Celanese公司的Henry Dreyfus开始研究此反应的催化剂,反应必须在高温和高压才能进行,他们发现以银或铜为促进剂的磷酸是一种有效的催化剂。反应器的材料只有石墨或黄金作衬里时,才能经受310℃和20MPa (199atm)这样严格条件下的腐蚀.在甲醇羰基化反应中,甲醇的转化率为400,选择性约70%,试验的规模为100kg/天,但在30年代初期就停止了生产。 此后,美国、法国和德国都进行过类似的研究。1942年德国法本工业公司建设了10吨/夭规模的试验工厂,二次大战后工作重新进行,并开发了碘化镍催化体系,碘化镍比钴等许多其他金属羰基化合物具有较高的催化活性。反应条件为215℃和14MPa (138atm),反应在气相中进行,所以腐蚀问题并不严重。 BASF公司着重研究了有碘存在下的铜和钴的催化体系,开发了另一条高压羰基化工艺路线1966年美国B0rden化学公司引进BASF技术建r最高生产桃力曾达135000吨/年。BASF工艺的操作压力高达76MPa (693atm),反应器需用Hastell0yc合金钢来制造。 1966年美国孟山都化学公司开发了另一种完全不同的方法,他们最初用铑—膦一碘系催化剂,可以在较低的温度和压力时反应。应用此项工艺的总装置生产能力已达180万吨,而且远有增长的趋势。孟山都低压甲醇碳基化法开发成功后,BASF高压甲醇羰基化工艺实际上已失去工业意义。 a、高压甲醇羰基化法甲醇、一氧化碳在含水的乙酸溶液中,以羰基钴为催化剂,碘甲烷为助催化剂组成的钴一碘催化体系,反应在约250℃和70MPa (693atm)下进行。甲醇羰基化是放热反应,每公斤乙酸放热2219kJ,反应器中的热量依靠连续加进原料甲醇和一氧化碳予以吸收,反应热平衡则由甲醇原料预热器来调节。粗酸和未反应的气体从反应器顶 部排出,冷却后,膨胀降压至1.01MPa(约l0atm),粗酸送分离系统放空气经碘甲烷回收后放空。 粗酸先经脱轻塔,脱除低沸物,再脱除催化剂,脱水,精制获得99.8%的成品乙酸。以甲醇计乙酸的收率约90%,以一氧化碳计乙酸的收率为59%。副产3.5%的甲烷和4.5%的液体物料(以生成乙酸计)。 主反应和主副反应如下:

醋酸甲酯羰基合成醋酐的工艺进展

所谓羰基合成醋酐就是指醋酸甲酯与CO进行羰基合成过程。根据羰基合成所处的状态可分为液相法和气相法,反应的起始原料可以是甲醇(直接法),也可以是醋酸甲酯(间接法)。以甲醇为原料生产醋酐有两条路线,一是甲醇与醋酸先酯化,然后醋酸甲酯羰基化生产醋酐;二是醋酸甲酯羰基化生产醋酐,部分醋酐产品与甲醇反应提供原料醋酸甲酯。 液相羰化法依斯曼柯达公司采用反应蒸馏工艺制造醋酐。醋酸(含水量小于0.5%)与甲醇在塔式反应器内进行酯化反应,生成的醋酸甲酯产品直接由塔顶蒸出,用硫酸作催化剂。自羰化工序循环的醋酸进入反应蒸馏塔的上部,新鲜的由塔底部进入,两种反应物料逆向流动,酯化反应蒸发在每块板上进行。由于反应蒸馏在每个塔板上蒸发除去醋酸甲酯,这就大大促进了酯化反应,提高了转化率。原料甲醇和酯化反应生成的水与产物醋酸甲酯形成共沸物,如醋酸甲酯95%与水5%;醋酸甲酯81%与水19%(均为质量分数)。原料醋酸也是萃取剂,又可以把剩余的共沸物中的甲醇反应掉。因此产品很容易提纯。这种反应蒸

馏技术要比其它类型酯化技术先进合理,国内也有很多单位在研究。在反应区塔盘上的停留时间的选择是很重要的参数,它直接影响到萃取的效率,这些逆流塔盘可以是高效的金属丝网、泡罩塔和逆流的槽式塔盘,均具有较长的停留时间,可达到24h。产品纯度非常之高,转换率也很高,反应产物与反应物分子比较接近化学当量。反应段的温度控制在65~85℃之间、塔的操作压力为大气压,催化剂硫酸浓度为95%~98% (质量分数),在塔的萃取蒸馏段的底部进入,与醋酸的质量比为0.01,反应物的停留时间随硫酸浓度增加而增加。由于反应物是高腐蚀性的,所以塔的再沸器需要特种材料。反应蒸馏的塔顶冷凝器采用部分冷凝,冷凝液回流进塔,未冷凝的气相醋酸甲酯供给羰基化反应工序。回流比控制在1.5~1.7,回流比超过2.0时转化率会迅速下降。 反应产物与H2/CO物质的量比有密切相关,氢的比例增大,羰化产率也增大。因为H2能使[Rh(CO)2I4]-还原为具有活性的[Rh(CO) I2]-,但过高的H2浓度会增加副产物醋酸乙烯,一般原料CO中含 2 H22%~7%,可以增加催化剂的活性与寿命。在羰化工序中来自酯化工序的醋酸甲酯与等当量的碘甲烷混合进入进料罐中,用泵将催化剂复合物经进料预热器将物料温度升到180℃,然后将此液相物料从反应器(带有搅拌器)上部进入反应器,操作压力2.45MPa,反应气体(主要是CO和少量H2)由循环压缩机打循环,以保持催化剂的活性。反应转换率为75%,选择性大于95%,反应温度以循环的反应液通过废热锅炉来控制。未反应气体通过冷凝后除去冷凝液,由循环压缩机压入反应器内。反应产物经控制后进入带有夹套的闪蒸器中,闪蒸器压力降至

醋酐生产工艺介绍

醋酐生产工艺介绍 想了解醋酐生产工艺吗?今天我到好多网站上都没有找到,忽然想起好久之前注册的万客化工网,或许会有吧,没想到还真让我找到了,呼呼~~ 生产工艺 工业化的醋酐生产工艺有三种:乙醛氧化法、乙烯酮法和醋酸甲酯羰基化。 1.1 乙醛氧化法 乙醛氧化法技术来源为加拿大Sha Winigan化学公司。生产工艺如下:乙醛和氧在60℃、101 kPa或70℃、600-700kPa条件下进行氧化反应,用氧气或空气作氧化剂,以醋酸乙酯为溶剂,醋酸钴为催化剂,醋酸铜为促进剂。乙醛与氧气(过量约1%-2%)反应首先生成过氧醋酸,过氧醋酸再与乙醛反应生成醋酐和醋酸。在此条件下,乙醛转化率为95%,醋酐及醋酸产率的质量比为56:44。醋酐的总收率为70%-75%。通过改变工艺条件,可以提高醋酐的产率。反应方程式为: CH3CHO+O2→CH3COOOH; CH3COOOH+CH3CHO→CH3COOOCH(OH) CH3(单过氧醋酸酯); CH3COOOCH(OH)CH3→(CH3CO)2O+H2O; CH3COOOCH(OH)CH3→2CH3COOH。 每吨醋酐消耗乙醛1.165 t,标准状态空气2300 m3。乙醛氧化法流程简单,工艺成熟,但腐蚀严重,消耗较高,已逐渐被淘汰。在国外已被醋酸甲酯羰基化和乙烯酮法所替代。我国上海化学试剂总厂这种装置已经处于停产状态。 1.2 乙烯酮法 乙烯酮法按照原料不同又可以分为:醋酸法和丙酮法。 1.2.1 醋酸法 醋酸法技术来源为德国Wacher化学公司。生产工艺如下:第一步,醋酸在700-750℃、10-20kPa的压力及0.2%-0.3%磷酸三乙酯(按醋酸质量计)作催化剂的条件下,裂解脱水制成乙烯酮,醋酸转化率约为85%-90%,对乙烯酮的选择性(物质的量计)约为90%-95%。反应方程式为: CH3COOH→CH2=C=O+H2O+147 kJ/mol。 第二步是液体乙酸吸收乙烯酮生成醋酐,经精馏提纯制得成品醋酐,乙烯酮的转化率约100%。反应方程式为: CH3COOH+CH2=C=O→(CH3CO)2O+62.8kJ/mol。 该生产工艺是德国Wacher化学公司开发成功的,并于1936年实现工业化。现有两种生产流程: 其一,为塔式流程。用4个填料塔进行合成与分离。每吨醋酐的消耗定额为,醋酸1.35t,催化剂1.5-2kg,氨0.7-1.0kg,回收醋酸100-160kg。 其二,为液环泵流程。以液环泵为反应及吸收设备。该流程十分简单,正在取代塔式流程。每吨产品的消耗定额为,醋酸1.22 t,裂解率75%,合成收率96%。 1.2.2 丙酮法

bb有机化学第八章答案

下列化合物中与HCN加成反应最快的是 所选答案: B. CF3CH2CHO 问题2 可采用酸性高锰酸钾鉴别醛与酮 所选答案:错 问题3 下列化合物中,哪个可发生Cannizzaro反应 所选答案: D. (CH 3)3CCHO 问题4 缩醛较稳定,对氧化剂和还原剂不敏感,这是因为缩醛的结构与醚相似,性质也与醚相似 所选答案:对 问题5 在有机合成中,常用作保护醛基的反应是 所选答案: B. 醇醛缩合反应 问题6 醛酮与NaHSO3反应为亲核加成,醛的反应速度小于酮 所选答案:错 问题7 醛比酮容易发生亲核加成反应,这是因为酮有两个烷基,使羰基的碳上的电子云密度较醛的高 所选答案:错 问题8 能与Fehling 试剂作用的化合物是 所选答案: C. 苯甲醛 问题9 烯醇式结构一般不稳定,但在有些情况下受分子中其他官能团的影响,羰基化合物的烯醇 式结构可以是主要结构,而酮式结构只占少数

所选答案: 对 问题 10 不能起Cannizzaro 反应的是 所选答案: A. 苯乙醛 问题 11 只有不含α-H 的醛在浓碱性条件下才能发生Cannizzaro 反应 所选答案: 对 问题 12 能发生自身羟醛缩合反应的羰基化合物必须有α-H 所选答案: 对 问题 13 下列化合物中不能与2,4-二硝基苯肼反应的是 所选答案: C. 问题 14 能起碘仿反应的化合物是 所选答案: C. 乙醇 问题 15 可用于区别芳香醛和脂肪醛的试剂是 所选答案: C. 斐林试剂 问题 16 羰基化合物与亲核试剂发生加成反应,但是和氨的衍生物发生加成反应后容易继续发生消除反应,生成有碳氮双键的化合物 所选答案: 对 问题 17 下列化合物不能与 NaHSO3 饱和溶液反应的是

有机化学的氧化还原反应

有机化学氧化还原反应总结 一、氧化反应:有机物分子中加入O 原子或脱去H 原子的反应。 常见的氧化反应: ①醇的氧化 醇→醛 ②醛的氧化 醛→酸 ③有机物的燃烧氧化、与酸性高锰酸钾溶液的强氧化剂氧化。 ④醛类及其含醛基的有机物与新制Cu (OH )2悬浊液、银氨溶液的反应 常见的氧化剂有氧气、酸性高锰酸钾、二氧化锰、臭氧、银氨溶液和新制Cu (OH )2悬浊液 a. 能被酸性KMnO 4氧化的:烯、炔、二烯、油脂(含C==C 的)苯的同系物、酚、醛、葡萄糖等。 b. 能被银氨溶液或新制备的Cu(OH)2悬浊液氧化的:醛类、甲酸及甲酸酯、葡萄糖、麦芽糖。 1.高锰酸钾氧化 a.在稀、冷KMnO4(中性或碱性)溶液中生成邻二醇 b.在酸性高锰酸钾溶液中,继续氧化,双键位置发生断裂, 得到酮和羧酸的混合物,如: 炔烃与氧化剂(KMnO4或O3)反应,产物均为羧酸或CO2 2.臭氧化反应: CHR=CR 'R "+O3→RCH=O+R’C=OR” 3.醛的氧化:由于醛的羰基碳上有一个氢原子,所以醛比酮容易氧化,使用弱的氧化剂都能使醛氧化。利用两者氧化性能的区别,可以很迅速的鉴别醛或酮: a 费林试剂(Fehling):以酒石酸盐为络合剂的碱性氢氧化铜溶液(绿色),能与醛作用,铜被还原成红色的氧化亚铜沉淀。 坎尼扎罗(Cannizzaro )反应 不含 氢原子的醛在浓碱存在下可以发生歧化反应,即两个分子醛相互作用,其中一分子醛还原成醇,一个氧化成酸: CH 3 CH 2C=CHCH 3 CH 3 CH 3CH 2CCH 3O CH 3 COOH RCHO Ag(NH 3)2RCOONH 4O H 2NH 3HCHO HCOONa HCH 2OH

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计-文献综述

第一章文献综述 摘要: 本文介绍了生产醋酸的几种工艺方法、特点以及主要工艺技术研究进展情况。特别介绍了甲醇低压羰基合成醋酸工艺及其改进工艺。 关键词: 醋酸;工艺;综述 Abstract: Several process methods, characteristics and the progress of main technology for producing acetic acid were introduced in brief. A new method of Monsanto Acetic Acid Process as an important method for the manufacture of acetic acid by catalytic carbonylation of methanol was especially introduced. Key words: acetic acid; technics; review 前言 醋酸是一种重要的基本有机化工原料,主要用于制取醋酸乙烯单体(VCM)、醋酸纤维、醋酐、对苯二甲酸、氯乙酸、聚乙烯醇、醋酸酯及金属醋酸盐等。醋酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维。在染料、医药、农药及粘合剂、有机溶剂等方面有着广泛的用途,是近几年来发展较快的重要的有机化工产品之一。 但我国目前醋酸的产量还不能满足需求。在醋酸的生产工艺中,甲醇羰基化法应用最广,占全球总产能的60%以上,且这种趋势还在不断增长。该法虽然有许多优点,但需特别指出的是在该工艺中精制工段还存在许多诸如能耗高、转化率低等问题。为促进国内工业化生产,解决存在的技术问题。鉴于这种情况,设计一套甲醇低压羰基化合成醋酸(10万t/a)工艺装臵,以促进醋酸基础研究,有利于平衡我国对醋酸的供需矛盾。 1.1醋酸的性质 1.1.1醋酸的物理性质 乙酸又名醋酸(acetic acid)、冰醋酸(glacial acetic acid),分子式为 C2H 4O2(常简写为HAc)或CH 3 COOH,分子量为60.05。

醋酐工艺流程及特点

醋酐工艺流程及特点 1 生产工艺 工业化的醋酐生产工艺有三种:乙醛氧化法、乙烯酮法和醋酸甲酯羰基化。 1.1 乙醛氧化法 乙醛氧化法技术来源为加拿大Sha Winigan化学公司。生产工艺如下:乙醛和氧在60℃、101kPa或70℃、600-700kPa条件下进行氧化反应,用氧气或空气作氧化剂,以醋酸乙酯为溶剂,醋酸钴为催化剂,醋酸铜为促进剂。乙醛与氧气(过量约1%-2%)反应首先生成过氧醋酸,过氧醋酸再与乙醛反应生成醋酐和醋酸。在此条件下,乙醛转化率为95%,醋酐及醋酸产率的质量比为56:44。醋酐的总收率为70%-75%。通过改变工艺条件,可以提高醋酐的产率。反应方程式为: CH3CHO+O2→CH3COOOH; CH3COOOH+CH3CHO→CH3COOOCH(OH) CH3(单过氧醋酸酯); CH3COOOCH(OH)CH3→(CH3CO)2O+H2O; CH3COOOCH(OH)CH3→2CH3COOH。 每吨醋酐消耗乙醛1.165t,标准状态空气2300m3。乙醛氧化法流程简单,工艺成熟,但腐蚀严重,消耗较高,已逐渐被淘汰。在国外已被醋酸甲酯羰基化和乙烯酮法所替代。我国上海化学试剂总厂这种装置已经处于停产状态。 1.2 乙烯酮法 乙烯酮法按照原料不同又可以分为:醋酸法和丙酮法。 1.2.1 醋酸法 醋酸法技术来源为德国Wacher化学公司。生产工艺如下:第一步,醋酸在700-750℃、10-20kPa的压力及0.2%-0.3%磷酸三乙酯(按醋酸质量计)作催化剂的条件下,裂解脱水制成乙烯酮,醋酸转化率约为85%-90%,对乙烯酮的选择性(物质的量计)约为90%-95%。反应方程式为: CH3COOH→CH2=C=O+H2O+147kJ/mol。 第二步是液体乙酸吸收乙烯酮生成醋酐,经精馏提纯制得成品醋酐,乙烯酮的转化率约100%。反应方程式为:

蛋白质羰基化反应及其对肉制品的影响

蛋白质羰基化反应及其对肉制品的影响 摘要:蛋白质羰基化反应遍是蛋白氧化中最显著的化学修饰之一,受到研究人员的高度重视。研究表明蛋白羰基对肉制品品质特征如结构、功能、营养价值有一定的影响。本研究对肉和肉制品中羰基含量的变化、蛋白羰基的形成机理及对蛋白品质的影响等进行综述。 关键词:蛋白质羰基,结构,品质 蛋白质氧化是一种复杂的现象,蛋白质种类和氧化条件决定了蛋白质氧化途径和氧化产物的性质[1]。活性氧(ROS)、过渡金属、脂质氧化等都能引发蛋白质的氧化损伤。氨基酸侧链以及多肽骨架的变化会使蛋白质的理化性质发生改变,包括多肽骨架断裂、蛋白聚合、溶解度降低、功能性质丧失和蛋白质水解敏感性降低等[2]。在肉体系中,一般采用多种化学修饰评价蛋白质氧化,包括硫醇基损失[3]、色氨酸荧光强度降低[4]、羰基衍生物形成[5]和蛋白质内部及蛋白质之间的交联的形成[6]。在以上氧化评价中,蛋白羰基化合物的形成被认为是氧化蛋白最为显著的变化[7]。2,4-二硝基苯肼法测羰基含量已成为评价肉和生物体系中蛋白氧化的常用方法[8]。虽然蛋白羰基值是评价蛋白氧化的一项重要指标,但是它在食物体系中的实际影响还并不清楚。蛋白氧化对肉制品的影响一直是各种研究的热点,蛋白氧化会影响肌肉蛋白酶活性和蛋白质的功能这一观点已被广泛接受[7],研究证明氧化反应也会改变肌肉蛋白消化率、持水性以及宰后肉的嫩度[9],但目前关于蛋白羰基化反应如何诱导改变蛋白质理化性质的作用机理仍不清楚。明确特殊羰基的形成途径和机制有助于进一步理解羰基化合物对蛋白质品质的影响。Estévez等[10]采用液相色谱-电喷雾-质谱法(LC–ESI–MS) 已鉴定出氧化的肌原纤维蛋白中特殊蛋白羰基,即α-氨基脂肪半醛(AAS)和γ-谷氨酸半醛(GGS)。在研究过渡金属和酚类物质对肌原纤维蛋白羰基化反应的影响、在Strecker型反应中半醛与未氧化氨基酸的反应变化、蛋白质羰基与持水性降低之间的潜在联系等方面,采用这种精确检测方法取得一定的研究进展[4,11]。相较其它食品成分研究领域的发展高度(如脂质氧化),关于蛋白质氧化的基本知识较少。产生这种情况的原因包括:食物蛋白氧化的化学变化的高度复杂性;缺乏评价食物蛋白氧化的特定方法;认为脂质氧化和微生物腐败等生物化学现象足以解释食物体系中所有的有害变化。本文以蛋白羰基作为肉制品的氧化损伤的一种指标,对蛋白羰基的形成机理,加工储藏过程中羰基含量的变化以及以蛋白羰基化反应对肉制品的影响进行综述。 1蛋白羰基 1.1蛋白羰基的形成 羰基化反应是蛋白质发生的一种不可逆非酶修饰,其中氧化应激和其它机制也能诱导羰基分子的形成[12]。蛋白质中羰基化合物(醛和酮)形成主要是通过以下四个途径:(1)赖氨酸,苏氨酸,精氨酸和脯氨酸侧链的直接氧化[13];(2)在还原糖的作用下发生非酶糖化反应[14]; (3)通过α-酰胺化途径或在谷酰基侧链氧化情况下多肽链的氧化断裂[12];(4)与非蛋白羰基如4-羟基-2-壬醛(HNE)或丙二醛(MDA)共价结合[15] (图1)。在以上四个形成途径中,氨基酸侧链氧化是蛋白羰基形成的主要途径,也是直接氧化攻击蛋白的最有效和主要途径[16],并且这也是唯一已被证实的肉蛋白中羰基形成的机制[11]。Park 等[17]研究体外肌原纤维蛋白的

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计

年产10万吨甲醇低压羰基化合成醋酸精 制工段工艺设计 学院: 专业:姓名:指导老师:化学工程与工艺学号: 职称:

二○一四年五月

诚信承诺书 本人郑重承诺:本人承诺呈交的毕业设计《年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。 本人签名: 日期:年月日

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计 摘要 醋酸是一种重要的基本有机化工原料产品,在各行各业中有广泛的应用。本设计介绍了醋酸的一些物理性质、化学性质,用途,现状和发展状况并且对比了各种合成方法,还对工艺流程进行了简述。 本设计采用甲醇为原料,铑为催化剂,低压羰基化流程工艺。本工艺简单,原料来源广泛,污染少,安全可靠,转化率和选择率高,产品质量高。本工艺的设计重点是合成工序和精馏工序的物料衡算、热量衡算、主要设备计算和选型。同时绘制了工艺流程图和主要设备装置图。并且对于工艺进行车间布置和三废处理。 关键词: 甲醇低压羰基化物料衡算热量衡算

With an annual output of 100000 tons of low-pressure methanol carbonylation acetic acid refining process design Abstract Acetic acid is an important basic organic chemical raw material products, have been widely applied in all walks of life. This design introduces some physical properties, chemical properties, application status and development of acetic acid, and comparison of various synthetic methods, but also on the process are described. This design uses methanol as raw materials, rhodium catalyst, low-pressure carbonylation process. This simple process, wide material source, less pollution, safe and reliable, high conversion and selectivity, high product quality. The design key of this process is a material balance synthesis process and distillation process calculation, heat balance calculation, calculation and selection of main equipment. At the same time, rendering the process flow diagram and main equipment installation diagram. And workshop layout and waste treatment for process. Keywords: Methanol;Low-pressure carbonylation;material balance;heat balance

有机化学 第八章 醛酮醌

第八章 醛 酮 醌 醛、酮分子中含有官能团羰基 O >C= ,故称为羰基化合物。 羰基和两个烃基相连的化合物叫做酮,至少和一个氢原子相连的化合物叫做醛,可用通式表示为: R 1C O R 2 R C O Ar C O Ar 1 Ar 2 酮 (H) R Ar C O C O H H 醛 酮分子中的羰基称为酮基。醛分子中的 称为醛基,醛基可 以简写为—CHO ,但不能写成-COH 。 羰基化合物广泛存在于自然界,它们既是参与生物代谢过程的重要物质,如甘油醛(HOCH 2CHOHCHO )和丙酮酸 (HOOCCOCH 3)是细胞代谢作用的基本成分,又是有机合成的重要原料和中间体。 一、醛、酮的分类结构和命名 1、醛、酮的分类 根据羰基所连烃基的结构,可把醛、酮分为脂肪族、脂环族和芳香族醛、酮等几类。例如: CH 3CHO C H 3CCH 3 O O CH O C CH 3O 脂肪醛 脂肪酮 脂环酮 芳香醛 芳香酮 根据羰基所连烃基的饱和程度,可把醛、酮分为饱和与不饱和醛、酮。例如: CH 3CH 2CHO CH 2CHCHO CH 2CHCCH 3 O O 饱和醛 不饱和醛 不饱和酮 不饱和酮 根据分子中羰基的数目,可把醛、酮分为一元、二元和多元醛、酮等。例如: C O H

OHC CHO CH 3CCH 2CCH 3 O O O O O 二元醛 二元酮 多元酮 碳原子数相同的饱和一元醛、酮互为位置异构体,具有相同的通式:C n H 2n O 。 2 醛、酮的结构 羰基碳原子是sp 2杂化的,三个sp 2杂化轨道分别与氧原子和另外两个原子形成三个σ键,它们在同一平面上,键角接近120°。碳原子未杂化的p 轨道与氧原子的一个p 轨道从侧面重叠形成π键。由于羰基氧原子的电负性大于碳原子,因此双键电子云不是均匀地分布在碳和氧之间,而是偏向于氧原子,形成一个极性双键,所以醛、酮是极性较强的分子。羰基的结构如图所示。 C O 120 C O 羰基的结构示意图 3 醛、酮的命名 少数结构简单的醛、酮,可以采用普通命名法命名,即在与羰基相连的烃基名称后面加上“醛”或“酮”字。 例如: CH 3CHCHO CH 3 CH 3CCH 3 O CH 3CCH 2CH 3 O O CCH 3 异丁醛 二甲(基)酮 甲(基)乙(基)酮 甲基苯基酮 结构复杂的醛、酮通常采用系统命名法命名。选择含有羰基的最长碳链为主链,从距羰基最近的一端编号,根据主链的碳原子数称为“某醛”或“某酮”。因为醛基处在分子的一端,命名醛时可不用标明醛基的位次,但酮基的位次必须标明。主链上有取代基时,将取代基的位次和名称放在母体名称前。主链编号也可用希腊字母α、β、γ、……表示。命名不饱和醛、酮时,需标出不饱和键的位置。例如:

氧化还原反应

一、有机化学中常见的一些还原反应 1、用金属氢化物还原 常用的金属氢化物如氢化铝锂和硼氢化钠均能使醛、酮还原成醇,一般不影响碳碳双键。例如: 硼氢化钠是一种中等强度的还原剂,通常只能使醛、酮和酰氯还原,不影响共存的NO2 ,Cl, COOR和CN等基团,它对水不敏感,可在水溶液或醇中使用。在反应中,金属氢化物能提供氢负离子,向羰基碳进攻(可看成H-对羰基的亲核加成): 从理论上讲,1molNaBH4就可以使4mol一元醛、酮还原为醇。 2、用乙硼烷还原 有不饱和键也被还原: 3、麦尔外因-庞多夫-维尔莱还原 例如,在异丙醇铝和异丙醇存在下,使醛或酮还原为醇: 这是可逆反应,通过增加2-丙醇的用量或不断蒸出丙酮可使平衡向右移动,此反应的正向反应一般称为麦尔外因-庞多夫-维尔莱还原反应。它的专一性很高,一般只使羰基与醇烃基互变而不影响其他基团,故为一级醇、二级醇与醛、酮互相转变的重要方法。醇的许多金属化合物,如醇镁、醇钠也可催化这一反应,但以醇铝和异丙醇效果最佳(还原芳醛时则以乙醇最佳)。 4、凯西纳-沃尔夫-黄鸣龙还原法 醛、酮和肼反应生成的腙在氢氧化钾或乙醇钠的作用下能分解释放出氮气而成烃: 此反应是凯西纳和沃尔夫分别于1911年、1912年发现的,故称为凯西纳一沃尔夫反应。反应要求高温、高压及回流100h以上,操作很不方便,产率也不好。这是因为生成腙时,同时生成了水,水的存在促进了逆反应的缘故。我国化学家黄鸣龙在1946年改进了这个方法,将醛或酮、氢氧化钠、肼的水溶液和高沸点的醇一起加热,使醛或酮成腙后,先将水和过量的肼蒸出,待温度达到腙的分解温度(一般195~200)时再回流3~4h,反应即告完成。

羰基合成醋酐联产醋酸工艺研究

第38卷第5期 2010年5月 化 学 工 程 C H E M IC A L ENG I N EER I NG (CH I NA ) V o.l 38N o .5 M ay 2010 基金项目:陕西省 13115 科技创新工程(2007ZDKG 37);陕西省洁净煤转化工程技术研究中心(2008ZDGC 13);西北大学研究生创新基 金(09YZZ52) 作者简介:张蕾(1982!),男,博士研究生,从事碳一化工领域研究,E m ai:l oas i s m etallica @qq .co m;马晓迅(1957!),男,教授,博士生导 师,通讯联系人,电话:(029)88302633,E m ai:l m axy m@https://www.360docs.net/doc/2513260863.html, .cn 。 羰基合成醋酐联产醋酸工艺研究 张 蕾 1,2,3 ,曹 彬1,2,唐应吉3,杨燕红 1,2 ,马晓迅 1,2 (1.西北大学化工学院,陕西西安 710069;2.陕北能源先进化工利用技术教育部工程研究中心, 陕西西安 710069;3.陕西煤业化工技术开发中心有限责任公司,陕西西安 710054) 摘要:在确定选用均相铑系催化剂后,为了进一步研究中试放大,需对羰基合成小试工艺进行研究。实验采用贵金 属铑为主催化剂,碘甲烷为助催化剂,以醋酸甲酯、甲醇和一氧化碳为原料,选用锆材高压釜,均相羰基化合成醋酐并联产醋酸。在温度180!200?下,压力3.0!6.0M P a ,催化剂质量分数700#10-6!1000#10-6,碘甲烷质量分数10%!15%和停留时间70!90m i n 的工艺条件下,按一氧化碳计醋酐选择性为95.4%,CO 转化率为97.4%,羰基产物醋酐收率为92.9%;催化剂的时空收率(按醋酐计)为38671.28g /(m o l ?h)。此工艺参数的提出可以初步指导中试放大并为工业化生产提供基础数据。 关键词:均相羰基化;醋酐;醋酸;铑系催化剂 中图分类号:TQ 216 文献标识码:A 文章编号:1005 9954(2010)05 0091 04 Process of carbonylation for synthesizi ng acetic anhydri de and acetic aci d ZHANG Lei 1,2,3 ,CAO B i n 1,2 ,TANG Y i n g ji 3 ,Y ang Y an hong 1,2 ,MA X iao xun 1,2 (1.Co llege of Che m ical Eng i n eeri n g ,NorthwestUn i v ersity ,X i %an 710069,Shaanx iProv i n ce ,Ch i n a ;2.Che m ical Eng ineeri n g Research C enter o f the M inistry o fEducation for advanced use techno logy o f Shanbei Energy , X i %an 710069,Shaanx i Prov i n ce ,Ch i n a ;3.Shaanx iCoa l and Industry Techno l o gy Develop m ent Co .,Ltd .,X i %an 710054,Shaanx iProvince ,Ch i n a) Abst ract :A fter deter m ining to use the ho m ogeneous r hod i u m cata l y s,t it is necessary to do research on the s m all test dev ice f o r f u rther study on t h e p il o t plan.t By selecting prec i o usm etals r hod i u m as the m a i n catalyst and m ethy l iod i d e as pro m oter ,usi n g m ethy l acetate ,m e t h ano l and CO as feedstock ,and choosi n g zircon i u m autoclave ,the acetic anhydr i d e and co product ace tic acid w ere synthesized through ho m ogeneous car bony lation.U nder the reacti o n conditions of 180 200?,pressure 3.0 6.0M Pa ,cata l y stm ass fracti o n 700#10-6 1000#10-6 ,m ethy l iod i d e 10% 15%and resi d ence ti m e 70 90m in ,the selecti v ity of acetic anhydri d e i s 95.4%(as C O ),the conversi o n ra te of CO is 97.4%and the acetic anhydride pr oduct y ield is 92.9%;t h e space ti m e y ie l d of cata l y st is 38671.28g /(m o l ?h)(as acetic anhydri d e).The para m eters o f such pr ocess can preli m inary gu i d e t h e p ilot and prov ide the basic data for i n dustria lizati o n .K ey w ords :ho m ogeneous car bony lation;aceti c anhydri d e ;acetic aci d ;rhodiu m cata l y st 随着国民经济的蓬勃发展,醋酐、醋酸是医药、农药、染料等行业的重要有机化工原料中间体。醋酸主要用于制取醋酸乙烯单体(VAM )、醋酸纤维、对苯二甲酸、聚乙烯醇、醋酸酯及金属醋酸盐等。醋酐主要用作醋酸纤维素,其主要用作香烟过滤嘴、胶卷胶片、纺织纤维和赛路珞塑料;在医药上主要用作氯霉素、维生素E 、乙酰水杨酸的重要中间体;在染料行业用于硫化嫩黄、分散深蓝等中间体;香料行业用作香豆素、苯乙酮、乙酰水杨酸甲酯、肉桂酸等[1 2]。目前,国内每年需求醋酐在15.5万t 左右, 但实际生产量为9万t 左右,且生产工艺有待完善, 尚未形成生产规模,主要依赖进口。 鉴于以上原因,本文在前人研究的基础上,以醋酸甲酯、甲醇为原料,采用均相羰基合成法合成醋酐,探索小试工艺条件,为中试放大提供基础数据。1 羰基合成机理1.1 反应历程 本文以醋酸甲酯、甲醇为原料,在均相铑系催化剂作用下,在锆材高压釜内进行羰基合成醋酐,其主

甲醇羰基化制备醋酸汇总

甲醇羰基化技术研究现状 1. 低压甲醇羰化合成法国外研究进展 1.1 Monsanto(孟山都)公司工艺 碘化铑为催化剂,工艺条件温和(3.4 MPa),收率较高(甲醇对 醋酸选择性到达 99%以上),生产成本低。二十世纪八十年代以来, 世界各国新建的醋酸装置基本上都已经采用了低压甲醇羰化合成法。该法在经济上是具有较强的竞争力,目前,甲醇羰基化法(MC)已成为醋酸生产的主流技术,生产的醋酸己占到全球醋酸生产量的 65%以上。 缺点:铑的价格昂贵,铑回收系统费用较高,且步骤非常复杂。改进工艺有:塞拉尼斯公司的 AO Plus工艺及 BP 公司的 Cativa 工艺,规模50万吨/年。 1.2 BP 公司 Cativa 工艺 优点:由于铱的价格明显低于铑,所以在经济上更具竞争力; 铱催化体系活性高于铑催化体系;反应副产物少。该工艺于 1995 年末在 Sterling 公司 Texas 城装置实现工业化。该装置经用新工艺 改造后产能己从 28 万吨/年增加到 45 万吨/年。1997 年第三季度,在位于韩国 Ulsan 的 BP/Samsung 合资装置用该工艺改造原有装置 产能从21 万吨/年,提高到了35万吨/年。此外,BP公司位于英格 兰的甲醇羰基化制醋酸装置也于1998年改为用 Cativa 工艺,产能 增加了10万吨/年。 2.低压甲醇羰化合成法国内研究进展: 西南化工研究设计院进行了甲醇羰基合成醋酸有关技术方面的

研发最终以产量为 20 万吨/年的醋酸工业装置工艺软件包完成设计。该甲醇液相低压羰化合成醋酸的新工艺已向兖矿集团进行技术转让,建设了20万吨/年的醋酸装置。 表2-1. 中国典型羰基化生产醋酸主要生产厂的工艺情况 3.工业化应用及投资情况 3.1兖矿国泰化工有限公司 兖矿集团为了调整产业结构,与美国国泰煤化控股有限公司合 资建设的大型高科技煤化工企业,省重点工程、中国化工行业技术创新示范企业。公司采用了煤、电、化多联产架构生产工艺,含有二项国家“863”课题及多项自主创新技术,投资总额50亿元,规划后续投资超过210亿元。现生产能力为年产60万吨醋酸、30万吨甲醇、10万吨醋酸乙酯、联产80MW发电,年销售收入32亿元,利税12亿元。 兖州煤矿集团公司的煤电工程包括醋酸20万t/a、甲醇23.6万 t/a、发电装机71.8MW。其中,醋酸装置采用西南化工研究院开发的甲醇低压羰基合成醋酸技术。该工程总投资11亿元,于2003年5月开工建设,已于2005年7月投产。

醋酸甲酯羰基法合成醋酐法设计说明书

4万t/a 醋酐生产工艺设计 摘要 醋酐是重要的有机化工原料,涉及各个领域并对社会的发展起着重要的作用,因此制备醋酐成了工业生产的重要工作,目前工业上生产醋酐主要有三种方法:乙醛氧化联产法、乙烯酮法和醋酸甲酯羰基合成法。虽然醋酐的应用广,实用强,但是如不适当处理及储存就会对环境有危害,对水体造成污染,严重时可危机人的生命。 通过对醋酐生产的研究,目前较适合推广及环保的生产是醋酸甲酯羰基化合成法,该方法不仅符合未来的发展趋势,在成本方面也大大降低了投资,是目前生产醋酐最具前景的方法。考虑到生产醋酐的意义及应用前景,进而提出了生产醋酐的具体工艺流程和设备的选型。 关键词:物料衡算能量衡算热量衡算装置布置

With an Annual Output of 40 Thousand t/a Acetic Anhydride Production Process Design Abstract Acetic anhydride is the important organic chemical raw materials, involving various fields and on social development plays a important role, therefore of preparation of acetic anhydride into the important work of industrial production, the industrial production of acetic anhydride are three main methods: oxidation of acetaldehyde generation method, ethylene ketone method and acetic acid methyl ester carbonyl synthesis method. Although the wide application of acetic anhydride, practical strong, but if not properly handle and store it is harmful to the environment, the water pollution caused by serious crisis of human life. Through the study of acetic anhydride production. It is suitable for promotion and environment-friendly production is acetic acid methyl ester carbonyl compound method, this method not only conforms to the trend of development in the future, in terms of cost is also greatly reduced the investment, the acetic anhydride production the most promising method. Considering the production of acetic anhydride significance and application prospect, and puts forward the specific selection of acetic anhydride production process and equipment. Keywords: environmental protection methyl acetate carbonylation acetic anhydride

羰基化合物

近年来,我国的甲醇工业得到了迅速发展,大多数甲醇厂使用的是铜基甲醇催化剂,性高,选择性好,许多性能各异的催化剂不断地应用到工业生产中,取得显著的经济效益。但铜基催化剂对毒物极为敏感,容易中毒失活,使用寿命往往达不到设计要求。在目前的工艺中,导致甲醇催化剂中毒失活的毒物主要有: (1) 硫及硫的化合物; (2) 氯及氯的化合物; (3) 羰基金属化合物; (4) 微量氨。多年以来,各科研单位和甲醇生产企业都致力于甲醇合成气中微量硫、氯等有害物质的脱除净化工作,可将合成气中的硫和氯的质量分数降低到0101 ×10 - 6以下,对合成甲醇催化剂的保护起到了积极的作用。但对羰基金属化合物(主要是羰基铁、羰基镍) 的脱除还没有引起足够的重视,国内外也鲜有关于羰基铁、羰基镍对甲醇催化剂影响的研究报告。实际生产中,这些毒物的存在严重影响了生产的正常进行,使工厂应用的催化剂达不到设计要求,给企业造成巨大的经济损失。 1 羰基金属化合物形成机理 羰基金属化合物是过渡金属与CO 配位体所形成的一类特殊配位化合物,亦称羰基配合物。除铁系元素的单核羰基配合物及四羰基合镍在常温下为液体外,其他已知的金属羰基配合物验室内,在较温和的压力和温度下将CO 和铁粉或镍粉加热,即可得到挥发性的五羰基铁或四羰基镍。在甲醇工业中, 羰基金属主要以Fe ( CO) 5 和Ni (CO) 4形式存在,但其生成机理尚未见系统的研究报道,最新研究认为,在以煤、渣油和焦炉气等为原料生产甲醇过程中,Fe (CO) 5 和Ni (CO) 4 的来源主要有以下两种途径1) 原料气中的CO 对设备与管道的腐蚀而成,金属中铁和镍能在较温和的条件下与CO 气体反应形成羰基化合物:Fe + 5CO(g) Fe (CO) 5 (g)Ni +4CO(g) Ni (CO) 4 (g)(2 ) 造气过程中, CO 与铁、镍结合生成Fe (CO) 5 、Ni (CO) 4 ,生成量与Fe 和Ni 的含量以及CO 的分压有关。一般认为在相对低的温度和特别高的压力下,气体中含有的大量的CO 与其所接触的容器、管道表面组分发生反应或者与原料渣油带入的铁镍杂质进行反应形成Fe (CO) 5 、Ni (CO) 4 。从动力学角度看,高的CO 分压和高温利于羰基物的形成;但从热力学角度, 低温有利于形成羰基物Fe ( CO) 5 和Ni (CO) 4 ,形成的最佳温度100~200 ℃。 2 羰基金属化合物对催化剂的影响 催化剂的表面性能不均一,具有催化活性的物质按照一定的规律高度分散在催化剂的表面上形成一系列催化剂活性中心。这些活性中心一旦遭到破坏,催化剂便很快丧失活性或引起其他副反应。研究认为,催化剂的中毒现象是毒素被牢牢地吸附在催化剂的表面形成薄膜,

相关文档
最新文档