考前解答题冲刺训练——函数、导数与不等式

合集下载

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。

2020高考数学二轮复习规范解答集训6函数、导数和不等式理

2020高考数学二轮复习规范解答集训6函数、导数和不等式理

规范解答集训(六) 函数、导数和不等式(建议用时:40分钟)1.已知函数f(x)=ax+1-x ln x的图象在点(1,f(1))处的切线与直线x-y=0平行.(1)求函数f(x)的极值;(2)若对于x1,x2∈(0,+∞),f x 1-f x 2x1-x2>m(x1+x2),求实数m的取值范围.[解](1)f(x)=ax+1-x ln x的导数为f′(x)=a-1-ln x,可得y=f(x)的图象在点(1,f(1) )处的切线斜率为a-1,由切线与直线x-y=0平行,可得a-1=1,即a=2,f(x)=2x+1-x ln x,f′(x)=1-ln x,当0〈x<e时f′(x)〉0,当x〉e时,f′(x)<0,所以f(x)在(0,e)上递增,在(e,+∞)上递减,可得f(x)在x=e处取得极大值为f(e)=e+1,无极小值.(2)设x1〉x2>0,若错误!>m(x1+x2),可得f(x1)-f(x2)>mx错误!-mx错误!,即f(x1)-mx错误!>f(x2)-mx错误!,设g(x)=f(x)-mx2在(0,+∞)上为增函数,即g′(x)=1-ln x-2mx≥0在(0,+∞)上恒成立,可得2m≤错误!在(0,+∞)上恒成立,设h(x)=错误!,所以h′(x)=错误!,h(x)在(0,e2)上递减,在(e2,+∞)上递增,h(x)在x=e2处取得极小值为h(e2)=-错误!,所以m≤-错误!.2.(2019·石家庄一模)已知函数f(x)=a e x-sin x,其中a∈R,e 为自然对数的底数.(1)当a=1时,证明:对x∈[0,+∞),f(x)≥1;(2)若函数f(x)在错误!上存在极值,求实数a的取值范围.[解](1)当a=1时,f(x)=e x-sin x,于是,f′(x)=e x-cos x.又因为当x∈(0,+∞)时,e x>1且cos x≤1.故当x∈(0,+∞)时,e x-cos x〉0,即f′(x)>0。

解答题解题策略之函数、导数与不等式的综合问题

解答题解题策略之函数、导数与不等式的综合问题

x
e
所以,f(x)的单调递增区间是 [1 ,), e
单调递减区间是 (0, 1]. e
已知函数 f (x) ex ln x
(2)在区间
[
1 e
,
e]
内存在
x0,使不等式
f
(x)
x
m
成立,
求m的取值范围.
解:不等式f(x)<x+m f(x)-x<m,
令F(x) f (x) x,则F(x) (e 1)x ln x
所以函数f(x)在[0,4]的值域为[(2a 3)e3,a 6]
又 g(x) (a2 25)ex 0,所以g(x)在[0,4]上单增, 4
故g(x)在[0,4]的值域为[a2 25 ,(a2 25)e4 ]
4
4
若存在 x1, x2 [0,4] 使得| f (x1) g(x2) |1 成立,
所以 F(x)min 1 ln(e 1) ,代入 F(x)min m
因此,所求m的取值范围是 (1 ln(e 1),)
【高分必备】
会求函数的单调区间; 会求函数的极值、最值; 能将函数不等式恒成立(能成立)问题转化为 函数的最值问题进行求解; 能用导数解决直线与曲线的交点个数问题.
已知函数 f (x) ln(1 1 ax) x2 ax(a为常数,a>0) 22
(a2
25)ex,若存在 4
x1,
x2
[0, 4],使得
| f (x1) g(x2) |1成立,求实数a的取值范围.
解:由(1)可得,函数f(x)在[0,3]上单增,在(3,4]上单减,
所以 f (x)max f (3) a 6 且 f (0) (2a 3)e3 0 f (4) e1(13 2a)

解答题题型突破一——函数、导数与不等式

解答题题型突破一——函数、导数与不等式

)������
=-������
e
������
+2(e ������ 3
2
-e
������
),
当 x∈[1,2]时,h'(x)<0;当 x∈[2,+∞)时,xex+2(e2-ex)>xex-2ex≥0,h'(x)<0.
故 h(x)在[1,+∞)上单调递减,从而 h(x)max=h(1)=e2-e,
从而 m≤e2-e 得证.
f'(x)<0,函数 f(x)在(0,a)上单调递减.
解析
(2)由(1)知,当 a>0 时,f(x)min=f(a)=ln a+1. 要证 f(x)≥2������������-1,只需证 ln a+1≥2������������-1,即证 ln a+���1���-1≥0. 令函数 g(a)=ln a+���1���-1,则 g'(a)=���1���-������12=������������-21(a>0), 当 0<a<1 时,g'(a)<0,当 a>1 时,g'(a)>0,
由(1)知,当 a=-1 时,f(x)=xln x+x 的最小值是-e12,当且仅当 x=e12时取到最
小值.

g(x)=e
������
������ +1
-e22
,x∈(0,+∞),则
g'(x)=e1������-+������1,
当 0<x<1 时,g'(x)>0,g(x)单调递增;
当 x>1 时,g'(x)<0,g(x)单调递减.

高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf

高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf

训练 函数、导数、不等式的综合问题 一、选择题(每小题5分,共25分) 1.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(aR)的导函数y=f′(x)的图象,则f(-1)等于( ). A. B.- C. D.-或 2.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为( ). A.1 B. C. D. 3.已知函数f(x)=x4-2x3+3m,xR,若f(x)+9≥0恒成立,则实数m的取值范围是( ). A. B. C. D. 4.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于( ). A.1 B.2 C.0 D. 5.设aR,若函数y=eax+3x,xR有大于零的极值点,则( ). A.a>-3 B. a<-3 C.a>- D.a<- 二、填空题(每小题5分,共15分) 6.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于________. 7.函数f(x)=x3-x2+ax-5在区间[-1,2]上不单调,则实数a的范围是________. 8.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知函数f(x)=x3-x2+bx+a.(a,bR)的导函数f′(x)的图象过原点. (1)当a=1时,求函数f(x)的图象在x=3处的切线方程; (2)若存在x<0,使得f′(x)=-9,求a的最大值. 10.(12分)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2(e=2.718 28…是自然对数的底数). (1)求实数b的值; (2)求函数f(x)的单调区间; (3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t[m, M],直线y=t与曲线y=f(x)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由. 11.(12分)已知f(x)=xln x,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切的x(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,+∞),都有ln x>-.参考答案 1.D [f′(x)=x2+2ax+a2-1,f′(x)的图象开口向上,若图象不过原点,则a=0时,f(-1)=,若图象过原点,则a2-1=0,又对称轴x=-a>0,a=-1,f(-1)=-.] 2.D [|MN|的最小值,即函数h(x)=x2-ln x的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t=.] 3.A [因为函数f(x)=x4-2x3+3m,所以f′(x)=2x3-6x2,令f′(x)=0,得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-≥-9,解得m≥.] 4.B [函数f(x)=x2-ax+3在(0,1)上为减函数,≥1,得a≥2.又g′(x)=2x-,依题意g′(x)≥0在x(1,2)上恒成立,得2x2≥a在x(1, 2)上恒成立,有a≤2,a=2.] 5.B [令f(x)=eax+3x,可求得f′(x)=3+aeax,若函数在xR上有大于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)=3+aeax=0成立时,显然有a<0,此时x=ln.由x>0,解得a<-3,a的取值范围为(-∞,-3).] 6.解析 由题得f′ (x)=12x2-2ax-2b=0,f′(1)=12-2a-2b=0,a+b=6.a+b≥2,6≥2,ab≤9,当且仅当a=b=3时取到最大值. 答案 9 7.解析 f(x)=x3-x2+ax-5,f′(x)=x2-2x+a=(x-1)2+a-1,如果函数f(x)=x3-x2+ax-5在区间[-1,2]上单调,那么a-1≥0或f′(-1)=3+a≤0且f′(2)=a≤0,a≥1或a≤-3.于是满足条件的a(-3,1). 答案 (-3,1) 8.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0得,x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以,解得-4<a<0. 答案 (-4,0) 9.解 由已知,得f′(x)=x2-(a+1)x+b. 由f′(0)=0,得b=0,f′(x)=x(x-a-1). (1)当a=1时,f(x)=x3-x2+1,f′(x)=x(x-2),f(3)=1, f′(3)=3. 所以函数f(x)的图象在x=3处的切线方程为y-1=3(x-3), 即3x-y-8=0. (2)存在x<0,使得f′(x)=x(x-a-1)=-9,-a-1=-x-=(-x)+≥2=6,a≤-7,当且仅当x=-3时,a=-7. 所以a的最大值为-7. 10.解 (1)由f(e)=2,得b=2. (2)由 (1)可得f(x)=-ax+2+axln x. 从而f′(x)=aln x. 因为a≠0,故 当a>0时,由f′(x)>0,得x>1,由f′(x)<0得, 0<x<1; 当a<0时,由f′(x)>0,得0<x<1,由f′(x)<0得,x>1. 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a=1时,f(x)=-x+2+xln x,f′(x)=ln x. 由(2)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表: x1(1,e)ef′(x) -0 +f(x)2-单调递减极小值1单调递增2又2-<2, 所以函数f(x)的值域为[1,2]. 据此可得,若则对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点; 并且对每一个t(-∞,m)(M,+∞),直线y=t与曲线y=f(x)都没有公共点. 综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点. 11.(1)解 f′(x)=ln x+1. 当x时,f′(x)<0,f(x)单调递减; 当x时,f′(x)>0,f(x)单调递增. 则当0<t<t+2<时,t无解; 当0<t<<t+2,即0<t<时, [f(x)]min=f=-; 当≤t<t+2,即t≥时, f(x)在[t,t+2]上单调递增. 所以[f(x)]min=f(t)=tln t.所以[f(x)]min= (2)解 2f(x)≥g(x),即2xln x≥-x2+ax-3, 则a≤2ln x+x+.设h(x)=2ln x+x+(x>0), h′(x)=. 当x(0,1)时,h′(x)<0,h(x)单调递减; 当x(1,+∞)时,h′(x)>0,h(x)单调递增. 所以[h(x)]min=h(1)=4.因为对一切x(0,+∞),2f(x)≥g(x)恒成立, 所以a≤[h(x)] min=4.故实数a的取值范围是(-∞,4]. (3)证明 问题等价于证明xln x>-,x(0,+∞). 由(1)可知f(x)=xln x,x(0,+∞)的最小值为-, 当且仅当x=时取得.设m(x)=-,x(0,+∞),则m′(x)=,易得[m(x)]max=m(1)=-. 从而对一切x(0,+∞),都有ln x>-成立.。

2023年高考备考利用导数证明不等式(含答案)

2023年高考备考利用导数证明不等式(含答案)

高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。

不等式、函数与导数专题复习(含答案)

不等式、函数与导数专题复习(含答案)

不等式、函数与导数函数与方程思想、数形结合思想1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________. 答案 (-1,+∞)解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x ,得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4,即F (x )>4=F (-1),所以x >-1.2.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.答案 ⎝⎛⎦⎤-∞,12 解析 作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.3. 已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数为________.答案 9解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.分类讨论思想、转化与化归思想4.已知函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.答案 4解析 若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减, 因为g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,g ′(x )=3(1-2x )x 4>0,g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.5. 在△ABC 中,AB =3,AC =4,BC =5.点D 是边BC 上的动点,AD →=xAB →+yAC →,当xy 取最大值时,|AD →|的值为________.答案 52解析 ∵AB =3,AC =4,BC =5,∴△ABC 为直角三角形.如图建立平面直角坐标系,A (0,0),B (3,0),C (0,4),设D (a ,b ), 由AD →=xAB →+yAC →,得⎩⎪⎨⎪⎧a =3x ,b =4y ,∴xy =ab 12.又∵D 在直线l BC :x 3+y 4=1上,∴a 3+b 4=1,则a 3+b4≥2ab12. ∴ab 12≤14,即xy ≤14,当且仅当a =32,b =2时xy 取到最大值14,此时|AD →|=⎝⎛⎭⎫322+22=52.6.方程sin 2x +cos x +k =0有解,则k 的取值范围是________.答案 ⎣⎡⎦⎤-54,1 解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝⎛⎭⎫cos x -122-54.当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.函数、函数与方程7.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.答案 ⎝⎛⎭⎫-2,23 解析 f ′(x )=3x 2+1>0,∴f (x )在R 上为增函数. 又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,可得⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.8.(2015·南师附中模拟)若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点, 令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.不等式问题9. (2015·苏州调研)已知f (x )=⎩⎪⎨⎪⎧x 2+x (x ≥0),-x 2+x (x <0),则不等式f (x 2-x +1)<12的解集是________.答案 (-1,2)解析 依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2.因此,不等式f (x 2-x +1)<12的解集是(-1,2).10.(2015·南京、盐城模拟)若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.答案 ⎝⎛⎭⎫-∞,-12 解析 依题意,对任意的x ∈[4,+∞),有f (x )=(mx +1)·(m 2x -1)<0恒成立,结合图象分析可知⎩⎪⎨⎪⎧m <0,-1m <4,1m 2<4,由此解得m <-12,即实数m 的取值范围是⎝⎛⎭⎫-∞,-12. 11.(2015·苏、锡、常、镇调研)已知x ,y ∈R ,满足2≤y ≤4-x ,x ≥1,则x 2+y 2+2x -2y +2xy -x +y -1的最大值为________.答案103解析画出不等式组⎩⎪⎨⎪⎧2≤y ≤4-x ,x ≥1对应的平面区域,它是以点(1,2),(1,3),(2,2)为顶点的三角形区域.x 2+y 2+2x -2y +2xy -x +y -1=(x +1)2+(y -1)2(x +1)(y -1)=x +1y -1+y -1x +1,令y -1x +1=t ∈⎣⎡⎦⎤13,1(经过点(2,2)时取得最小值,经过点(1,3)时取得最大值),则x 2+y 2+2x -2y +2xy -x +y -1=1t +t ,又⎝⎛⎭⎫1t +t ′=1-1t 2=(t +1)(t -1)t 2≤0,t ∈⎣⎡⎦⎤13,1,所以函数y =1t +t 在t ∈⎣⎡⎦⎤13,1上单调递减,所以当t =13时,x 2+y 2+2x -2y +2xy -x +y -1取得最大值为103.导数与函数的单调性、极值、最值问题12.(2015·南师附中模拟)已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________. 答案 [1,+∞)解析 f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝⎛⎭⎫1x 2+2x .令g (x )=-⎝⎛⎭⎫1x 2+2x ,则当1x =1,即x =1时,函数g (x )取最大值1.故m ≥1.13. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________. 答案 (0,+∞)解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0, 所以g (x )=e x ·f (x )-e x 为R 上的增函数. 又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.14.(2015·衡水中学期末)若函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 对f (x )求导,得f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x.由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,所以t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 15.(2015·长沙模拟)已知函数f (x )=x 3-ax 2-3x . (1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)已知函数g (x )=ln(1+x )-x +k2x 2(k ≥0),讨论函数g (x )的单调性.解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3.由f ′(x )≥0在[1,+∞)上恒成立,得a ≤32⎝⎛⎭⎫x -1x . 记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥1时,t (x )是增函数, 所以t (x )min =32(1-1)=0. 所以a ≤0.(2)g ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,g ′(x )=-x1+x,所以在区间(-1,0)上,g ′(x )>0;在区间(0,+∞)上,g ′(x )<0.故g (x )的单调递增区间是(-1,0],单调递减区间是[0,+∞). 当0<k <1时,由g ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk >0,所以在区间(-1,0)和⎝⎛⎭⎫1-kk ,+∞上,g ′(x )>0;在区间⎝⎛⎭⎫0,1-k k 上,g ′(x )<0.故g (x )的单调递增区间是(-1,0]和⎣⎡⎭⎫1-kk ,+∞,单调递减区间是⎣⎡⎦⎤0,1-k k .当k =1时,g ′(x )=x 21+x>0,故g (x )的单调递增区间是(-1,+∞).当k >1时,g ′(x )=x (kx +k -1)1+x =0,得x 1=1-k k ∈(-1,0),x 2=0,所以在区间⎝⎛⎭⎫-1,1-k k 和(0,+∞)上,g ′(x )>0,在区间⎝⎛⎭⎫1-k k ,0上,g ′(x )<0.故g (x )的单调递增区间是⎝⎛⎦⎤-1,1-k k 和[0,+∞),单调递减区间是⎣⎡⎦⎤1-k k ,0.导数与函数图象的切线及函数零点问题16.(2015·邯郸模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为________. 答案 1解析 ∵y ′=3x 2+a .∴y ′|x =1=3+a =k ,又3=k +1,∴k =2,∴a =-1.又3=1+a +b ,∴b =3,∴2a +b =-2+3=1. 17.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b 的值为________. 答案 1解析 ∵f ′(x )=-a sin x ,∴f ′(0)=0.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0.又g (0)=1=m ,∴f (0)=a =m =1,∴a +b =1.18.(2015·南京、盐城模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.答案 (-4,0)解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x-2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0.19.已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点. (1)求a ;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的取值范围. 解 f (x )的定义域为(-1,+∞). (1)f ′(x )=a 1+x +2x -10,又f ′(3)=a4+6-10=0,∴a =16.经检验此时x =3为f (x )的极值点,故a =16. (2)由(1)知f ′(x )=2(x -1)(x -3)x +1.当-1<x <1或x >3时,f ′(x )>0; 当1<x <3时,f ′(x )<0.∴f (x )的单调增区间为(-1,1),(3,+∞), 单调减区间为(1,3).(3)由(2)知,f (x )在(-1,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,且当x =1或x =3时,f ′(x )=0.所以f (x )的极大值为f (1)=16ln 2-9,极小值为f (3)=32ln 2-21. 因为f (16)>162-10×16>16ln 2-9=f (1), f (e -2-1)<-32+11=-21<f (3),所以根据函数f (x )的大致图象可判断,在f (x )的三个单调区间(-1,1),(1,3),(3,+∞)内,直线y =b 与y =f (x )的图象各有一个交点,当且仅当f (3)<b <f (1). 因此b 的取值范围为(32ln 2-21,16ln 2-9).20.(2015·南师附中模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是 ⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2.。

高考数学 热点专题专练 9-23 函数、导数与不等式、解析几何、数列型解答题课件 理

高考数学 热点专题专练 9-23 函数、导数与不等式、解析几何、数列型解答题课件 理
பைடு நூலகம்
高频考点
【例1】 (2012·天津)已知{an}是等差数列,其前n项和为 Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式; (2)记Tn=anb1+an-1b2+…+a1bn,n∈N*,证明Tn+12=- 2an+10bn(n∈N*). [分析] (1)利用等差数列、等比数列的通项公式、求和公 式建立方程组求解.(2)可以以算代证,利用错位相减法求和, 与自然数有关的问题也可以用数学归纳法证明.
证法二:(1)当n=1时,T1+12=a1b1+12=16,-2a1+ 10b1=16,故等式成立;
(2)假设当n=k时等式成立,即Tk+12=-2ak+10bk,则当 n=k+1时有:
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk) =ak+1b1+qTk
①当b2>1,即|b|>2时, M=|f2(1)-f2(-1)|=2|b|>4,与题设矛盾. ②当-1≤-b2<0,即0<b≤2时, M=f2(1)-f2-b2=b2+12≤4恒成立. ③当0≤-b2≤1,即-2≤b≤0时, M=f2(-1)-f2-b2=b2-12≤4恒成立. 综上可知,-2≤b≤2.
[解] (1)利用函数零点存在定理,结合函数的单调性,得 出函数在区间 12,1 上的零点个数;(2)结合分类讨论思想,得 出函数在区间[-1,1]上的最值,把恒成立问题转化为简单的解 不等式问题;(3)结合函数的单调性,判断数列的单调性.
(1)证明:b=1,c=-1,n≥2时,fn(x)=xn+x-1. ∵fn12fn(1)=21n-12×1<0,∴fn(x)在12,1内存在零点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考前解答题冲刺训练-------函数、导数与不等式1、设函数)1ln(2)1()(2x x x f +-+=. (1)求f (x )的单调区间;(2)若当]1,11[--∈e ex 时,不等式f (x )<m 恒成立,求实数m 的取值范围; (3)若关于x 的方程a x x x f ++=2)(在区间[0, 2]上恰好有两个相异的实根,求实数a 的取值范围. 解:(Ⅰ)函数的定义域为(-1, +∞).…………… 1分 ∵ /12(2)()2[(1)]11x x f x x x x +=+-=++,由/()0f x >,得x >0;由/()0f x <,得10x -<<.……… 3分 ∴ f (x )的递增区间是(0,)+∞,递减区间是(-1, 0). 4分 (Ⅱ)∵ 由/2(2)()01x x f x x +==+,得x =0,x =-2(舍去)由(Ⅰ)知f (x )在1[1, 0]e-上递减,在[0, 1]e -上递增. 6分又 211(1)2f ee-=+, 2(1)2f e e -=-, 且22122e e->+.∴ 当1[1,1]x e e∈--时,f (x )的最大值为22e -.故当22m e >-时,不等式f (x )<m 恒成立.……………… 8分(Ⅲ)方程2()f x x x a =++, 12ln(1)0x a x -+-+=. 记()12ln(1)g x x a x =-+-+,∵ /21()111x g x xx -=-=++, ……… 9分由/()0g x >,得x >1或x <-1(舍去). 由/()0g x <, 得11x -<<. ∴ g (x )在[0,1]上递减, 在[1,2]上递增. ……10分 为使方程2()f x x x a =++在区间[0, 2]上恰好有两个相异的实根, 只须g(x)=0在[0,1]和(1, 2]上各有一个实数根,于是有(0)0,(1)0,(2)0.g g g ≥⎧⎪<⎨⎪≥⎩∵ 22ln 232ln 3-<-, a ∈(2-ln2,3-2ln3] ……12分 2、已知12()|31|,()|39|(0),x x f x f x a a x R =-=⋅->∈,且112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩.(Ⅰ)当1a =时,求()f x 在1x =处的切线方程;(Ⅱ)当29a ≤<时,设2()()f x f x =所对应的自变量取值区间的长度为l (闭区间[,]m n 的长度定义为n m -),试求l 的最大值; (Ⅲ)是否存在这样的a ,使得当[)2,x ∈+∞时,2()()f x f x =?若存在,求出a 的取值范围;若不存在,请说明理由. 解: (Ⅰ)当1a =时,2()|39|x f x =-.因为当3(0,log 5)x ∈时,1()31x f x =-,2()93x f x =-, 且3log 512()()2310231025100x f x f x -=⋅-<⋅-=⋅-=, 所以当3(0,log 5)x ∈时,()31x f x =-,且31(0,log 5)∈ 由于()3ln3x f x '=,所以(1)3ln 3k f '==,又(1)2f =, 故所求切线方程为2(3ln3)(1)y x -=-, (3ln3)23ln30x y -+-=(Ⅱ) 因为29a ≤<,所以33990log log 2a <≤,则① 当39log x a≥时,因为390x a ⋅-≥,310x ->,所以由21()()(39)(31)(1)380x x x f x f x a a -=⋅---=--≤,解得38log 1x a ≤-, 从而当3398log log 1x a a ≤≤-时,2()()f x f x =② 当390log x a≤<时,因为390x a ⋅-<,310x -≥, 所以由21()()(93)(31)10(1)30x x x f x f x a a -=-⋅--=-+≤,解得310log 1x a ≥+, 从而当33109log log 1x a a≤<+时,2()()f x f x = ③当0x <时,因为21()()(93)(13)8(1)30x x x f x f x a a -=-⋅--=-->,从而2()()f x f x = 一定不成立综上得,当且仅当33108[log ,log ]11x a a ∈+-时,2()()f x f x =, 故33381042log log log [(1)]1151l a a a =-=+-+- 从而当2a =时,l 取得最大值为312log 5(Ⅲ)“当[)2,x ∈+∞时,2()()f x f x =”等价于“21()()f x f x ≤对[)2,x ∈+∞恒成立”,即“|39||31|31x x x a ⋅-≤-=-(*)对[)2,x ∈+∞恒成立”① 当1a ≥时,39log 2a≤,则当2x ≥时,39log 39390xa a a ⋅-≥⋅-=,则(*)可化为3931x x a ⋅-≤-,即813x a ≤+,而当2x ≥时,8113x +>,所以1a ≤,从而1a =适合题意② 当01a <<时,39log 2a >.⑴ 当39log x a >时,(*)可化为3931x x a ⋅-≤-,即813x a ≤+,而8113x +>,所以1a ≤,此时要求01a <<)21(2)1(<+-='a f 0)21(2)1(>-=-'a f 0)21(2)1(<-=-'a f 0)21(2)1(>+-='a f ⑵ 当39log x a =时,(*)可化为90311x a≤-=-, 所以a R ∈,此时只要求01a <<(3)当392log x a ≤<时,(*)可化为9331x x a -⋅≤-,即1013x a ≥-,而101139x -≤,所以19a ≥,此时要求119a ≤<由⑴⑵⑶,得119a ≤<符合题意要求.综合①②知,满足题意的a 存在,且a 的取值范围是119a ≤≤3、已知函数)(1332)(23R ∈+--=a x ax x x f(Ⅰ)若)(x f 在区间)1,1(-上为减函数,求a 的取值范围; (Ⅱ)讨论)(x f y =在)1,1(-内的极值点的个数。

(Ⅰ) ∵1332)(23+--=x ax x x f ∴322)(2--='ax x x f ……(2分) ∵)(x f 在区间)1,1(-上为减函数∴)(x f '≤O 在区间)1,1(-上恒成立 …(3分) ∵322)(2--='ax x x f 是开口向上的抛物线)1(-'f ≤0 322-+a ≤0∴只需 即 …………(5分) )1(f '≤0 322--a ≤0∴21-≤a ≤21………(6分)(Ⅱ)当21-<a 时,∴存在)1,1(0-∈x ,使得0)(0='x f∴)(x f 在区间)1,1(-内有且只有一个极小值点 …(8分) 21>a 时∴存在)1,1(0-∈x ,使得0)(0='x f∴)(x f 在区间)1,1(-内有且只有一个极大值点 (10分) 当21-≤a ≤21时,由(Ⅰ)可知)(x f 在区间)1,1(-上为减函数∴)(x f 在区间)1,1(-内没有极值点. 综上可知,当21-<a 21>a 时,)(x f y =在区间)1,1(-内的极值点个数为1 当21-≤a ≤21时,)(x f y =在区间)1,1(-内的极值点个数为0 (12分)4、已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性;(3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心. (1)如果()f x 为偶函数,则()(),f x f x -= x x x x m k n m k n --+⋅=+⋅恒成立,(1分)即:,x x x x n k m m k n +⋅=+⋅()()0,x x x x n m k m n -+-= ()(1)0x x n m k --=(2分) 由0x x n m -=不恒成立,得 1.k =(3分) 如果()f x 为奇函数,则()(),f x f x -=- x x x x m k n m k n --+⋅=--⋅恒成立,(4分)即:,x x x x n k m m k n +⋅=--⋅()()0,x x x x n m k m n +++=(5分)()(1)0,x x n m k ++=由0x x n m +≠恒成立,得 1.k =-(6分)(2)10,m n >>>1mn>, ∴ 当0k ≤时,显然()x x f x m k n =+⋅在R 上为增函数;(8分) 当0k >时,()ln ln [()ln ln )]0x x x x mf x m m kn n m k n n n'=+=+=,由0,x n >得()ln ln 0,x m m k n n +=得ln ()log ,ln x m m nk k n n m=-=- 得log (log )m m nx k n =-.(9分)∴当(,log (log )]m m nx k n ∈-∞-时, ()0f x '<,()f x 为减函数; (10分)当[log (log ),)m m nx k n ∈-+∞时, ()0f x '>,()f x 为增函数. (11分)(3) 当12,2m n ==时,()22,x x f x k -=+⋅如果0,k <22log ()log ()()222()222222k k x x x x x x x x f x k k ------=+⋅=--⋅=-⋅=-,(13分)则2(log ())(),f k x f x --=-∴函数()y f x =有对称中心21(log (),0).2k -(14分) 如果0,k >22log log()2222222,k k xx x x x x f x k ---=+⋅=+⋅=+(15分)则2(log )(),f k x f x -=∴函数()y f x =有对称轴21log 2x k =.(16分)5、设函数321()()3f x ax bx cx a b c =++<<,其图象在点(1,(1)),(,())A f B m f m 处的切线的斜率分别为0,a -. (Ⅰ)求证:01b a<≤;(Ⅱ)若函数()f x 的递增区间为[,]s t ,求||s t -的取值范围;(Ⅲ)若当x k ≥时(k 是与,,a b c 无关的常数),恒有()0f x a '+<,试求k 的最小值.答:(1)2()2f x ax bx c '=++,由题意及导数的几何意义得(1)20f a b c '=++=, (1)2()2f m am bm c a '=++=-, (2) ……3分又a b c <<,可得424a a b c c <++<,即404a c <<,故0,0,a c <> ……5分由(1)得2c a b =--,代入a b c <<,再由0a <,得113ba-<<, (3) ……6分 将2c a b =--代入(2)得2220a m b m b +-=,即方程2220ax bx b +-=有实根.故其判别式2480b ab ∆=+≥得2b a -≤,或b a≥0, (4) 7分 由(3),(4)得01ba<≤;……8分 (2)由2()2f x ax bx c '=++的判别式2440b ac '∆=->, 知方程2()20()f x ax bx c '=++=*有两个不等实根,设为12,x x ,又由(1)20f a b c '=++=知,11x =为方程(*)的一个实根,则有根与系数的关系得122122,10b bx x x x a a+=-=--<<, …10分 当2x x <或1x x >时,()0f x '<,当21x x x <<时,()0f x '>, 故函数()f x 的递增区间为21[,]x x ,由题设知21[,][,]x x s t =, 因此122||||2b s t x x a -=-=+,由(Ⅰ)知01ba<≤得||s t -的取值范围为[2,4);…12分(3)由()0f x a '+<,即220ax bx a c +++<,即2220ax bx b +-<, 因为0a <,则2220bb x x a a +⋅-⋅>,整理得2(22)0b x x a-+>, 设2()(22)b b g x x a a =-+,可以看作是关于b a的一次函数,…13分 由题意()0b g a >对于01b a<≤恒成立,故(1)0,(0)0,g g -⎧⎨>⎩≥ 即22220,0,x x x ⎧-⎪⎨>⎪⎩≥+得1x ≤或1x ,由题意,[,)(,1][31,)k +∞⊆-∞-+∞,故1k ,因此k 1. …15分6、已知函数)0(ln )(<+=a xax x f ,直线l 与函数)(x f y =图象相切.(Ⅰ)求直线l 的斜率k 的取值范围;(Ⅱ)设函数()(1)6g x f x x =+-,已知函数)(x g y '=的图象经过点1(,0)3-,求函数)(x g y =的极值.解:(Ⅰ)设切点坐标为00(,)x y ,由2)(x ax x f -='……………2分 则200200111()24x a k f x a x x a a ⎛⎫-'===--+ ⎪⎝⎭………………4分 根据题意知:()+∞∈,00x ,即()+∞∈,010x ,所以22011124x a a ⎛⎫-> ⎪⎝⎭又0<a ,则2011124a x a a ⎛⎫-->- ⎪⎝⎭,即20111024a x a a ⎛⎫--+> ⎪⎝⎭所以0k >…………6分 (Ⅱ)显然()ln(1)6(0)1ag x x x a x =++-<+的定义域为{|1}x x >-……7分 则226115()(1)x x a g x x ----'=+………………8分又因为函数)(x g y '=的图象经过点1(,0)3-,代入226115()(1)x x a g x x ----'=+ 求得:2a =-,则2226115(31)(23)()(1)(1)x x a x x g x x x -----++'==++…10分 由此可知:当1(1,)3x ∈--时,有()0g x '>,此时)(x g y =为单调增函数;当1(,)3x ∈-+∞时,有()0g x '<,此时)(x g y =为单调减函数;所以)(x g y =在区间),1(+∞-上只有极大值即12()g()1ln 33g x =-=-+极大值…12分7、已知函数a axxx x f 其中,1ln )(-+=为大于零的常数。

相关文档
最新文档