《算法设计与分析》实验报告快速排序
算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。
为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。
二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。
实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。
实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。
同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。
三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。
从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。
在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。
总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。
2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。
实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。
与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。
3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。
实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。
可以看出,随着数据量的增加,插入排序的性能明显下降。
算法设计与分析实验报告三篇

算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。
算法实验报告

算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
算法设计与分析实验报告_3

实验一全排列、快速排序【实验目的】1.掌握全排列的递归算法。
2.了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集, 用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应, 因此在此就以n个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外, 都有一个后继;除第一个排列外, 都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到, 全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是: 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对这两部分数据分别进行快速排序, 整个排序过程可以递归进行, 以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1.全排列:快速排序:实验二最长公共子序列、活动安排问题【实验目的】了解动态规划算法设计思想, 运用动态规划算法实现最长公共子序列问题。
了解贪心算法思想, 运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>, 则:..i.若xm=yn, 则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列...ii.若xm≠yn且zk≠x., 则Z是Xm-1和Y的最长公共子序列...iii.若xm≠yn且zk≠y.,则Z是X和Yn-1的最长公共子序列.其中Xm-1=<x1, x2, …, xm-1>, Yn-1=<y1, y2, …, yn-1>, Zk-1=<z1, z2, …, zk-1>。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法设计与分析实验教案_快速排序

课程
算法设计与分析
实验题目
快速排序
实验时数
0.5学时
实验目的
1、理解算法设计的基本步骤及各步的主要内容、基本要求;
2、加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题;
3、通过本次实验初步掌握将算法转化为计算机上机程序的方法。
实验内容
1、设计和实现快速排序算法;
2、设计和实现随机的快速排序算法;
3、分析算法的效率;
实验要求
1、设计用分治法求解“快速排序”的算法;
2、上机实现所设计的算法;
3、分析所设计的算法的时间/空间复杂性。
实验步骤
1、充分理解算法设计的基本步骤,在此基础上分析本实验内容,建立其数学模型;
2、根据所建立的数学模型,设计求解算法;
3、利用C/C++/Java等语言实现所设计的算法;
4、设计有代表性的典型输入数据,运行程序,分析运行结果的正确性;
5、进行算法效率分析;
6、写出实验报。
实现提示
快速排序的基本思想
学生可能出现的问题
1、
具体实现
算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
快速排序实验总结

快速排序实验总结快速排序是一种常用的排序算法,其基本思想是通过分治的方法将待排序的序列分成两部分,其中一部分的所有元素均小于另一部分的元素,然后对这两部分分别进行递归排序,直到整个序列有序。
下面是我在实验中对于快速排序算法的一些总结和思考。
一、算法步骤快速排序的基本步骤如下:1.选择一个基准元素(pivot),将序列分成两部分,一部分的所有元素均小于基准元素,另一部分的所有元素均大于等于基准元素。
2.对于小于基准元素的部分和大于等于基准元素的部分,分别递归地进行快速排序,直到两部分都有序。
3.合并两部分,得到完整的排序序列。
二、算法优缺点优点:1.快速排序的平均时间复杂度为O(nlogn),在排序大数据集时表现优秀。
2.快速排序是一种原地排序算法,不需要额外的空间,因此空间复杂度为O(logn)。
3.快速排序具有较好的可读性和可维护性,易于实现和理解。
缺点:1.快速排序在最坏情况下的时间复杂度为O(n^2),此时需要选择一个不好的基准元素,例如重复元素较多的序列。
2.快速排序在处理重复元素较多的序列时,会出现不平衡的分割,导致性能下降。
3.快速排序在递归过程中需要保存大量的递归栈,可能导致栈溢出问题。
三、算法实现细节在实现快速排序时,以下是一些需要注意的细节:1.选择基准元素的方法:通常采用随机选择基准元素的方法,可以避免最坏情况的出现。
另外,也可以选择第一个元素、最后一个元素、中间元素等作为基准元素。
2.分割方法:可以采用多种方法进行分割,例如通过双指针法、快速选择算法等。
其中双指针法是一种常用的方法,通过两个指针分别从序列的两端开始扫描,交换元素直到两个指针相遇。
3.递归深度的控制:为了避免递归过深导致栈溢出问题,可以设置一个递归深度的阈值,当递归深度超过该阈值时,转而使用迭代的方式进行排序。
4.优化技巧:在实现快速排序时,可以使用一些优化技巧来提高性能。
例如使用三数取中法来选择基准元素,可以减少最坏情况的出现概率;在递归过程中使用尾递归优化技术,可以减少递归栈的使用等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》
实验报告
题目:快速排序
姓名:于文静
班级:计科F1203 学号: 0230
指导教师:靳小波
完成时间: 2015-04-06
一、实验题目
用递归分治法编写Hoare快速排序算法
二、实验目的
1. 理解时间复杂度的概念。
2. 深入地掌握C语言编程。
3. 通过编程直观地理解算法分析的意义
三、实验要求
请使用递归分治法编写Hoare快速排序算法,算法的输入如下:7.30 7.15 4.27 2.14 6.29 3.99 0.26 9.10 1.89 2.86 0.44 5.52 4.35 4.39 6.70 9.82 3.55 2.38 9.12 3.54 1.30 5.20 6.59 9.08 1.79 3.52 4.06 0.43 5.31 7.19 6.07 7.06 9.92 7.79 3.46 6.16 1.83 2.78 3.20 2.95 9.20 0.22 7.13 8.28 5.58 0.80 2.63 7.44 3.04 8.58 9.61 4.52
2.12 1.73 4.16
3.66 2.36
4.08 9.36 8.03 4.92 4.90 9.59 9.83 7.85
3.99 2.68 2.49
4.69 7.67 7.56 8.85 3.88 7.74 6.27
5.48 7.29 2.81
3.67 2.52 1.95 1.82
4.38 4.42
5.54 4.41 1.94 0.31 8.41 5.69 4.59
四、程序流程图
五、
#include<stdio.h>
int Partition(double a[],int low,int high){ int i,j;
double temp;
i=low;
j=high;
while(i<j){
while(a[i]<=a[j]&&i<j)
j--;
if(i<j){
temp=a[i];
a[i]=a[j];
a[j]=temp;
i++;
}
while(a[i]<=a[j]&&i<j)
i++;
if(i<j){
temp=a[i];
a[i]=a[j];
a[j]=temp;
j--;
}
}
return i;
}
void quickSort(double a[],int low,int high){ int q;
if(low<high){
q=Partition(a,low,high);
quickSort(a,low,q-1);
quickSort(a,q+1,high);
}
}
void main(){
FILE* file = NULL;
int k,cnt;
double a[1000];
if((file = fopen("input2.txt","r")) == NULL) {
printf("the file does not exist...\n");
return;
}
cnt = 0;
while(!feof(file))
{
fscanf(file,"%lf",&a[cnt]);
cnt++;
}
quickSort(a,0,cnt-1);
for(k=0;k<cnt;k++)
printf("%.2f ",a[k]);
}
六、实验结果
七、实验体会
通过本次实验,我了解到快速排序的基本思想,即通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的数据都小于等于某一个数,另一部分的数据都大于等于这个数,然后再用递归的思想分别对左右两部分的数据进行快速排序,从而使得整个序列都变得有序。
像这种递归分治的思想,它将一个大问题划分成若干个子问题,逐个对各个子问题一一击破,使得大问题得以解决。
这种方法用起来非常方便,以后解决有关算法之类的问题时,要有意识地去想到利用这种方法。