地下工程安全性数值模拟分析
软土地区深基坑支护体系安全性状动态分析

3、地下连续墙:地下连续墙具有较高的整体性和抗弯强度,能够有效地防止 渗漏和变形。同时,地下连续墙施工时对环境影响较小。然而,施工难度较大, 成本较高。
4、土钉墙支护:土钉墙支护通过在基坑边坡设置土钉,以增强边坡的稳定性。 该方案施工简便,成本低廉,适用于一些较简单的地质条件。然而,土钉墙的 支护强度较低,对环境影响较大。
1、结构安全性:包括支护结构的强度、刚度、稳定性等指标,确保在施工期 间和使用过程中不会发生破坏或变形。
2、土体稳定性:软土地区的土质松软,容易产生变形和滑坡等现象,因此需 要对土体的稳定性进行严格控制。
3、环境影响:深基坑施工会对周围环境产生一定的影响,如地面沉降、地下 水流失等,因此需要采取措施将影响降至最低。
软土地区深基坑支护体系安全性状动态 分析
基本内容
随着城市化进程的加快,地下空间的开发与利用越来越受到人们的。在软土地 区,由于地质条件的特殊性,深基坑工程的安全性尤为重要。本次演示将着重 探讨软土地区深基坑支护体系安全性状动态分析的重要性及方法,以期为相关 工程提供理论支持与实践指导。
在软土地区,深基坑支护体系承受的土压力较大,土体的稳定性较差,因此支 护结构的安全性状至关重要。具体而言,我们需要以下几方面:
3、加强监测与预警:对深基坑支护体系进行实时监测,及时发现潜在的风险 和隐患,采取有效的预警措施。
结论本次演示通过对软土地区深基坑支护体系安全性状动态分析的研究,得出 了以下主要结论:
1、软土地区深基坑支护体系的安全性状动态分析至关重要,有助于及时掌握 施工过程中的安全状况,避免潜在风险和隐患。
基本内容
随着城市化进程的加快,深基坑工程在城市建设中的应用越来越广泛。在软土 地区,深基坑支护结构的稳定性与安全性尤为重要。型钢水泥土墙支护作为一 种常见的深基坑支护方式,对于保障软土地区深基坑的稳定性具有重要意义。 本次演示将围绕软土地区深基坑型钢水泥土墙支护的三维数值模拟分析展开探 讨。
深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用1. 引言1.1 概述深基坑工程安全监测技术及工程应用深基坑工程是城市建设中常见的工程项目之一,其建设需要进行严格的安全监测,以确保工程进展顺利并保障周边环境和人员的安全。
深基坑工程安全监测技术是指利用各种技术手段和设备对深基坑工程中的地质、土体、水文等情况进行实时监测和分析,以及预测可能出现的风险和隐患,从而及时采取措施防范事故发生。
深基坑工程安全监测技术的应用范围广泛,涉及工程的施工阶段、运营阶段以及结构的整个寿命周期。
通过各种监测手段,可以实时监测基坑工程的变形、地下水位变化、地表沉降等状况,保障工程的稳定性和安全性。
监测技术也可以为工程设计、施工、运营提供数据支持和决策依据,提高工程的质量和效率。
深基坑工程安全监测技术在现代城市建设中起着至关重要的作用,是保障工程安全、推动城市发展的重要手段之一。
下文将具体探讨深基坑工程安全监测技术的历史、现状、关键技术、应用案例以及未来发展趋势,希望能为读者提供全面的了解和启发。
2. 正文2.1 深基坑工程安全监测技术的发展历史深基坑工程安全监测技术的发展历史可以追溯到20世纪初,当时随着建筑结构越来越高、越来越深,特别是城市中心区域土地资源日益紧张,深基坑工程开始变得日益常见。
由于深基坑工程施工过程中存在着复杂多变的地质环境,以及施工对周围环境和结构的影响,安全隐患也随之增加。
随着科学技术的发展,深基坑工程安全监测技术逐步得到了完善和发展。
在以往,深基坑工程的安全监测主要依靠人工观察和传统的监测手段,监测效果较为有限,监测数据的准确性和实时性也难以保障。
随着计算机技术和传感器技术的广泛应用,深基坑工程安全监测技术迎来了新的发展机遇。
现代深基坑工程安全监测技术不仅集成了GIS、GPS、遥感等先进技术,还采用了各种先进传感器和数据采集设备,能够对深基坑工程施工过程中的变位、沉降、地下水位变化等参数进行实时监测和分析。
利用大数据和人工智能技术,可以对监测数据进行智能分析和预警,提前发现潜在风险,确保深基坑工程的安全施工和运行。
215497407_基坑工程地下水三维渗流与土体沉降数值模拟分析

2023年4月J o u r n a l o fG r e e nS c i e n c e a n dT e c h n o l o g y第25卷第8期收稿日期:2023-03-06作者简介:李任政(1987-),男,硕士,工程师,主要从事水文地质勘查、场地环境调查评估及修复等。
李任政1,2(1.上海市岩土地质研究院有限公司,上海200072;2.自然资源部大都市区国土空间生态修复工程技术创新中心,上海200003)摘要:深基坑下伏承压含水层制约着基坑工程的安全施工,常需通过基坑降水进行减压处理,制定基坑降水方案的同时,实现按需降水的设计理念亦是较为重要。
选取上海某深基坑工程为研究对象,基于现场抽水试验数据及建立的地下水三维渗流与土体沉降耦合模型,利用地下水数值模型软件进行数值模拟研究,对基坑降水方案可行性进行了预测分析。
结果显示:单井抽水试验获取的水文地质参数较为可靠,与数值模型反演的参数(水平渗透系数为5.12m/d,贮水系数为1.8×10-4,弹性释水系数3.0×10-4,非弹性释水系数7.0×10-4)相近;经群井抽水试验数据校核后,模拟水位与实测水位误差不超过0.5m,数值模型符合场地水文地质条件,可靠性高;利用数值模拟预测分析基坑降水期间地下水流场与土体沉降的变化特征,验证了降水方案可将承压水位降至标高-6.13m的同时,体现了按需降水的设计理念,保护了周边环境。
关键词:基坑降水;三维渗流;土体沉降;数值模拟中图分类号:T U753文献标识码:A文章编号:1674-9944(2023)08-0228-06N u m e r i c a l S i m u l a t i o nA n a l y s i s o fT h r e e-D i m e n s i o n a lG r o u n d w a t e r S e e p a g ea n dS o i l S e t t l e m e n t i nF o u n d a t i o nP i tE n g i n e e r i n gL iR e n z h e n g1,2(1..,,200072,;2.-,,200003,)A b s t r a c t:T h e c o n f i n e d a q u i f e r u n d e r t h e d e e p f o u n d a t i o n p i t r e s t r i c t s t h e s a f e c o n s t r u c t i o no f t h e f o u n d a t i o n p i t p r o j e c t.I t i s o f t e nn e c e s s a r y t o r e d u c e t h e c o n f i n e dw a t e r l e v e l b y f o u n d a t i o n p i t d e w a t e r i n g.H o wt o r e a l-i z e t h e d e s i g n c o n c e p t o f o n-d e m a n d p r e c i p i t a t i o n i s p a r t i c u l a r l y i m p o r t a n t.Ad e e p f o u n d a t i o n p i t p r o j e c t i n S h a n g h a i i s s e l e c t e d a s t h e r e s e a r c h o b j e c t.B a s e d o n t h e f i e l d p u m p i n g t e s t d a t a a n d t h e e s t a b l i s h e d t h r e e-d i-m e n s i o n a l g r o u n d w a t e r s e e p a g ea n ds o i l s e t t l e m e n t c o u p l i n g m o d e l,t h e g r o u n d w a t e rn u m e r i c a lm o d e l s o f t-w a r eGM S i s u s e d f o r n u m e r i c a l s i m u l a t i o n r e s e a r c h,a n d t h e f e a s i b i l i t y o f f o u n d a t i o n p i t d e w a t e r i n g s c h e m e i s p r e d i c t e d a n d a n a l y z e d.T h e r e s u l t s s h o wt h a t t h eh y d r o g e o l o g i c a l p a r a m e t e r so b t a i n e db y s i n g l ew e l l p u m-p i n g t e s t a r e r e l i a b l e a n d s i m i l a r t o t h e p a r a m e t e r so f n u m e r i c a lm o d e l i n v e r s i o n.T h eh o r i z o n t a l p e r m e a b i l i t y c o e f f i c i e n t i s5.12m/d;t h ew a t e r s t o r a g e c o e f f i c i e n t i s1.8×10-4;t h e e l a s t i cw a t e r r e l e a s e c o e f f i c i e n t i s3.0×10-4,a n d t h e i n e l a s t i cw a t e r r e l e a s ec o e f f i c i e n t i s7.0×10-4.T h en u m e r i c a lm o d e l c h e c k e db y t h e g r o u p w e l l p u m p i n g t e s t d a t a c o n f o r m s t o t h e h y d r o g e o l o g i c a l c o n d i t i o n s o f t h e s i t ew i t hh i g h r e l i a b i l i t y,a n d t h e e r-r o r b e t w e e n t h e s i m u l a t e dw a t e r l e v e l a n d t h em e a s u r e dw a t e r l e v e l i s l e s s t h a n0.5m.U s i n g n u m e r i c a l s i m u-l a t i o n t o p r e d i c t a n d a n a l y z e t h e v a r i a t i o n c h a r a c t e r i s t i c s o f g r o u n d w a t e r f l o wf i e l d a n ds o i l s e t t l e m e n t d u r i n g f o u n d a t i o n p i t d e w a t e r i n g,t h e f e a s i b i l i t y o f d e w a t e r i n g s c h e m e i s v e r i f i e d,a n d t h e d e s i g n c o n c e p t o f o n-d e-m a n dd e w a t e r i n g i s r e a l i z e d,w h i c hc a n p r o t e c t t h e s u r r o u n d i n g e n v i r o n m e n t.K e y w o r d s:f o u n d a t i o n p i t d e w a t e r i n g;t h r e e-d i m e n s i o n a l s e e p a g e;s o i l s e t t l e m e n t;n u m e r i c a l s i m u l a t i o n 1引言随着城市更新,上海地区地下空间资源开发利用日趋加快,建筑基坑逐渐朝“深”“大”方向发展[1~3],多数基坑工程被地下承压水所控制,一旦出现基坑突涌等风险,势必危及基坑及周边环境安全,将会造成822Copyright©博看网. All Rights Reserved.李任政椇基坑工程地下水三维渗流与土体沉降数值模拟分析绿色创新研究:工程与技术严重后果[4]。
软土地下工程抗震数值模拟的若干关键问题

陈 之 毅 ,沈 昊。
(. 1同济大学岩土及地 下工程教 育部 重点实验 室,上海 209 ; . 002 2 同济大 学地下建筑与工程系 ,上海 209 ) 002
新建和待建的大 型地 下空间结构数量 明显增加 。根据 ( ( 上海市 综合客运 交通枢 纽布局规划 》 , ̄ 2 1 年上 (0 0 1
海市将建 成综合交通枢纽 8 个 ,其 中A类枢纽3 ( 4 个 虹 桥综合 交通枢 纽 、浦东 国际机场枢 纽和铁路 上海站枢 纽 ),形成1条线路、运营总里程超过4 0 m的轨道 交 1 0k
中图分类号 :T 9 4 U 2 文献标 识码 :A 文章编号 :2 9 -3 92 1)40 8 -5 0 512 (0 0 -0 30 1
基地区 。上海现正处于地下空间开发的大发展 时期 , ]
0 引言
近百 年来全球地 震灾 害频 发 ,仅2 年 年初就在 0 1 O
海地和智 利发生 两次破 坏严重的强震 ,2 1年3 E本 0 月 t 1
与地下结 构的动力关系、边界条件等需要特别 关注的三 个方面 ,作简要的分析与评述。
成为城市群 的集聚区域 ,而所在地区第 四纪地层通常较 为深厚 ,浅部软土分布较为普遍 ,软基 的震害放大效应
因此应引起高度关注和重视 J 。
上海 地 区浅部 软土普遍 发育 ,属 于典型 的软土地
1 计算模型 的确立
用有 限元法分析地 震作用 下地 下结构 的动力响应
_收e师 震讲 联n 要 等数技 从(主 作-, 修9能 电8 术 子5 研值 事9 者4 订3 稿@ 系 邮5 究计 地o 简0 电一 日n 话j 箱算 ., 介g 期) i 下女 结e :. 2博 0u zd 构. 陈减 hc O士 in l震 1 y耗 抗 之, - 6 c 毅 5 h l 1 2 0 7 t 与 ,
大断面隧道开挖稳定性数值模拟分析

大断面隧道开挖稳定性数值模拟分析涂健【期刊名称】《《筑路机械与施工机械化》》【年(卷),期】2019(036)011【总页数】5页(P52-55,61)【关键词】隧道工程; 围岩塑性区; 地表沉降; 数值模拟【作者】涂健【作者单位】湖南省交通科学研究院有限公司湖南长沙 410015【正文语种】中文【中图分类】U455.40 引言截至20世纪90年代中期,中国在运营的隧道总数为4 855座,线路总长度约为2 260 km[1]。
这些隧道中,多数以上存在各种各样的质量问题,例如:变形过大致使净空超标的占52.4%,严重漏水的占29.4%,衬砌损坏的占18.3%,通风照明不良的占19.1%。
随着近年来中国隧道工程技术的不断发展和相关理论的完善,大量的高难度隧道如雨后春笋般涌现,如特长隧道、大断面隧道、冻土和高地应力等复杂地质条件隧道、水下隧道。
最新的不完全统计资料表明,到2015年底,中国大陆在运营的公路和铁路隧道总数为25 000余座,总长度约为18 544.4 km[2-3]。
目前中国在隧道数量、运营总里程上已经处于世界前列。
在中国的发达城市,如北京、上海和广州等城市地铁及城铁建设相当健全,且目前建设中或规划拟建城市轨道交通的城市有20余个。
新奥法是先进的隧道施工方法,经过不断的实践、总结和改进,新奥法已经逐渐发展成熟,而且针对中国特殊地质也有了专门的施工方法,并在多个大的公路隧道项目工程中得以应用,如二郎山隧道、西山坪隧道等[4-6]。
但是,在成功的背后,仍有许多需要进一步改进的地方,比如:整体而言仍属于粗放型;施工的总体水平较低,施工机械的自主研发能力不足,多数仍依赖于国外进口;且施工机械化程度低,施工人员所处工作环境较差[7]。
隧道开挖,尤其是大断面隧道开挖中,施工稳定性对于隧道整个建设和使用阶段具有重要的意义,本文主要以某隧道为研究对象,通过利用大型有限差分软件FLAC3D进行数值模拟,并重点对隧道在开挖过程中的地表沉降和围岩塑性区进行分析,以期为类似隧道建设提供参考和借鉴。
盾构隧道近距离下穿城市立交桥施工安全性分析

文章编号:1009 -4539( 2020)12-0124 -03•隧道/地下工程*盾构隧道近距离下穿城市立交桥施工安全性分析吴颖宁(中铁十八局集团有限公司天津300222)摘要:盾构隧道下穿施工和爆破作业对地面设施的安全性影响不可忽视。
本文以广州地铁22号线下穿机电山 庄立交桥施工为工程背景,结合立交桥区段工程地质情况,考虑隧道开挖对其周围平衡力系的作用与影响,采用有 限元软件对下穿立交桥抱工进行静力影响数值模拟分析,同时应用动力学数值模拟方法对典型物理量进行研究总结,据此分析爆破施工对立交桥区段的影响。
结果表明,在采用专项施工方案施工的前提下,隧道下穿开挖和爆破作业对立交桥安全性影响均较小。
关键词:盾构隧道下穿工程爆破荷载数值模拟立交桥段安全性分析中图分类号:U455.43文献标识码:A D O I:10. 3969/j. issn. 1009-4539.2020. 12. 027Analysis on the Construction Safety of Shield Tunnel Crossing UnderneathUrban Overpass with Short DistanceW U Yingning(China Railway 18t h Bureau Group Co. Ltd., Tianjin 300222, China)A b s t r a c t:T h e underpassing construction of shield tunnel and blasting might have great impact on the safety of surface facilities.In order to analyze the influence of blasting construction on overpass section, taking the construction of G u a n g z h o u Metro Line 22 crossing underneath the Jidian village as the engineering b a c kground, this paper uses the finite element software to simulate the static influence of the underpassing overpass construction based o n c o m b i n i n g the engineering geology condition of overpass section a n d considering the effect a n d influence of tunnel excavation o n the surrounding balance force system.M e a n w h i l e,i t uses the m e t h o d of d y n a m i c numerical simulation to study a n d s u m m a r y the typical physical quantities. T h e results s h o w that the excavation of tunnel a n d blasting has finite influences o n the safety of the overpass in this study as the construction process following a specific construction plan.K e y w o r d s:shield tunnel;undercrossing project;blasting l o a d;numerical simulation;overpass section;safety analysis1前言随着我国城市轨道交通建设事业快速发展,轨 道交通建设速度明显加快。
地下交通隧道下穿人防工程数值模拟分析

1 工 程 概 况
某 地下交通隧道近距 离平行下穿 1 埋深约 7 I n
的砖砌 人防工程 ,该砖 砌人 防工程 为建 国初 期建
造 ,地下交通 隧道分左 、右隧道暗挖 ,暗挖断面为
马蹄型 ( 图1 ) ,开挖分设上下 2 个导洞 。暗挖初期
作 者简介:丁振明 ( 1 9 7 7 一) ,男,江西宁都人 ,硕士 ,r af t - c 9 ,,研究方向为地 下岩土工程。E — ma i l : z md i n g2 0 0 1 @1 6 3 . c o m
A b s t r a c t : An a l y s i s o n t r a f i f c t u n n e l t h o u g h t u n d e r t h e a i r - r a i d s h e l t e r wi t h F E M, t h e c o n c l u s i o n s a r e : ( 1 ) t h e d e f o r ma t i o n a n d s t r e s s c h a n g e s s h o w t h e c o r r e c t d e v e l o p i n g o f t h e e n g i n e e i r n g c o n s t r u c t i o n ;( 2 ) t h e
wi l l a p pe a r t h r o ug h wo r k i ng, e ns ur e t h a t i n t he pr oc e s s o f e x c a va t i o n o f s o i l s re t ng t h, a f t e r he t c o n s t r u c —
深基坑变形数值模拟结果与监测数据对比分析

深基坑变形数值模拟结果与监测数据对比分析*戴清宝(浙江恒欣设计集团股份有限公司福建勘察分公司福建泉州362000)摘要笔者以泉州市某基坑支护工程为案例,基坑采用土钉墙的支护型式,设计运用迈达斯计算软件对基坑开挖后的变形情况进行数值模拟计算,结合开挖后的基坑位移监测数据,将基坑变形的数值模拟计算数据与监测数据进行了对比分析㊂关键词深基坑土钉墙迈达斯数值模拟监测中图分类号:T U753.1文献标识码:A 文章编号:1002-2872(2023)11-0173-03随着车库的需求量日渐增长,地下室几乎已成为商品住宅楼及办公楼的标配,地下室的开挖,将影响周边建(构)筑物的安全,基坑支护应运而生㊂土钉墙作为一种最常见的基坑支护型式,有着工艺成熟㊁工期短㊁造价省等优点,成为众多基坑工程的首选方案,在基坑支护工程中应用非常广泛㊂G B55003-2021建筑与市政地基基础通用规范于2022年1月1日起正式实施,该规范第7.1.3条[1]将基坑支护结构及基坑周边土体的变形计算列入强制性条文要求,土钉墙支护体系下的周边土体变形理论计算与工程实际变形量是否存在较大差异?这是一个值得我们考证的内容㊂1工程实例概况工程场地位于泉州市惠安县,场地原为旧民房,场地已整平至ʃ0.000(黄海高程32.60m)㊂场地西侧7 m范围外为民房(1-4F㊁浅基㊁石砌㊁砖混或简易民房㊁持力层为粉质黏土或残积砂质粘性土),北侧民房已拆除,仅存旧围墙㊂南东二侧均为现状水泥路㊂建筑物下设一层整体地下室,基础类型为浅基础,地下室面积约4400m2,支护周长约315m,基坑最大支护深度约6.95m,基坑侧壁安全等级为二级,重要性系数γ0=1.0[2]㊂1.1工程地质概况按地貌类型划分,本场地属冲洪积平原,地势较平缓,据本勘资料,场地内除表层人工填土(Q4m l),第四系土层为冲洪积(Q4a l-p l)及残积(Q4e l)成因,基底为花岗岩类岩石(γ53)㊂工程场地地貌属残积台地地貌单元,场地地层分布情况自上而下分别为:杂填土㊁粉质黏土㊁残积砂质粘性土㊁全风化花岗岩等,物理力学参数见表1,相关地层描述如下:1.1.1杂填土灰黄㊁灰褐等杂色,干,松散,为新近回填(年限<1年),未经专门压实处理,均匀性及密实度差,呈欠固结状态,并具湿陷性,本层以粘性土为主,混含建筑垃圾与少量砂㊁碎石,其中硬质物约占15%~25%;该层场地内均有分布,层厚为0.40~2.40m㊂1.1.2粉质黏土浅黄㊁灰黄色,湿,可塑,主要由粘㊁粉粒组成,土质较均匀,粘性较强,切面稍光滑,无摇振反应,干强度高,韧性中等,含铁锰质氧化物;该层场地内均有分布,层厚为0.90~3.80m,层顶埋深0.40~2.40m㊂1.1.3残积砂质粘性土灰黄色,湿,可塑,捻面稍有光泽,无摇震反应,干强度㊁韧性中等,为花岗岩风化残积形成,成分以粘性土为主,有少量的细粒石英颗粒,粒径>2.0mm的含量范围值为5.9%~14.3%,长石及暗色矿物已全部风化成黏土矿物,具有泡水易软化崩解的特性;该层场地内均有分布,层厚为3.90~9.50m,层顶埋深为1.60~ 4.50m㊂1.1.4全风化花岗岩黄褐色㊁饱和,中粗粒花岗结构,散体状构造,风化显著但不均,标贯击数实测值N>30击/30c m,岩芯呈砂土状,遇水易软化,原生矿物清晰,含多量次生矿物,为极软岩,岩体极破碎,岩石基本质量等级V级,质量指标极差,未发现洞穴㊁临空面㊁风化孤石及 软㊃371㊃(紫砂艺术)2023年11月陶瓷C e r a m i c s *作者简介:戴清宝(1984-),本科,工程师;研究方向为岩土工程㊂弱 夹层;该层场地内均有分布,层厚为0.40~4.30m ,层顶埋深为7.50~12.80m ㊂表1 岩土物理力学参数表地层名称饱和重度γ(k N /m 3)固结快剪С(k P a )固结快剪φ(度)极限粘结强度标准值(f r b K )杂填土18.510.012.015粉质黏土18.622.413.835残积砂质粘性土19.016.223.445全风化花岗岩20.525.025.0601.2 水文地质概况杂填土:透水性强,富水性较弱;粉质黏土㊁残积砂质粘性土㊁全风化花岗岩:含水性与透水性较弱(为弱透水性层)㊂地下水赋存特征为:根据本工程勘察资料,地下水类型为孔隙潜水,赋存于杂填土㊁粉质黏土㊁残积砂质粘性土㊁全风化花岗岩中,主要靠大气降水与地表迳流下渗补给故其富水性受季节性制约㊂工程场地勘察期间测得钻孔孔内初见水位埋深距现地表1.50~2.90m (黄海标高为28.74~30.97m ),稳定水位埋深距现地表2.10~3.60m (黄海标高为28.14~30.27m ),据当地民井调查与建设方提供当地气象部门水文资料,本场地地下水变化幅度1.00~2.00m ,工程场地3~5年最高水位黄海标高为31.00m ;历史最高水位黄海标高为32.30m ㊂图1 支护剖面图1.3 基坑支护方案基坑支护的方式较多,近年来福建沿海一带用的比较多的支护型式有土钉墙㊁拉森钢板桩+预应力锚索㊁S MW 工法桩+预应力锚索㊁S MW 工法桩+钢管内支撑㊁排桩+内支撑等㊂结合本工程周边情况㊁地质条件㊁开挖深度等条件,本基坑工程最终采用土钉墙的支护型式㊂此次对比分析选取本工程案例的其中一个支护剖面进行,选取的支护剖面图见图1㊂2 变形数值模拟分析2.1 模型构成采用M i d a sS o i l w o r k s 计算软件,利用有限元分析法,对经土钉墙加固后的基坑侧壁进行数值模拟变形分析㊂计算模型利用基坑结构的对称性,取典型剖面对基坑侧壁土体进行计算分析,计算范围:基坑坑顶外取基坑开挖深度的2.5倍,基坑坑底以下取基坑开挖深度的1.0倍㊂2.2 数值模拟结果图2 水平位移模拟结果图3 竖向位移模拟结果根据M i d a sS o i l w o r k s 软件计算结果,水平位移最大值约1.8mm ,水平位移模拟结果见图2,竖向位表2 监测点累积位移量统计表监测项目水平位移监测点竖向位移监测点深层水平位移监测点监测点P 6P 7P 8S 6S 7S 8X 3X 4累积位移量(mm )4.5513.516.345.899.547.1310.668.12㊃471㊃ 陶瓷 Ce r a m i c s (紫砂艺术)2023年11月移最大值约14.3mm ,竖向位移模拟结果见图3㊂3 基坑监测实测数据该基坑现地下室外围土方已回填完成,基坑安全隐患已排除,基坑暴露总时长约70天,监测单位共出具52份监测简报,该支护剖面段水平位移监测点编号为P 6㊁P 7㊁P 8,竖向位移监测点编号为S 6㊁S 7㊁S 8,深层水位位移监测点编号为X 3㊁X 4,各监测点最终累积位移量见表2㊂4 对比分析本基坑由建设单位委托具有相应资质的第三方对基坑变形情况进行现场布点㊁监测,监测单位根据施工图及‘建筑基坑工程监测技术规范“[3]的要求实施监测工作,本文假设监测数据为基坑变形情况的真实体现㊂根据监测数据,坡顶水平位移累积位移量最大的点为P 7,累积位移量为13.51mm ,坡顶竖向位累积位移量最大的点为S 7,累积位移量为9.54mm ,深层水平位移累积位移量最大的点为X 3,累积位移量为10.66mm ㊂数值模拟计算该剖面段水平位移最大值1.8mm ,竖向位移最大值14.3mm ,不难发现,数值模拟计算结果与基坑实际位移量存在较大差异,说明数值模拟结果参考价值并不高㊂5 结结基坑变形的数值模拟结果与监测测得的实际变形存在较大差异,即理论与实际存在较大差异,归结为以下几点:(1)数值模拟计算,是将岩土层以参数形式量化后进行的模拟分析,而计算所采用的岩土层物理力学参数,是勘察单位根据现场原位测试或室内试验后所取,其中难免存在差异㊂(2)数值模拟计算是选取剖面段范围最具代表性的地层进行模拟,然而实际上不同位置各地层的埋深㊁层厚等是存在一定差异的㊂(3)理论计算是严格按照设计设定的边界条件进行的,施工现场不大可能和设计设定的边界条件完全一致,包括坡顶荷载㊁支护结构的施工质量等㊂参考文献[1] 中国建筑科学研究院.J G J 120-2012建筑基坑支护技术规程[S ].北京:中华人民共和国住房和城乡建设部,2012.[2] 中华人民共和国住房和城乡建设部.G B55003-2021建筑与市政地基基础通用规范[S ].北京:中华人民共和国住房和城乡建设部,2021.[3] 中华人民共和国住房和城乡建设部.G B50497-2009建筑基坑工程监测技术规范[S ].北京:中华人民共和国住房和城乡建设部,2009.㊃571㊃(紫砂艺术)2023年11月 陶瓷 C e r a m i c s。