兰花资料
兰科植物检索

兰科植物,兰科花卉分属检索表科中文名:兰科科拼音名:lanke科拉丁名:Orchidaceae科学分类界:植物界 Plantae门:被子植物门 Magnoliophyta纲:单子叶植物纲 Liliopsida目:天门冬目 Asparagales科:兰科 Orchidaceae中国植物志:17:1亚科拟兰亚科杓兰亚科 Cypripedioideae树兰亚科兰亚科 Orchidoideae香荚兰亚科Vanilloideae兰科(学名:Orchidaceae植物俗称兰花,亦叫胡姬花,是开花植物中最大、最具多样性的科,约有超过800个属和25,000列出超过30,000另外100,000余个园艺家培养的交配种和变种。
英国皇家植物园的“世界兰花对照表”列出了约24,000个公认的种名,每年还会增加约800个新种。
兰科植物的种类比包括硬骨鱼纲的所有脊椎动物还要多,约占单子叶植物纲所有种类的1/4。
早期的分类系统(克朗奎斯特分类法)将兰科与水玉簪科分类于微子目内,在1998年发表的APG 分类法中归于仙茅目中,而2003年经过改进的以基因亲缘关系分类的APG II 分类法则将其列于天门冬目下,并认为与仙茅科亲缘关系接近。
兰花由于植物区系的极度复杂性,花的所有特征都充分表现对昆虫授粉的高度适应性,并与真菌建立共生关系,被认为是植物演化的顶点。
回到顶部(奇*((乐))欢迎您在()奇*乐植(物(网)查看w w w*z$hiwu%w,*com更多花卉植物种植栽培养护知识各种花卉*图片图谱兰科植物都是多年生草本,生活方式有地生(如红门兰、白芨、绶草等)、附生(或有石生,绝大部分兰花皆有附生习性)和最奇特的腐生(如天麻、山珊瑚、上须兰、蕙兰属的大根兰和多根兰等等),也有少数为攀缘藤本(如香草兰),有须根,附生的有气根;茎直立、悬垂或攀缘;单叶互生,有叶鞘;花因与昆虫的授粉模式而特化出唇瓣,花器构造复杂;假鳞茎是兰科植物特有的器官,主要见于附生兰。
兰花的遗传结构和进化

Evolution through either natural selection or genetic drift is dependent on variation at the genetic and mor-phological levels. Processes that influence the genetic structure of populations include mating systems, effective population size, mutation rates and gene flow among populations. We investigated the patterns of population genetic structure of orchids and evaluated if evolutionary processes are more likely at the indi-vidual population level than at the multipopulation/species level. We hypothesized that because orchid populations are frequently small and reproductive success is often skewed, we should observe many orchids with high population genetic substructure suggesting limited gene flow among pop-ulations. If limited gene flow among populations is a common pattern in orchids, then it may well be an important component that affects the likelihood of genetic drift and selection at the local population level. Such changes may lead to differentiation and evolu-tionary diversification.A main component in evolutionary processes is the necessary condition of isolation. The amount of gene flow among local populations will determine whether or not individual populations (demes) can evolve inde-pendently which may lead to cladogenesis. Usually one migrant per generation is sufficient to prevent populations from evolving independently from other populations when effective population sizes are large. Theoretically, if the gene flow rate, Nm (the effective number of migrants per generation; N = effective pop-ulation size, m = migration rate), is larger than two individuals per generation, then it is sufficient to pre-vent local adaptation while gene flow less than one per generation will likely result in population differen-tiation by selection or genetic drift (Merrell 1981, Roughgarden 1996). If Nm lies between one and two, there will be considerable variation in gene frequen-cies among populations (Merrell 1981). Consequently,populations will have similar genetic structure as if mating were panmictic (Nm >2). Alternatively, if gene flow is low (Nm < 1), populations will have different genetic structures that may result in evolutionary change through either adaptation to the local environ-ments via natural selection or through random effects such as genetic drift.Direct observation of gene flow can be viewed by the use of mark and recapture studies (for mobile organisms, or stained pollen) or tracking marker alle-les (paternity analysis) over a short number of genera-tions. Few orchid studies have attempted to directly observe gene flow and thus far only staining or micro-tagging pollinaria have been used (Peakall 1989, Nilsson et al.1992, Folsom 1994, Tremblay 1994, Salguero-Faría & Ackerman 1999). All these studies examined gene flow only within populations. Indirect methods for detecting gene flow are obtained from allele frequencies and are an estimate of the average long-term effect of genetic differentiation by genetic drift. The alleles are assumed to be neutral so that genetic differentiation based on these markers would be a consequence of drift rather than natural selection. Bohomak (1999) concluded that simple population genetic statistics are robust for inferring gene flow among groups of individuals.The most common approach is the degree of popula-tion differentiation at the genetic level using Wright’s F estimates on data obtained through protein elec-trophoresis or various PCR type approaches. The F statistics separate the amount of genetic variation which can be attributed to inbreeding among closely related individuals in a population: FIS is the inbreed-ing coefficient within individuals; FIT is the result of non random mating within a population and the effect of population subdivision; and a third statistic, FST, is the fixation index due to random genetic drift and the lack of panmixia among populations (Wright 1978).THE GENETIC STRUCTURE OF ORCHID POPULATIONSAND ITS EVO L U T I O N A R Y IMPORTA N C ER AYMOND L. T REMBLAY1,3&J AMES D. A CKERMAN21University of Puerto Rico – Humacao, Department of Biology, Humacao, Puerto Rico, 00791, U.S.A.2University of Puerto Rico – Río Piedras, Department of BiologyP.O. Box 23360, San Juan, Puerto Rico, 00931-3360, U.S.A.3Author for correspondence: raymond@LANKESTERIANA 7: 87-92. 2003.LANKESTERIANA SpeciesReferencesNm(W)Gst Calypso bulbosa (L.) Oakes Alexandersson & Ågren 2000 3.200.072Caladenia tentaculata TatePeakall & Beattie 19967.1010.0346Cephalanthera damasonium (Mill.) Druce Scacchi, De Angelis & Corbo 1991--5--5C ephalanthera longifolia (L.) Fritsch Scacchi, De Angelis & Corbo 1991 2.1510.104Cephalanthera rubra (L.) Rich.Scacchi, De Angelis & Corbo 19910.7610.247Cymbidium goeringii Rchb. f.Chung & Chung 1999 2.300.098Cypripedium acaule Ait.Case 19941.2710.164Cypripedium calceolus L.Case 1993, 1994 1.6310.196Cypripedium candidum Muhl. ex Willd.Case 19943.3710.069Cypripedium fasciculatum Kellogg ex S. Watson Aagaard, Harrod & Shea 1999 6.000.04Cypripedium kentuckiense C. F. Reed Case et al.1998 1.1210.182Cypripedium parviflorum Salisb.var. pubescens (Willd.) O. W. Knight Case et al.19981.2810.163Southern populations Wallace & Case 20000.940.209Northern populations1.570.137var. makasin (Farw.) Sheviak 1.000.199var parviflorum 1.430.149species level0.830.232Cypripedium reginae WalterCase 19940.4710.349Dactylorhiza romana (Sebastiani) SoóBullini et al.2001 3.3210.07Dactylorhiza sambucina (L.) SoóBullini et al.20011.3110.16Epidendrum conopseum R. Br.Bush, Kutz & Anderton 19991.4330.149Epipactis helleborine (L.) Crantz Scacchi, Lanzara & De Angelis 19877.310.033European populations Squirrell et al., 20011.0010.2000.241,40.5064North AmericanHollingsworth & Dickson 19970.09042.5310.2400.791Epipactis youngiana Richards & Porter Harris & Abbott 1997 2.4310.093Eulophia sinensis Miq.Sun & Wong 2001---0.00.1331,30.6533Gooyera procera Ker-Gawl.Wong & Sun 19990.22110.5230.3971,30.3863Gymnadenia conopsea (L.) R. Br.Scacchi & De Angelis 19900.28010.471Gymnadenia conopsea (L.) R. Br. conopsea Soliva & Widmer 19992.960.078Gymnadenia conopsea (L.) R. Br.subsp densiflora (Wahl) E.G. Camus & A. Camus Soliva & Widmer 19990.390.391Lepanthes caritensis Tremblay & Ackerman Carromero, Tremblay & Ackerman 1.300.167(unpublished)Lepanthes rupestris Stimson Tremblay & Ackerman 2001 1.840.170Lepanthes rubripetala Stimson Tremblay & Ackerman 20010.620.270Lepanthes eltoroensis Stimson Tremblay & Ackerman 20010.890.220Lepanthes sanguinea Hook.Carromero, Tremblay & Ackerman 1.450.144(unpublished)Table 1. Estimates of gene flow in orchids. Nm(W) = gene flow estimates based on Wright’s statistics; Gst coeff-cient of genic differentiation among populations. 1Nm calculated by the present authors from Gst or Fst using formula on p. 320 of Hartl & Clark (1989). 2Recalculated using previous formula, original Nm value 3.70. 3Calculated from RAPD markers. 4Calculated from cpDNA. 5No genetic differentiation found among populations. 6Calculated according to Weir and Cockerham’s statistics. 7. Estimated using RAPD’s and AMOVA.88Nº 7T REMBLAY&A CKERMAN- Genetic structure of orchid populationsConsequently, if we make the assumption that the genetic markers sampled are neutral or nearly neutral and that the observed level of FST is a measure of the current gene flow among populations (rather than a historical remnant), then we can evaluate the likelihood that populations are effectively isolated. The scale of FST is from 0 (no population subdivision) to 1.0 (com-plete genetic differentiation among populations).We gathered population genetic data for 58 species of terrestrial and epiphytic orchids from temperate and tropical species. The data are biased toward ter-restrial/temperate species (N = 44). We found only three studies of terrestrial/tropical species and ten epi-phytic/tropical. There is also a bias toward certain taxa: Orchis, Cypripedium, Pterostylis and Lepanthes account for nearly half (30) of the 61 records (Table 1), 10 species of O r c h i s, 7 species each of Cypripedium and Pterostylis, 6 species of Lepanthes,3 species of S p i r a n t h e s, Epipactis, Cephalantheraa n d G y m n a d e n i a, 2 species of D a c t y l o r h i z a, Epipactis, Vanilla and Zeuxine, and one species each of Caladenia, Calypso, Cymbidium, Epidendrum, Eulophia, Goodyera, Nigritella, Paphiopedilum, Platanthera, Tipularia, and Tolumnia.89Mayo 2003Gene flow among populations varies among species ranging from a high of 12 effective migrants per gen-eration in Orchis longicornu(Corrias et al. 1991) to lows of less then 0.2 in Zeuxine strateumatica(Sun & Wong 2001). Assembling the species in groups based on their estimates of gene flow, we note that 18 species have less then one migrant per generation, while 19 species have more than two migrants per generation, and 17 of the species have a migration rates between one and two. No genetic differentiation was found among populations for C e p h a l a n t h e r a d a m a s o n i u m(Scacchi, De Angelis & Corbo 1991) and Spiranthes hongkongensis(Sun 1996). Consequently these two species are excluded from further analysis.O r c h i s species typically have high estimates of gene flow among populations (Scacchi, De Angelis & Lanzara 1990, Corrias et al. 1991, Rossi et al. 1992) whereas Lepanthes and Pterostylis species have much lower gene flow estimates (Tremblay & Ackerman 2001, Sharma, Clements & Jones 2000; Sharma et al.2001). However even within a genus variation in gene flow can be extensive (Table 1).Are there phylogenetic associations with gene flow? The data for O r c h i s(mean Nm = 5.7), L e p a n t h e s(mean Nm = 2.1) and P t e r o s t y l i s( m e a n Nm = 1.0) are suggestive, but much more extensive sampling is needed for both temperate and tropical species. Curiously, L e p a n t h e s and O r c h i s have very different population genetic parameters yet both are species-rich genera and are likely in a state of evolu-tionary flux. It seems to us that orchids have taken more than one expressway to diversification. For the group of species which has more than 2 migrants per generation local populations will not evolve indepen-dently, but as a group, consequently local morpholog-ical and genetic differences among groups will be wiped out, and populations will become homoge-neous if gene flow continues at the level. When gene flow is high, selection studies from different popula-tions should be evaluated together (Fig. 1).For populations that have less than one migrant perLANKESTERIANAFigure 1: Distribution of mean (s.e.) gene flow (Nm) among genera of Orchids. Bars without error bars of single datap o i n t s.90Nº 7T REMBLAY&A CKERMAN- Genetic structure of orchid populationsgeneration, local populations can evolve independent-ly, and evolutionary studies should be done at the local level. In small populations, we may expect genetic drift to be present and selection coefficients should be high to counteract the effects of drift.For species with intermediate gene flow it is proba-bly wise to evaluate evolutionary processes at the local and multi-population/species level. We expect variance in migration rates to be large because of the skewed reproductive success among individuals, time periods and populations. Consequently, the outcome of the evolutionary process will likely depend on the amount and variation of the migration events and consistency in migration rates in time. If variance in gene flow through space and time is small, then the genetic dif-ferentiation will be more or less stable. But, for exam-ple, if variance in gene flow is high, with some periods having high gene flow followed by little or no gene flow for an extended period of time, it is possible that through natural selection and genetic drift local popula-tions might differentiate sufficiently for cladogenesis during the period of reduced immigration.Species with less than one migrant per population are basically unique evolutionary units evolving inde-pendently from other local populations. In popula-tions with large Ne (> 50), it is likely that natural selection will dominate evolutionary processes while if Ne is small (< 50) genetic drift and selection can both be responsible for evolution. Consequently for these species, local adaptation to specific environ-mental conditions is possible.This survey of population genetics studies of orchids shows that multiple evolutionary processes have likely been responsible for the remarkable diver-sification in orchids.L ITERATURE C ITEDAagaard J.E., R.J. Harrod & K.L. Shea. 1999. Genetic vari-ation among populations of the rare clustered lady-slip-per orchid (Cypripedium fasciculatum) from Washington State, USA. Nat. Areas J. 19: 234-238Ackerman J.D. & S. Ward. 1999. Genetic variation in a widespread epiphytic orchid: where is the evolutionary potential? Syst. Bot. 24: 282-291.Alexandersson, R. & J. Ågren. 2000. Genetic structure of the nonrewarding bumblebee pollinated Calypso bul-bosa. Heredity 85: 401-409Arduino, P., F. Verra, R. Cianchi, W. Rossi, B. Corrias, & L. Bullini. 1996. Genetic variation and natural hybridization between Orchis laxiflora and O r c h i s palustris(Orchidaceae). Pl. Syst. Evol. 202: 87-109. Arft, A.M. & T.A. Ranker. 1998. Allopolyploid origin and population genetics of the rare orchid Spiranthes diluvi-alis. Am. J. Bot. 85: 110-122.Bohomak, A.J. 1999. Dispersal, gene flow, and population structure. Quart. Rev. Biol. 74: 21-45.Bullini, L., R. Cianchi, P. Arduino, L. De Bonis, M. C. Mosco, A. Verdi, D. Porretta, B. Corrias & W. Rossi. 2001. Molecular evidence for allopolyploid speciation and a single origin of the western Mediterranean orchid Dactylorhiza insularis(Orchidaceae). Biol. J. Lin. Soc. 72: 193-201.Bush, S.T., W.E. Kutz & J.M. Anderton. 1999. RAPD variation in temperate populations of epiphytic orchid Epidendrum conopseum and the epiphytic fern Pleopeltis polypodioides. Selbyana 20: 120-124. Case, M.A. 1993. High levels of allozyme variation within Cypripedium calceolus(Orchidaceae) and low levels of divergence among its varieties. Syst. Bot. 18: 663-677. Case, M.A. 1994. Extensive variation in the levels of genetic diversity and degree of relatedness among five species of Cypripedium(Orchidaceae). Amer. J. Bot. 81: 175-184.Case, M.A., H.T. Mlodozeniec, L.E. Wallace & T.W. Weldy. 1998. Conservation genetics and taxonomic sta-tus of the rare Kentucky Lady’s slipper: C y p r i p e d i u m k e n t u c k i e n s e(Orchidaceae). Amer. J. Bot. 85: 1779-1779.Chung, M.Y. & M.G. Chung. 1999. Allozyme diversity and population structure in Korean populations of Cymbidium goeringii(Orchidaceae). J. Pl. Res. 112: 139-144.Corrias, B., W. Rossi, P. Arduino, R. Cianchi & L. Bullini. 1991. Orchis longicornu Poiret in Sardinia: genetic, morphological and chronological data. Webbia 45: 71-101.Folsom, J.P. 1994. Pollination of a fragrant orchid. Orch. Dig. 58: 83-99.Harris, S.A. & R. J. Abbott. 1997. Isozyme analysis of the reported origin of a new hybrid orchid species, Epipactis y o u n g i a n a(Young’s helleborine), in the British Isles. Heredity 79: 402-407.Hedrén, M., E. Klein & H. Teppner. 2000. Evolution of polyploids in the European orchid genus N i g r i t e l l a: Evidence from allozyme data. Phyton 40: 239-275. Hollingsworth, P.M. & J.H. Dickson. 1997. Genetic varia-tion in rural and urban populations of Epipactis helle-b o r i n e(L.) Crantz. (Orchidaceae) in Britain. Bot. J. Linn. Soc. 123: 321-331.Li, A, Y., B. Luo & S. Ge. 2002. A preliminary study on conservation genetics of an endangered orchid (Paphiopedilum micranthum) from Southwestern China. Bioch. Gen. 40: 195-201.Merrell, D.J. 1981. Ecological Genetics. University of Minnesota Press, Minneapolis, Minnesota.Nielsen, L.R. & H.R. Siegismund. 2000. Interspecific dif-ferentiation and hybridization in V a n i l l a s p e c i e s (Orchidaceae). Heredity 83: 560-567.91Mayo 2003LANKESTERIANANilsson, L.A., E. Rabakonandrianina & B. Pettersson. 1992. Exact tracking of pollen transfer and mating in plants. Nature 360: 666-667.Peakall, R. 1989. A new technique for monitoring pollen flow in orchids. Oecologia 79: 361-365.Peakall, R. & A. J. Beattie. 1996. Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentaculata. Ecology 50: 2207-2220. Rossi, W., B. Corrias, P. Arduino, R. Cianchi & L. Bullini L. 1992. Gene variation and gene flow in Orchis morio (Orchidaceae) from Italy. Pl. Syst. Evol. 179: 43-58. Roughgarden, J. 1996. Theory of population genetics and evolutionary ecology: An Introduction. Prentice Hall, Upper Saddle River, NJ, USA.Salguero-Faría, J.A. & J.D. Ackerman. 1999. A nectar reward: is more better? Biotropica 31: 303-311. Scacchi, R., G. De Angelis & R.M. Corbo. 1991. Effect of the breeding system ion the genetic structure in C e p h a l a n t h e r a spp. (Orchidaceae). Pl. Syst. Evol. 176: 53-61.Scacchi, R., G. De Angelis & P. Lanzara. 1990. Allozyme variation among and within eleven Orchis species (fam. Orchidaceae), with special reference to hybridizing apti-tude. Genetica 81: 143-150.Scacchi, R. and G. De Angelis. 1990. Isoenzyme polymor-phisms in G y m n a e d e n i a[sic] c o n o p s e a and its infer-ences for systematics within this species. Bioch. Syst. Ecol. 17: 25-33.Scacchi, R., P. Lanzara & G. De Angelis. 1987. Study of electrophoretic variability in Epipactis heleborine ( L.) Crantz, E. palustris(L.) Crantz and E. microphylla (Ehrh.) Swartz (fam. Orchidaceae). Genetica 72: 217-224.Sharma, I.K., M.A. Clements & D.L. Jones. 2000. Observations of high genetic variability in the endan-gered Australian terrestrial orchid Pterostylis gibbosa R. Br. (Orchidaceae). Bioch. Syst. Ecol. 28: 651-663. Sharma, I.K., D.L. Jones, A.G. Young & C.J. French. 2001. Genetic diversity and phylogenetic relatedness among six endemic P t e r o s t y l i s species (Orchidaceae; series Grandiflorae) of Western Australia, as revealed by allozyme polymorphisms. Bioch. Syst. Ecol. 29: 697-710.Smith, J.L., K.L. Hunter & R.B. Hunter. 2002. Genetic variation in the terrestrial orchid Tipularia discolor. Southeastern Nat. 1: 17-26Soliva, M. & A. Widmer A. 1999. Genetic and floral divergence among sympatric populations of Gymnadenia conopsea s.l. (Orchidaceae) with different flowering phenology. Int. J. Pl. Sci. 160: 897-905. Squirrell, J., P.M. Hollingsworth, R.M. Bateman, J.H. Dickson, M.H.S. Light, M. MacConaill & M.C. Tebbitt. 2001. Partitioning and diversity of nuclear and organelle markers in native and introduced populations of Epipactis helleborine(Orchidaceae). Amer. J. Bot. 88: 1409-1418.Sun, M. 1996. Effects of Population size, mating system, and evolution origin on genetic diversity in S p i r a n t h e s sinensis and S. hongkongensis. Cons. Biol. 10: 785-795. Sun, M. & K.C. Wong. 2001. Genetic structure of three orchid species with contrasting breeding system using RAPD and allozyme markers. Amer. J. Bot. 88: 2180-2188.Tremblay, R.L. 1994. Frequency and consequences of multi-parental pollinations in a population of Cypripedium calceolus L. var. pubescens(Orchidaceae). Lindleyana 9: 161-167.Tremblay, R.L & J.D. Ackerman. 2001. Gene flow and effective population size in Lepanthes(Orchidaceae): a case for genetic drift. Biol. J. Linn. Soc. 72: 47-62. Wallace, L.A. 2002. Examining the effects of fragmenta-tion on genetic variation in Platanthera leucophaea (Orchidaceae): Inferences from allozyme and random amplified polymorphic DNA markers. Pl. Sp. Biol 17: 37-39.Wallace, L.A. & M. A. Case. 2000. Contrasting diversity between Northern and Southern populations of Cypripedium parviflorum(Orchidaceae): Implications for Pleistocene refugia and taxonomic boundaries. Syst. Bot. 25: 281-296.Wong, K.C. & M. Sun. 1999. Reproductive biology and conservation genetics of Goodyera procera (Orchidaceae). Amer. J. Bot. 86: 1406-1413.Wright, S. 1978. Evolution and the genetics of popula-tions. Vol. 4. Variability within and among natural pop-ulations. Chicago, The University of Chicago Press.Raymond L. Tremblay is an associate professor at the University of Puerto Rico in Humacao and the graduate faculty at UPR- Río Piedras. He obtained his B.Sc. with Honours at Carleton University, Ottawa, Canada in 1990 and his PhD at the University of Puerto Rico in Rio Piedras in 1996. He is presently the chairman of the In situ Orchid Conservation Committee of the Orchid Specialist Group. He is interested in evolutionary and con-servation biology of small populations. Presently his interest revolves in determining the life history characters that limit population growth rate in orchids and evaluating probability of extinction of small orchid populations. James D. Ackerman, Ph.D., is Senior Professor of Biology at the Univesrity of Puerto Rico, Río Piedras. He is an orchidologist, studying pollination an systematics.92Nº 7。
兰花的全部资料知识

兰花的全部资料知识
兰花是一种广泛种植的花卉,具有高雅的花姿和迷人的芳香,深受人们的喜爱。
以下是兰花的全部资料知识:
1.分类
兰花分为几百个品种,按照花朵颜色和形状,可以分为以下几类:
- 鞍型兰:花朵像马鞍,一般为白色或淡黄色。
- 鞭兰:花朵细长,一般为黄色或白色。
- 洛神兰:花朵呈扇形,一般为紫色或粉色。
- 仙客来兰:花朵呈喇叭形,一般为红色或黄色。
- 春兰:花朵蓝色或紫色,冬春开放,芳香扑鼻。
2.生长环境
兰花生长在亚热带和热带气候环境中,适合在温暖湿润、光照充足的环境中生长。
兰花生长的最适宜温度为20-30℃,相对湿度在60%-80%左右。
3.栽培技巧
兰花的栽培技巧大致分为以下几点:
- 选择良好的介质,如珍珠岩、松针、木炭等。
- 维护良好的通风和湿度,可通过定时喷水和加湿器保持适当湿润度。
- 控制施肥,每两周施一次适当的液体肥。
- 适当修剪,可使兰花生长更加健康。
4.花语意义
兰花是高雅、清纯、高贵的象征,也代表着静态与优雅。
不同颜色的
兰花也有不同的花语意义:
- 红色兰花:热爱,热情;
- 紫色兰花:浪漫,神秘;
- 白色兰花:清纯,高雅;
- 黄色兰花:富有生命力,快乐。
总之,兰花是一种美丽而神秘的花卉,不论是室内摆放还是户外栽种,都具有震撼人心的美丽。
兰花的资料

兰花的资料兰花的资料如下:中国栽培兰花约有两千多年的历史。
据载早在春秋末期,越王勾践已在浙江绍兴的诸山种兰。
魏晋以后,兰花已用于点缀庭院。
古代人们起初是以采集野生兰花为主,至于人工栽培兰花,则从宫廷开始。
魏晋以后,兰花从宫廷栽培扩大到士大夫阶层的私家园林,并用来点缀庭园,美化环境,正如曹植《秋兰被长坡》一诗中的描写。
直至唐代,兰蕙的栽培才发展到一般庭园和花农培植,如唐代大诗人李白写有“幽兰香风远,蕙草流芳根”等诗句。
宋代是中国艺兰史的鼎盛时期,有关兰艺的书籍及描述众多。
如宋代罗愿的《尔雅翼》有“兰之叶如莎,首春则发。
花甚芳香,大抵生于森林之中,微风过之,其香蔼然达于外,故曰芝兰。
江南兰只在春劳,荆楚及闽中者秋夏再芳”之说。
南宋的赵时庚于1233年写成的《金漳兰谱》可以说是中国保留至今最早一部研究兰花的著作,也是世界上第一部兰花专著。
全书分三卷五部分,对紫兰(主要是墨兰)和白兰(即素心建兰)的30多个品种的形态特征作了简述,并论及了兰花的品位。
继《金漳兰谱》之后,王贵学又于1247年写成了《王氏兰谱》一书,书中对30余个兰蕙品种作了详细的描述。
此外,宋代还有《兰谱奥法》一书,该书以栽培法描述为主,分为分种法、栽花法、安顿浇灌法、浇水法、种花肥泥法、去除蚁虱法和杂法等七个部分。
至于吴攒所著的《种艺必用》一书,也对兰花的栽培作了介绍。
1256年,陈景沂所著的《全芳备祖》对兰花的记述较为详细,此书全刻本被收藏于日本皇宫厅库,1979年日本将影印本送还中国。
在宋代,以兰花为题材进入国画的有如赵孟坚所绘之《春兰图》,已被认为是现存最早的兰花名画,现珍藏于北京故宫博物院内。
明、清两代,兰艺又进入了昌盛时期。
随着兰花品种的不断增加,栽培经验的日益丰富,兰花栽培已成为大众观赏之物。
此时有关描写兰花的书籍、画册、诗句及印于瓷器及某些工艺品的兰花图案数目较多,如明代张应民之《罗篱斋兰谱》,高濂的《遵生八笺》一书中有关兰的记述。
兰花的科普知识资料

兰花的科普知识资料兰花是一种被广泛种植和喜爱的花卉,具有高雅的花姿和迷人的花香。
它属于兰科植物,是一种多年生草本植物。
兰花具有丰富的品种和种类,其中有些具有观赏价值,有些则具有药用价值。
下面将为大家介绍兰花的科普知识。
一、兰花的分类兰花的分类繁多,根据不同的特征可以分为兰花、兰草、兰木和兰草等。
兰花是指那些具有观赏价值的兰科植物,兰草是指那些具有草本性质的兰科植物,兰木是指那些具有木本性质的兰科植物,兰草是指那些具有草本性质的兰科植物。
二、兰花的特点兰花的特点主要有以下几个方面:1. 兰花具有高雅的花姿和迷人的花香,是一种非常受欢迎的观赏花卉。
2. 兰花的花朵形态各异,颜色丰富多样,有红色、黄色、紫色等多种颜色。
3. 兰花的花期较长,可以欣赏到较长时间的花海。
4. 兰花的生长周期较长,需要较长的时间才能开花。
三、兰花的养殖技巧兰花的养殖技巧主要包括以下几个方面:1. 兰花喜欢温暖、湿润的环境,可以选择在室内或温室中种植。
2. 兰花对光照的要求较高,一般需要每天至少6小时的直接阳光照射。
3. 兰花对土壤的要求较高,需要使用透气性好、排水性良好的土壤。
4. 兰花的浇水要适量,避免积水,以免导致根部腐烂。
5. 兰花需要定期施肥,可以选择使用专门的兰花肥料。
6. 兰花的病虫害防治需要注意,可以定期检查花叶和花茎,及时发现并处理。
四、兰花的观赏价值兰花具有很高的观赏价值,它的花姿高雅,花色丰富多样,花香迷人,是一种非常受欢迎的观赏花卉。
无论是在花坛、花园还是盆栽中,兰花都能给人们带来视觉上的享受和心灵上的宁静。
兰花的观赏价值不仅体现在花朵上,还体现在整个植株的形态、叶片的质感以及花茎的线条上。
五、兰花的药用价值除了观赏价值,兰花还具有一定的药用价值。
兰花中含有丰富的挥发油、芳香物质和酚类化合物等,具有清热解毒、祛湿利尿、养颜美容等功效。
兰花可以用于治疗头痛、失眠、口腔溃疡等症状,也可以用于调理肌肤,使肌肤更加光滑细腻。
兰花播种时间是什么,怎么播种和养护

xx播种时间是什么,怎么播种和养护?
一、播种时间
1、种植兰花的时间可以选在每年的3-4月份,春季是播种的好时候,这个时候的气温、湿度、蒸腾量都是全年最适合植株生长的,而且在发芽期之后的生长期温度也是非常适宜的,兰花是非常喜欢温暖的,稍耐阴,如果气温低于-4℃,会直接影响到植株的生长速度。
二、播种及养护
1、选种:我们可以通过线上或者在当地的门店买到合适的种子。
2、土壤:可以周边的山上收集一些腐烂的叶子,或者表皮的土,带回家之后掺进少许珍珠岩,制作出蓬松透气的并且透水性比较好的土壤。
3、花盆:养殖它选择中等大小的盆就可以了,盆太大容易导致植料太干,会烂根。
4、光照:可以将它摆放在南向阳台或者院子内,春冬季节让它接受全日光,夏秋季节时,当阳光这时使人感到不舒服时,就要给兰花遮阳了。
5、浇水:它对水质的要求是非常高的,不能过于干也不能过涝,如果实在拿捏不准浇水的度,可以剥开盆土2-3米深的地方试一下,如果干了就可以浇水了,如果没干,就可以在过一两天在浇水。
1/ 1。
兰花的寓意

兰花的寓意
兰花的寓意是高雅、高洁、爱国、淡泊、坚贞不渝。
它被称为是花中君子,因其品质非常高洁。
它和水仙、菊花、菖蒲被称为是花中四雅,另外,它和竹子、菊花、梅花被称为是“四君子”。
扩展资料
兰花是一种兰科植物,广泛分布于中国各地。
中国栽培兰花约有两千多年的历史,历来把兰花看作是高洁典雅的象征,是中国十大名花之一。
兰花一般为附生或地生草本,叶数枚至多枚,通常生于假鳞茎基部或下部节上,二列,带状或罕有倒披针形至狭椭圆形,基部一般有宽阔的鞘并围抱假鳞茎,有关节;总状花序具数花或多花,颜色有白、纯白、白绿、黄绿、淡黄、淡黄褐、黄、红、青、紫。
自古以来中国人民爱兰、养兰、咏兰、画兰,古人曾有“观叶胜观花”的'赞叹。
人们更欣赏兰花以草木为伍,不与群芳争艳,不畏霜雪欺凌,坚忍不拔的刚毅气质。
兰花的调查与研究ppt

二.品种及其分布
兰花有地生和附生两种,兰花一般分 为洋兰和国兰两大类,洋兰主要分布在热 带地区,著名的有蝴蝶兰和鹤顶兰; 由于地生兰大部分份品种原产中国, 因此兰花又称中国兰,并被列为中国十大 名花之首。中国兰花主要为春兰、蕙兰、 建兰、寒兰、墨兰、春剑、莲瓣兰七大类, 有上千种园艺品种。
中国兰花的分布: 春兰和惠兰:甘肃、陕西、河南、安徽、湖北、 湖南、江西、浙江。 寒兰、台兰、兔耳兰:湖南、江西、浙江、福 建、台湾、广东、广西、云南、贵州。 建兰: 浙江、江西、福建、台湾、广东、广西、 云南、贵州。 墨兰: 福建、台湾、广东、广西、海南、云南。 虎头兰:四川、云南、西藏、贵州、海南。
“兰花”在中国
• 在中国,梅“兰”竹菊被誉为四君子,千百年来以其清 雅淡泊的品质,一直为世人所钟爱,成为一种人格品性的文化 象征。 自古以来人们就把兰花视为高洁、典雅、爱国和坚贞不 渝的象征. 楚国诗人屈原就以“秋兰兮清清,绿叶兮紫茎,满堂兮美 人”这样的诗句来咏兰。 人们画兰花,一般都寄托一种幽芳高洁的情操。大概始于 唐代。到了宋朝,画兰花的人便多了起来,据说苏轼就曾画过 兰花,而且花中还夹杂有荆棘,寓意君子能容小人。南宋初, 人们常以画兰花来表示一种宋邦沦覆之后不随世浮沉的气节, 当时的赵孟坚和郑思肖,被同称为墨兰大家。
四调查方法
4.1调查前的准备 4.2调查工作 4.3资料整理
4.1调查前的准备
为便于识别和鉴定兰花种类, 采集到比 较完整的植物标本, 具体调查时间尽量安排 在目的物种的花期或果期进行。最好在每年 的3-5月,兰花花期进行调查。 阅读大量文献对兰花有进一步的认识, 包括形态特征,野外识别的特点以及分布范 围。
1.1 形态特征
• • • • • • • • • 1)兰花是多年生草本植物。 2)根肉质肥大,无根毛,有共生菌。具有假鳞茎, 外包有叶鞘; 3)叶线形或剑形,革质,直立或下垂; 4)花单生或成总状花序,花梗上着生多数苞片, 花两性,具芳香。花冠由3枚萼片与3枚花瓣及 蕊柱组成; 5)左右对称、唇瓣、花粉块和合蕊柱是兰科植物的 基本特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰花资料春兰荷瓣1大富贵:春兰荷瓣代表品种介绍:特征:新芽紫红色,叶长20--25cm,最长可达32cm,宽1。
2-1.5cm左右,边叶呈船形,斜立与斜垂叶姿,叶尖钝收,叶端起兜具承露形,叶面较平坦,有行龙,叶缘细齿不明显,叶色翠绿有光泽,叶质厚,短壮苗叶柄较粗,甲壳短圆紧抱叶柄。
其草型为标准的荷瓣花草型。
花苞紫红缀深紫筋麻,层层马蹄壳,铺满紫砂晕,俗称荷花形彩壳,花苞圆整,花蕊俗称木鱼槌头。
花梗绿底浅红色,短圆粗壮,梗高5--10cm,外三瓣短圆,收根放角,紧边,瓣端内兜呈拱抱形,主瓣呈上遮状,侧萼呈一字肩或微落,花质翠绿糯润,外三瓣中偶有红线,蚌壳捧光洁圆润,捧内侧有紫红线,大阔圆舌,舌面红点呈“U”字形并鲜明。
花形华贵,花品端正,“大富贵”壮苗之草可开一葶双花为春兰大型荷瓣花的代表之种。
,叶易出现黑斑病,幽香。
瓣型:荷瓣历史:1909年上海花窖选出。
大富贵、团荷。
湖州双林郑同梅与杭州吴淳白君分别所得。
特征:新芽紫红色,叶长20--25cm,最长可达32cm,宽1。
2-1.5cm左右,边叶呈船形,斜立与斜垂叶姿,叶尖钝收,叶端起兜具承露形,叶面较平坦,有行龙,叶缘细齿不明显,叶色翠绿有光泽,叶质厚,短壮苗叶柄较粗,甲壳短圆紧抱叶柄。
其草型为标准的荷瓣花草型,成为人们选择荷瓣花的依据。
花苞紫红缀深紫筋麻,层层马蹄壳,铺满紫砂晕,俗称荷花形彩壳,花苞圆整,花蕊俗称木鱼槌头。
花梗绿底浅红色,短圆粗壮,梗高5--10cm,外三瓣短圆,有“八分长兮四分宽”之称,收根放角,紧边,瓣端内兜呈拱抱形,主瓣呈上遮状,侧萼呈一字肩或微落,花质翠绿糯润,外三瓣中偶有红线,蚌壳捧光洁圆润,捧内侧有紫红线,大阔圆舌,舌面红点呈“U”字形并鲜明。
花形华贵,花品端正,“大富贵”壮苗之草可开一葶双花为春兰大型荷瓣花的代表之种。
,叶易出现黑斑病。
目前“大富贵”已出现爪艺、大履轮艺叶艺品;出素心品,称之“玉涛”。
2翠盖荷品种介绍:浙江上虞四明山区,1988年绍兴县漓渚镇三社村赵银泉发现培育。
叶质酷似老种“环球荷鼎”,叶形又似“大富贵”,叶长17厘米,宽l.2厘米,外三瓣短宽圆,收根放角,蚌壳捧紧圆,大圆舌不反卷,中窠圆正,嫩绿色。
幽香醇浓。
为新发现荷瓣之珍稀精品。
3郑同荷品种介绍:新芽粗短,茄紫红色,比大富贵的新芽颜色要深一些。
大垂叶、每苗有叶7至8枚,老株边叶歪扭,叶宽1.2至1.5厘米,长约18至25厘米。
叶缘周边向内微卷,叶面沟槽浅,有行龙,锯齿极细,尖端钝而微起兜,叶色浓绿,叶质厚滑坚韧细腻,叶片虽阔,叶脉极细润,形态短劲雄伟。
花莛不高,仅仅6至8厘米,绿底淡粉红色,花形特大,直径在6厘米以上,花色美丽,浓香,花一般开在叶下。
3片萼片皆阔,为宽广的圆形。
萼片紧边内凹,嫩绿翠色,微落肩,蚌壳捧。
花形状丽,花品端正。
4美芬荷品种介绍:1990年春,由李兆华在宁波鄞东太白山脉掘得。
以其母名命名。
花型美丽大方,三瓣短阔,色翠绿,短圆捧,舌圆伸而不卷,舌上有大元宝形红点。
斜立叶,短宽厚壮,叶尖钝,有光泽,紫银红苞叶。
此花的捧又深又圆把舌夹住,兰草健壮时花葶可高达12公分以上。
幽香阵阵。
实为荷瓣中珍稀新品种。
5天一荷瓣型:荷瓣历史:1983年由舟山刘建平在舟山本岛掘得。
特征:外三瓣短宽,收根放角,短圆蚌壳捧,大圆舌,除捧瓣有放射状紫红线,外三瓣基本净绿。
花葶高,叶深绿直立。
6大魁荷瓣型:荷瓣历史:民国初无名氏选出。
特征:外三瓣短阔,收根放角,蚌壳捧,大刘海舌。
花葶高,色不净绿。
叶似同荷!叶子半环形,浓绿色,叶柄粗壮,脚壳紧,叶梢尖长,锋利,叶中长阔,宽约1至1.2厘米,,长约22至26厘米,叶缘周边向内微卷,叶肉较薄,叶脉细,叶沟浅。
锯齿细。
萼片呈长椭圆形,头尖,基部狭窄,形似橄榄果,副瓣向下落二三分,三瓣拱抱开放。
蚌壳捧,狭长圆头,捧内有紫红色粗条纹,大圆舌,白玉色,下挂向后卷曲,有马蹄状U型斑点。
大魁荷花干高10至12厘米,紫红色,顶上一节转绿透紫红色,花朵大,直径约5至5.5厘米,花色不净绿,暗绿色,无光泽。
7宪荷新芽紫红色,叶子微下垂,老叶呈镰形,有叶子6到8片,排列整齐,叶柄紧收,叶质厚,叶尖短,钝,叶幅宽阔,宽有1.2至1.4厘米,长约27至30厘米,叶缘有锯齿,叶面有行龙,深绿色,有光泽。
萼片大圆头,肉厚,滋润,收根,微放角,主瓣端微内卷,副瓣脚略长,边平,微落肩,嫩绿色,有紫晕,并有紫红色经纹,中间有一条特别醒目,给人以热情奔放,情趣盎然的感觉,蚌壳捧心,短如铜钱,背部弧度较小,肉厚,嫩翠绿色,大圆舌,水白色,质厚,面缀二个拉得很长的红线条,优美大方,这是宪荷的标记,久开舌瓣下挂后卷,宪荷花大,五瓣分窠,花直径可以达到5.5至6厘米,花莛水红色,高11至14厘米,翠绿色带有紫晕的花朵高挂在叶面之上,花绿莛红,刺激人们的荣耀感和审美感,是我国第一代春兰荷瓣名花珍品。
8端秀荷花葶高.外三瓣短阔,紫红筋纹隐约可风,收根细,紧边放角,两副瓣平肩:蚌壳捧心,大圆舌,舌面缀鲜艳红点.苞片紫红色.草型:叶短宽,长20-25厘米,呈斜立状,形态优美,叶鞘紧抱不散,叶色深绿,富有光泽,边叶起兜,叶性柔中有刚10环球荷鼎历史:绍兴贾山头村兰农胡七十,在上虞大舌埠山小草湾掘得1922年,以800银元卖给上海郁孔照,曾在上海兰界引起轰动。
草型:叶长25--30cm,叶宽0.8cm左右,阔而环,呈弓形,为春兰荷瓣阔叶中最长、阔、弓形的典型品种。
叶姿斜立或直立,偶呈扭曲状,叶质极硬,有U型沟槽,两侧叶缘内卷,叶尖收尖急,叶端承露或内扣状,叶缘锯齿极细密.叶脚收脚好,中叶收脚更细,叶色稍深绿,有光泽。
叶芽绿色,细看有不明显的紫晕,脚壳硬呈内扣状,紧抱叶脚。
花型:花苞水白浅绿色,缀浅紫筋,花亭绿白色,细看有浅紫晕,花梗大约在6cm--10cm左右,外三瓣收根放角,蚌壳捧,刘海舌,花色嫩绿,瓣背有隐筋纹。
11五彩蝴蝶五彩蝶:1983年春,由浙江宁波舟山选出,后卖于绍兴漓渚镇三代兰园主人诸水亭培育。
新芽鲜紫红色,叶长25-30厘米,宽0.6厘米左右,叶色深绿。
叶姿半垂。
花葶高约12-15厘米,茎色紫绿,苞片淡紫色,缀有紫色粗筋脉。
外三瓣短阔,主瓣盖抱捧心,两侧萼平肩,瓣呈菱角状,瓣端向后翻;整个副瓣有半幅以上蝶化---有绿色化成白色并缀有红斑。
舌化明显,红点呈横条形,红点对称。
花色红、白、绿三色分明,艳丽好看!唇瓣为大圆舌,舌面有“U”形红斑。
淡黄色的蕊柱基部有鲜艳夺目的大红斑块。
三代兰园诸水亭,养育兰花真投情;春兰新品五彩蝶,展翅飞舞显身影。
梅瓣:1荣祥梅原产地:浙江余杭品种类别:春兰/梅瓣出产时间:1919年春品种命名:应荣祥品种介绍:新芽淡绿色,半立叶,老叶半环形,叶质厚,叶脉浅,浓绿色,少光泽。
叶尖稍钝,脚壳低。
萼片短圆厚实,着根结圆,紧边内凹呈大兜状,萼片会多皱,蚕蛾捧心,紧边有兜,大如意舌,扁圆,端正,朱点分布得体,鲜艳清晰,中等花型,五瓣分窠,嫩翠绿色,花干绿色坚挺,出架高,由于花期干湿度之故,舌瓣端部也有微向下挂的。
2廿七梅品种名:廿七梅别名:原产地:浙江品种类别:春兰/梅瓣出产时间:1980年品种命名:品种介绍:瓣型:梅瓣历史:1980年棠棣诸廿七选出。
特征:外三瓣圆头收根,有尖峰,质厚。
软蚕蛾捧,刘海舌。
平肩,花翠绿。
花品端正。
苞叶淡紫红,葶商,叶半立。
绿英品种名:绿英别名:原产地:苏州品种类别:春兰/梅瓣出产时间:清.光绪品种命名:品种介绍:瓣型:梅瓣历史:清光绪壬寅年由苏州顾翔宵选出。
1902年归杭州吴淳白。
特征:外三瓣大头细收根,蚕蛾捧,大如意舌。
花、葶青绿色,平肩,花品清秀,叶半垂,叶尖稍钝,叶脉深,叶质厚,叶面有光。
健草健花。
瑞梅品种名:瑞梅别名:原产地:浙江绍兴品种类别:春兰/梅瓣出产时间:抗战前品种命名:谢瑞山品种介绍:瓣型:梅瓣历史:抗战前绍兴棠棣刘阿余选出,后卖给苏州谢瑞山,谢命名为瑞梅。
特征:外三瓣紧圆,瓣端有尖峰,分窠,刘海舌。
花平肩,花容端正,花期长。
叶呈半垂,苞叶浅紫绿色,叶色暗绿,叶尖锐、叶脉浅,脚壳高。
繁殖快,健花翠桃品种名:翠桃别名:原产地:浙江品种类别:春兰/梅瓣出产时间:(见介绍)品种命名:品种介绍:“翠桃”最早见著于许霁楼的《兰蕙同心录》(1865年):“翠桃:一名品莲,新种也。
出浦江山中,为上海林天颐参号翰之先生植。
花阔八分,长一寸,头尖色绿,梗细如灯草。
叶狭,真奇种也。
”并附白描图一幅。
1923年吴恩元所著的《兰蕙小史》对此品没有介绍。
到了三十年代末期《兰华谱》出版,在这部日本人所著的中国兰花谱(日本产的极少)中,有“翠桃”的记载,所记与《兰蕙同心录》基本相似:“翠桃,为距今约百年前,于浦江的山中所发见。
后为林元颐参号(汉药铺)翰氏所培养,一名品莲,号称名品。
叶姿,细叶性的垂叶形。
叶长约六、七寸,富光泽。
中以受叶性的姿势特徵深受喜爱。
花容,花瓣幅度到七、八分属异常阔大形且具尖峰。
硬兜捧心合抱,呈色瓣花心包蒙状。
随着渐次花开,小如意舌上呈现红二点。
兰花中属奇种之变者。
色为全绿,花茎亦是,呈细小的灯心草式。
附记,兰花瓣依梅、仙、荷分类。
在中国此花名称〔翠桃〕,可能是较梅花较浅,是翠绿花的缘故吧。
”书中附有实物大“翠桃”花照一幅和整盆“翠桃”花叶照一幅。
《兰华谱》中的记载显然比《兰蕙同心录》记载要详细一些。
文中增加了“垂叶形”;花瓣“具尖峰”,这里的“花瓣”显然是指“萼片”;“舌上呈现红二点”,这里也印证了《兰蕙同心录》所附“翠桃”白描图上的舌上的两个红点,但是《兰蕙同心录》所附“翠桃”白描图上的舌应是如意舌,是与《兰华谱》中所留下的图片,看不到舌瓣。
如果单独将《兰蕙同心录》所附“翠桃”白描图与《兰华谱》中“翠桃”花照相比较,是有些差别,尤其是中窠部分,《兰华谱》中“翠桃”花照中窠是明显的“一拳头”,捧、鼻、舌合抱在一起;而《兰蕙同心录》所附“翠桃”白描图捧若“分头合背”,舌为如意舌而微宕,小鼻头清淅可见。
那么《兰华谱》中所记载的“翠桃”是否就是《兰蕙同心录》所记“翠桃”?现在虽然难以说得非常清楚。
但是按照《兰华谱》所述的名称、地点、时间、选育人等,看似许霁楼的《兰蕙同心录》所记的“翠桃,一名品莲”。
《兰华谱》上所记的“翠桃”真是《兰蕙同心录》中所记的“翠桃,一名品莲”吗?《中国兰艺三百问》中说:“春兰‘翠桃’,又名‘安昌梅’。
清光绪年间上海‘林天颐参号’林翰之所出的‘翠桃’,又名‘品莲’,早己失传。
今流传的‘翠桃’是绍兴安昌出产。
”“真正的‘老翠桃’(品莲)是蚌壳捧,如意舌,外瓣有红丝。
”《中国兰艺三百问》中对‘老翠桃’(品莲)的花品描述不知来源于哪里?从《兰蕙同心录》所附“翠桃”白描图上看,外瓣确是“头尖”的,而不是现在流传的“翠桃”由于捧瓣的雄性化过强,外瓣中有蚂蟥硬筋,使圆形的瓣端出现中缺现象。