细胞超微结构

合集下载

细胞的超微结构-电子显微镜下的细胞

细胞的超微结构-电子显微镜下的细胞
细胞超微结构与疾病关系的研究
越来越多的研究表明,细胞的超微结构与疾病的发生和发展密切相关。未来将有更多的研 究关注细胞超微结构与疾病的关系,为疾病的诊断和治疗提供新的思路和方法。
细胞超微结构的动态研究
目前对于细胞超微结构的研究主要集中在静态结构上,而对于细胞超微结构的动态变化研 究相对较少。未来将有更多的研究关注细胞超微结构的动态变化,揭示细胞在生理和病理 状态下的动态过程。
信号分子与细胞膜上的受体结合,引发一系 列跨膜蛋白构象变化,进而激活细胞内的信 号传导途径。
受体介导的信号传导过程
受体识别与信号分子结合
细胞膜上的受体特异性识别并结合信 号分子,如激素、生长因子等。
受体活化与信号转导
信号放大与终止
通过级联反应放大信号,实现细胞对 信号的快速响应;同时,存在负反馈 调节机制以终止信号传导。
在生物学领域的应用举例
细胞生物学
电子显微镜可用于观察细胞的超微结构,如细胞 膜、细胞器、细胞核等,揭示细胞内部的结构和 功能关系。
分子生物学
电子显微镜可用于观察生物大分子的结构和功能 ,如蛋白质、核酸等,揭示生物大分子在生命活 动中的作用和调控机制。
微生物学
电子显微镜可用于观察细菌、病毒等微生物的形 态和结构,了解它们的生命活动和感染机制。
特点
细胞超微结构具有高度的复杂性和组织性,各种细胞器在细胞内 精确地分布和排列,共同维持细胞的生命活动。
研究意义及价值
揭示细胞功能
通过研究细胞超微结构,可以深入了解细胞器的形 态、分布和功能,从而揭示细胞的各种生理功能。
疾病诊断与治疗
许多疾病的发生和发展与细胞超微结构的异常密切 相关,因此研究细胞超微结构对于疾病的诊断和治 疗具有重要意义。

细胞核超微结构(3)

细胞核超微结构(3)

2020/3/8
三金工作室制作
1、微管的形态结构
微管呈平直或弯曲状。其外经约为21~ 27纳米,平均约25纳米,管壁平均厚度为 5纳米,其长度变化不定,约几个微米。
电镜下:微管壁是由13根直径为5纳米的细 丝排列而成,这些丝又是由直径5纳米的管 蛋白分子串成念珠状而构成。
2020/3/8
三金工作室制作
2020/3/8
三金工作室制作
1、糖原:是供给细胞能量的一种成分。它的 含量随生理和病理状态而变,如肝细胞内的 糖原,在吃食后数量增加,饥饿时则减少。
光镜下:用胭脂红或PAS染色,多呈块状或细 粒状。
电镜下:糖原颗粒无界膜包绕,电子密度比较 高,普遍存在于各种细胞中,其中以肝细胞 和肌细胞内最为丰富。
2020/3/8
三金工作室制作
a、自溶酶体: 由初级溶酶体和自 嗜体融合而成。内 含衰老或损坏的细 胞器,如线粒体、 内质网、核糖体等。
2020/3/8
三金工作室制作
b、异溶酶体:是初级溶酶体和异嗜体融 合而成。内含外源性异物,如细菌、衰 老坏死的细胞碎片几残断的纤维等。
2020/3/8
ቤተ መጻሕፍቲ ባይዱ
三金工作室制作
三金工作室制作
脂滴是细胞的能源和合成细胞内某些物 质的原料,但在一些病理情况下,如在肝 细胞和心肌细胞内脂滴可大量堆积,形成 脂肪性变,另外脂滴有时也可以出现在线 粒体、高尔基体、内质网、及溶酶体内。
2020/3/8
三金工作室制作
脂滴
2020/3/8
三金工作室制作
色素颗粒:一般分为三种:黑色素、脂褐 素、含铁血黄素
三联管存在于中心体和基体中,由A、B、 C三组微管组成。
2020/3/8

电镜--细胞的超微结构及功能

电镜--细胞的超微结构及功能
鞭毛;短而多的叫纤毛。
结构:
由基体和鞭杆两部分构成。 中轴是由多束平行的微管形成的轴丝。 鞭杆中的微管为9+2结构。 基体的微管组成为9+0。
Cilia from an epithelial cell in cross section (TEM x199,500)
鞭毛和纤毛的超微结构示意图
细胞学术语
细胞质(cytoplasm):质膜与核被膜之间 的原生质。 细胞器(organelle):具有特定形态和功能 的显微或亚显微结构称为细胞器。 细胞质基质(cytoplasmic matrix):细 胞质中除细胞器以外的部分。又称为或胞 质溶胶(cytosol),其体积约占细胞质的一 半。
染色体
细胞器 核糖体
内膜系统
细胞骨架 转录与翻译 细胞分裂
简单
无 出现在同一时间与地点 无丝分裂
复杂
微管、微丝、中间纤维等 时空上是分开的 有丝分裂和减数分裂
第二章
质膜及其表面结构
质膜(plasma membrane)
包在细胞外面的质膜又称细胞膜,围绕 各种细胞器的膜称为细胞内膜。
细胞膜和内膜在起源、结构和化学组成的等方 面具有相似性,故总称为生物膜(biomembrane)。 生物膜是细胞进行生命活动的重要物质基础。
七、质膜的特化结构
质膜常带有许多特化的附属结构,如:微 绒毛、褶皱、纤毛、鞭毛等等。 这些特化结构在细胞执行特定功能方面具 有重要作用。由于其结构细微,多数只能 在电镜下观察到。
质膜的特化结构
A
B
C
D
E
F
G
A 由糖蛋白组成的糖萼; B 微绒毛; C 胞饮作用的通道及小泡; D 皱褶; E 尖形变形虫; F 圆形变形虫; G 内褶

细胞核超微结构(共142张PPT)

细胞核超微结构(共142张PPT)

2022/10/14
三金工作室制作
a、自溶酶体:由
初级溶酶体和自嗜 体融合而成。内含 衰老或损坏的细胞 器,如线粒体、内 质网、核糖体等。
2022/10/14
三金工作室制作
b、异溶酶体:是初级溶酶体和异嗜体融合 而成。内含外源性异物,如细菌、衰老坏 死的细胞碎片几残断的纤维等。
2022/10/14
(三)、过氧体的来源与更新:目前不是很清
楚,但认为可能来源于滑面内质网、高尔基体 和粗面内质网等。
2022/10/14
三金工作室制作
[中心体(centrosome)中心粒
中心体的结构:中心体为圆筒状小体,直径约 1、 内含外源性异物,如细菌、衰老坏死的细胞碎片几残断的纤维等。
它们的存在与否、含量以及形态,都与细胞的类型和生理状态有关。

2022/10/14
三金工作室制作
2022/10/14
三金工作室制作
初级溶酶体(又称原溶酶体)
是新形成的初级溶酶体,由单位膜包绕,大 小不一,直径约为25~50纳米,在电镜下, 为电子密度较高的致密小体。初级溶酶体内 仅含水解酶,而无作用底物。
2022/10/14
三金工作室制作
2022/10/14
2022/10/14
三金工作室制作
1、微管的形态结构
微管呈平直或弯曲状。其外经约为21~27 纳米,平均约25纳米,管壁平均厚度为5纳 米,其长度变化不定,约几个微米。
电镜下:微管壁是由13根直径为5纳米的细丝排列 而成,这些丝又是由直径5纳米的管蛋白分子串 成念珠状而构成。
2022/10/14
三金工作室制作
个螺旋对称体。
2022/10/14
三金工作室制作

超微结构又称为亚纤维结构

超微结构又称为亚纤维结构

细胞结构又分为显微结构和亚显微结构。

超微结构又称为亚显微结构。

指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构,在电子显微镜下显示组织和细胞的微细结构,以及不同功能状态与分化发育中的变化称超微结构。

显微结构,是指在光学显微镜下看到的细胞结构。

观察、分析则是细胞研究的基本方法,在普通光学显微镜中能够观察到的细胞结构。

《不同海拔火绒草叶绿体超微结构的比较》总结:用青藏高原东北部3个不同海拔地区的火绒草为材料,通过实验观察并比较了其叶肉细胞中叶绿体的超微结构变化,电镜观察表明,生长于不同海拔地区的火绒草,叶绿体结构差异明显。

生长于海拔2 300m处的火绒草,叶绿体基粒片层排列整齐、致密,结构清晰,片层可达32层。

生长于海拔2 700m处的火绒草,基粒片层排列不规则,片层下降到十几层,类囊体出现轻微膨大。

生长于海拔3 800m处的火绒草,基粒片层则严重扭曲,片层只有几层,类囊体膨大严重,类囊体膨大最宽处可达0.14μm,出现脂质小球。

此外,随着海拔的升高,叶绿体的形状有向圆形转变的趋势。

火绒草叶绿体基粒叠垛程度随海拔的升高而下降。

《汞胁迫对植物细胞结构与功能的影响》总结:汞离子会破坏植物细胞的结构,,轻则使植物体内代谢过程发生紊乱,生长发育受阻,重则可造成植物枯萎,甚至衰老死亡。

汞离子能毒害叶绿体的类囊体系统,能引起类囊体的解体,使叶绿体发生破坏,因此汞能抑制植物的光合作用,造成光合产物短缺,导致植物生长受阻,甚至衰老或死亡。

汞对线粒体和细胞核的毒害也十分明显。

汞离子能抑制细胞分裂,汞离子还能使细胞膜出现渗漏,抑制细胞对水分和微量元素的吸收。

《水分胁迫对六种禾草叶绿体和线绿体及光合作用的影响》总结水分胁迫后,6种牧草的叶绿体均膨大变圆并向细胞中央移动;叶绿体内分布有一定数量的嗜锇颗粒和少量淀粉粒,受伤害严重的叶绿体中的基粒和被膜破损;叶绿体片层系统排列方向发生改变,产生扭曲,类囊体膨胀,质间片层空间变小。

细胞超微结构课程作业

细胞超微结构课程作业

课程:细胞超微结构课程作业超微结构课程实验实验目的了解超薄切片的制作方法;学习电子显微镜的工作原理;能够判断和识别电镜下的各种细胞结构实验原理电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。

电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。

20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。

现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。

电子显微镜技术(electron microscopy)已成为研究机体微细结构的重要手段。

常用的有透射电镜(transmission electron microscope,TEM)和扫描电子显微镜(scanning electron microscope,SEM)。

与光镜相比,电镜用电子束代替了可见光,用电磁透镜代替了光学透镜,并使用荧光屏将肉眼不可见电子束成像实验方法一、透射电镜样品超薄切片常规制作规程1.取材及固定:根据实验目的取材,要求部位准确,体积小于1mm3预先准备好平皿,碎冰或冰袋,锋利的刀片,干净的小玻璃瓶若干个等取材物品。

取材,在通风橱中,用新的锋利的刀片在乘有固定液的培养皿中将组织尽量修小,可修成大小约0.5mm × 0.5mm × 1mm 的小块,一般不超过1mm3,然后用牙签将组织移至乘有冷的固定液的小瓶中(组织块与体积与固定液体积之比大约为1:40),盖紧瓶盖后,在瓶子上做好标签,避免组织混淆不清。

用注射器或置于真空干燥器中抽气,直至样品气泡完全抽完为止。

放进4度冰箱保存固定大于12h.二漂洗用吸管吸出固定液,加入PH=7。

2的磷酸缓冲液漂洗3次,每次20min三锇酸固定加入百分之一的锇酸(淹没过材料就好),固定2-3小时四漂洗用吸管吸出固定液,加入PH=7。

细胞超微结构及基本病理过程

细胞超微结构及基本病理过程
胎儿畸形等。
4、溶酶体的病变
(1)体增大和数目增多
肝细胞内脂褐素颗粒残存小体即终末溶酶体×6400
(2)广泛的细胞自溶
机体死后自溶及活体内细胞坏死的发生均主要是 由于溶酶体膜损伤及膜的通透性增高,水解酶大量 释放,造成细胞结构大分子成分的分解所致。
在细胞的局灶性坏死时,胞浆内形成自噬泡,自 噬泡与溶酶体结合形成自噬溶酶体。
国家精品课程 《动物病理学》
第三章 组织的损伤、修复与 适应
第一节 第二节 第三节 第四节
细胞超微病变 细胞和组织的损伤 损伤的修复 细胞和组织的适应
第一节 细胞超微病变
细胞是一切疾病的焦点。 不同疾病状态下,病变部位的细胞某些细胞器的
形态结构发生改变,进一步反映出疾病的本质。 (病因作用于机体后,直接或间接作用于组
细胞膜外
细胞膜 细胞膜内
自 由 扩 散
细胞膜外
细胞膜 细胞膜内
载体—— 蛋白质
协 助 扩 散
细胞膜外
细胞膜 细胞膜内
能 量——Fra bibliotek载体—— 蛋白质
主 动 运 输
主 要 方 式
细胞膜外
细胞膜 细胞膜内




细胞膜内
胞 吐
细胞膜外
二、细胞质超微病变 (一)线粒体的病变
线粒体(mitochondrion)平均寿命约为10天, 是细胞的呼吸代谢中心和能源中心,对各种病理性 损伤极为敏感,是细胞损伤最灵敏的指示器。
1、溶酶体的类型
(1)初级溶酶体(primary lysosome) (2)次级溶酶体(secondary lysosome) (3)残余体
(1)初级溶酶体(primary lysosome)

课件系列——细胞超微结构

课件系列——细胞超微结构

吞噬作用 ( 巨噬细胞正在吞噬红细胞)
肝 癌 的 吞 噬 作 用
杯 状 细 胞 的 胞 吐 作 用
静 止 期 杯 状 细 胞
杯状细胞(支气管上皮)X12000
四 细胞内膜结构 (一) 线粒体 mitochondria 1、Mit外膜平坦有细长丝状突起,内膜形成线粒体嵴。内膜与外 膜间称外室含有可溶性酶类,嵴间腔为内室充满离子颗粒,嵴膜 上有排列整齐的基粒内含ATP酶提供能量,Mit是细胞能量代谢中 心。 2、Mit嵴的形态: 板层嵴-嵴排列的方向于Mit长轴垂直 管状嵴-嵴排列的方向于Mit长轴平直 3、Mit嵴的长度数量:与细胞代谢活动有关,代谢高细胞嵴长密 集(心肌 ,肾小管)代谢低的细胞嵴少而稀疏(神经,平滑肌) 4、Mit的功能:是细胞生物氧化的场所(三羧酸循环,呼吸链电 子传递,氧化磷酸化), Mit内含有多种酶类。其中三酸循环在内 室基质中进行,氧化磷酸化反应在Mit内膜和嵴膜上
粘多糖细胞衣 (小肠上皮细胞〕 X30.000
3、基底层 位于各种上皮细胞基底部与细胞膜之间相隔一层细
胞衣。基底层与组织学中的基底膜概念不同。基底层是 由上皮细胞膜、细胞衣、基板、网板( 胶原及网状纤维、成纤维细胞的突起和相伴随的基质) 组成。基底层厚 50-100nm,电子密度高于细胞外衣, 本身不属于细胞膜的组成部分,除含粘多糖外,还有胶 原蛋白。由上皮细胞合成。 功能 支持、连接和固着作用,同时也为一层物理屏 障。在炎症、缺氧、免疫复合物沉积时,基底层明显增 厚或复化。
SEM 电镜
下, 线粒
体表 面有
细长 的突 起
线粒体 (TEM〕板 层嵴 X30.000
A2 微吞作用 micropincytosis 将蛋白质物质吞入细胞形成复杂的形态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜,又称质膜。
电镜下:细胞膜是指细胞内两个不同部位之 间或细胞与相邻细胞以及外环境之间的界 膜。 其中构成细胞表面界膜的叫细胞膜,形 成各种细胞器之间的膜叫细胞内膜,如线 粒体膜、内质网膜、溶酶体膜、核膜等。
二、膜的化学组成:主要由水和有形成分组成,有 形成分主要是蛋白质、脂类(主要是磷脂)。
三、膜的结构: “液态镶嵌模型学说” 该学说认为,生物膜是一种流动的、可塑
概述:
在二十世纪四十 年代,由Ruska等人 在德国Siemens公司 研制开发了第一台电 子显微镜,人们利用 电镜及电镜技术,观 察到许多以前从未见 到过的细胞内细微结 构,随着电镜的不断 完善和电镜技术的不 断更新,使细胞学达 到了“超微结构”的 研究水平。
细胞结构的组成:
从电镜水平观察,可根据细胞内部 结构的性质、彼此之间的关系等,将细 胞分为:
肠上皮、肾小管上皮,肾小管上皮的微绒 毛非常发达积,增加吸收功能。 ②、协助或参与细胞运动。 ③、参与细胞分泌活动。
[纤毛 (cilia)]
纤毛是位于细胞 膜包绕的指套状 突起中,横切面 呈9+2结构,即 中心为2个单微 管,周边为9组 双微管(图)。
或者
核结构、膜结构、质相结构 膜相结构、非膜相结构。
膜相结构:质膜、内质网、高尔基体、核膜、线粒体、溶酶体
细 胞
质相结构:核蛋白体、中心体、微管、微丝、
非膜相结构
胞质基质
核相结构:核仁、染色质(染色体)、核基质
从光镜水平观察,一般将细胞分为:
细胞膜(cell membrane ) 细胞质(cell substance)
的、不对称的、镶有蛋白质的脂质双分子层的 膜状结构。由两层相对排列的脂质分子构成膜 的中间部分,蛋白质分子覆盖、镶嵌、贯穿在 脂质双分子层表面(图)。
电镜下:脂质双分子层由两条约2纳米的暗带, 中间夹一条3.5纳米宽的亮带组成。暗带代表蛋 白质,亮带代表脂类。
三、膜的主要特性:
1、不对称性:无论在结构和功能方面都存在 ①、脂质分子层不对称:如红细胞膜外层含
2、细胞膜受体
细胞膜上的受体,就像“识别器”,它能识别周 围环境中的相应信号,并接受有关信号而在细胞 内产生某些效应。
3、调节代谢
细胞膜上的酶参与各种生物化学反应,并通过多 种途径来调节细胞代谢。
4、免疫作用
细胞膜上的抗原性具有十分重要的实践意义,它 涉及到胚胎发生中组织器官的形成,器官的移植、 输血、细胞免疫以及肿瘤的发生与发展,所以细 胞膜的免疫作用在生物医学研究领域里倍受重视!
四、膜的主要功能 1、通透作用:细胞膜不单纯起着和支架和屏障
作用,它还严格的控制着物质的进出,具有选 择性的通透作用,是细胞膜最重要的生理特性 之一。
被动扩散 通透作用的方式
主动运输
被动扩散:是指细胞及其周围物质,由高浓度区向 低浓度扩散。
主动运输:指一些物质的运输是逆浓度梯度方向进 行的。即物质由低浓度------>高浓度转移
糖蛋白的合成方式:由粗面内质网上的核糖体 形成蛋白质,在高尔基体内与寡糖分子结合成 糖蛋白,然后被运输到细胞膜。
从这点看,也可以说-细胞外衣是细胞的一种 分泌物。
2、细胞外衣的功能
①、参与免疫作用:实验证明,在细胞衣内有许 多与免疫作用有关的膜抗原、特异受体以及与 细胞表面活动有关的酶类。
②、保护和通透作用:如小肠上皮细胞表面的细 胞衣,在上皮细胞的表面形成一层保护层,以 防止致病性损害。另外,小肠上皮细胞外衣还 具有选择性通透作用,构成细胞活动的介质和 分子筛,尤其与水溶性物质的交换有关。
[细胞外衣(cell coat)] 细胞外衣又叫细胞衣。它 是附着在细胞膜表面,呈 丝网状结构,厚约10~20纳 米,个别可达0.1~0.5微米, 根据细胞膜的现代概念, 细胞衣无论从结构或功能 上都属于细胞的组成部分, 而不是细胞膜表面的附着 物。电镜下:为一层分支 丝状物。
1、细胞外衣主要成分:糖蛋白
1、分布:上皮细胞表面,如上呼吸道上皮细胞、 生殖管道上皮细胞、食管膜上皮细胞
2、主要成分:多种蛋白,主要是动力蛋白和微 管蛋白等
3、运动的特点:①、具有周期性和节律性;②、 有方向性:即始终朝某一方向弯曲(单方向摆 动);③、同步性和协调性。
协调性:指在一定运动方向的水平上,纤毛运 动的时相不一,使一片纤毛形成波浪状运动
[独纤毛]: 有些组织在正常情况下看不见纤毛,
但有时在正常情况下或病理情况下,偶尔 会出现一根或数根纤毛,如垂体、肾上腺、 甲状腺等。但它们的功能和意义尚不清楚。
[细胞连接(cell junction)]
细胞连接是上皮细胞邻接面的细胞膜特化的连接 装置。 1、桥粒(desmosome)又称粘合斑
胆碱磷脂和鞘磷脂多,而内层则含氨基磷脂多。 ②、蛋白质分子位置、分布不对称。 ③、功能方面的不对称:如某些物质的载体,
在膜的外侧只能接受某种物质,当载体移位和分 子变构转向内侧时,则能运出这些物质。 2、膜的流动性:膜平时处于液晶态。
液晶态:是界于固态与液态之间的过渡状态, 其分子结构排列有序,又可流动,称液晶态。
细胞核(cell nuclear)
[细胞膜(cell membrane)]
细胞膜是细胞生命 的基本结构,位于 细胞表面,切面呈 线状围绕,细胞膜 垂直切面,在高倍 镜下成三层结构, 两深一浅,即称单 位膜(unit membrane),厚约 7~10nm。
一、概念: 光镜下:细胞膜是指包围在细胞外表的一层
位于中间连接下 方,多数为成对 的纽扣样结构, 两对侧的结构不 连续,中间有 25~30纳米的间 隙,间隙内充满 纤维性物质。 (图)
2、半桥粒(semidesmosome)
③、其它作用:当外界刺激伤及细胞外衣时,细 胞外衣即很快出现裂隙或部分脱落,以免伤及 细胞的结构。
[微绒毛 (microvillia)]
1. 形态:微绒毛是细胞膜呈指状突起,外面包有细 胞膜和细胞衣。绒毛的中心为细胞质的—称微绒毛, 中心由微丝束组成轴心的—称肠型绒毛。
微绒毛多位于上皮细胞顶部。如:小
相关文档
最新文档