土力学第五章渗透固结理论

合集下载

高等土力学课后参考答案

高等土力学课后参考答案

第五章.土的压缩与固结概念与思考题1.比奥(Biot)固结理论与太沙基一伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:主要区别:在太沙基-伦扩散方程推导过程中,假设正应力之和在固结与变形过程中是常数,太-伦扩散方程不满足变形协调条件。

固结计算结果:从固结理论来看,比奥固结理论可解得土体受力后的应力、应变和孔压的生成和消散过程,理论上是完整严密的,计算结果是精确地,太-伦法的应力应变计算结果和孔压计算结果精确。

比奥固结理论能够反映比奥戴尔-克雷效应,而太沙-伦扩散方程不能。

但是,实际上,由于图的参数,本构模型等有在不确定性。

无论采用哪种方法计算都很难说结果是精确的。

2.对于一个宽度为a的条形基础,地基压缩层厚度为H,在什么条件下,用比奥固结理论计算的时间一沉降(t-s)关系与用太沙基一维固结理论计算的结果接近?答案:a/H很大时3.在是砂井预压固结中,什么是砂井的井阻和涂抹?它们对于砂井排水有什么影响?答:在地基中设置砂井时,施工操作将不可避免地扰动井壁周围土体,引起“涂抹”作用,使其渗透性降低;另外砂井中的材料对水的垂直渗流有阻力,是砂井内不同深度的孔不全等于大气压(或等于0),这被称为“井阻”。

涂抹和井阻使地基的固结速率减慢。

4.发生曼德尔一克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应?答:曼戴尔-克雷尔效应机理:在表面透水的地基面上施加荷重,经过短暂的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均由增加。

土的泊松比也随之改变。

但是内部土体还来不及排水,为了保持变形协调,表层土的压缩必然挤压土体内部,使那里的应力有所增大。

因此某个区域内的总应力分量将超过他们的起始值,而内部孔隙水由于收缩力的压迫,其压力将上升,水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。

土力学知识点总结归纳

土力学知识点总结归纳

塑限:可塑状态与半固体状态间的分界含水量称为塑限。

液限:指粘性土从流塑状态过度到可塑状态时的界限含水量。

基底压力:建筑物荷载由基础传递给地基,基础底面传递给地基表面的压力。

基底附加应力:由于建筑物产生的基底压力与基础底面处原来的自重应力之差称为附加应力,也就是在原有的自重应力的基础上新增的应力。

渗透固结:饱和土在受到外荷载作用时,孔隙水从空隙中排除,同时土体中的孔隙水压减小,有效应力增大,土体发生压缩变形,这一时间过程称为渗透固结。

固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。

固结度:指地基在外荷载作用下,经历时间t产生的沉降量St与基础的最终沉降量S的比值。

库伦定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即τf=c+tanφ式中c,φ分别为土的粘聚力和内摩擦角。

粒径级配:各粒组的质量占土粒总质量的百分数。

静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背的侧限作用而处于弹性平衡状态时,墙背所受的土压力称为静止土压力。

主动土压力:若挡土墙受墙后填土作用离开土体方向偏移至土体达到极限平衡状态时,作用在墙背上的土压力称为主动土压力。

被动土压力:挡土墙在外力作用下向后移动或转动,达到一定位移时,墙后土体处于极限平衡状态,此时作用在墙背上的土压力。

土的颗粒级配:土中各粒组相对含量百分数。

土体抗剪强度:土体抵抗剪切破坏的极限能力。

液性指数:是粘性土的天然含水量和塑限的差值与塑性指数之比,用符号IL表示。

基础埋深:指从室外设计地坪至基础底面的垂直距离。

角点法:角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法压缩系数:表示土的压缩性大小的主要指标,压缩系数大,表明在某压力变化范围内孔隙比减少得越多,压缩性就越高。

土的极限状态:土体中的剪应力等于土的抗剪强度时的临界状态称之为土的极限平衡状态。

软弱下卧层:地基受力层范围内存在有承载力低于持力层的土层。

土力学与基础工程-第五章 土的压缩性

土力学与基础工程-第五章 土的压缩性

Cu pc 0.11 0.0037 I p
C 式中, u -土的不排水剪 抗剪强度,kpa, I p-塑性指数

第三节 地基最终变形计算
一 单向分层总和法
1.基本假设

地基是均质、各向同性的半无限线性 变形体,可按弹性理论计算土中应力。 为了弥补假定 在压力作用下,地基土不产生侧向变 所引起误差,取 形,可采用侧限条件下的压缩性指标。 基底中心点下的
a12 / MPa
1
0.5 高压缩性
中压缩性
(2)土的压缩指数
e1 e2 Cc e / log( p2 / p1 ) log p2 log p1
(3)土的压缩模量
e1 e2 推导:H H1 1 e1
e ap
ap H H1 1 e1
Es p 1 e1 H / H 1 a
pc p0
pc p0
OCR<1:欠固结
相同 p0 时,一般OCR越大,土越密实,压缩性越小
e
e
e
p
p
p0 pc p c p0
p
z z p0 pc OCR 1
正常固结状态
pc p0 OCR 1
pc p0 OCR 1
超固结状态
欠固结状态
先期固结压力 pc 的确定
dt时段内:
孔隙体积的变化=流出的水量
q q qdxdydz q dz dxdydz dxdydzdt z z Vv e 1 e dxdydz dt dxdydzdt t t 1 e 1 e t
系数)
k0

1
( 土的泊松比)

土力学_第5章(固结与压缩)

土力学_第5章(固结与压缩)

P0 P H
③计算地基中自重应力σsz分布
不排水
孔隙水压力
孔隙水压力
(五)三轴压缩试验成果—应力--应变关系
1 3
(1 3 ) y
1 3
f
E
1
b c
②-超固结土或密实砂 b ③-正常固结土或松砂
①-理想弹塑性
a O
b点为峰值强度
土 的 本 构 模 型
线弹性-理想塑性 1 3 1 2
1
应变硬化段
应变软化段
C
s
p
lg '
(五)三轴压缩试验
三轴试验测定: 轴向应变 轴向应力 体应变或孔隙水压力
轴向加压杆 顶帽
压力室
试 样
有机玻璃罩 橡皮膜 加压进水
类型 固结排水 施加σ3时 固结
透水石 排水管
量测体应变或 孔隙水压力
阀门
施加σ1-σ3时 排水
量 测 体应变
固结不排水
不固结不排水
固结
不固结
不排水
将地基分成若干层,认为整个地基 的最终沉降量为各层沉降量之和。
n n
o
s si i H i
i 1 i 1
ΔS1 ΔS2 ΔS3 ΔS4 Δ Si ΔSn
i第i层土的
压缩应变
z v
e e1 e2 1 e1 1 e1
z
取基底中心点下的附加应力进行计算,以基底中点的沉降代
400
e-p曲线
p(kPa)
(σ')
Δp
(σ')
p(kPa)
Δ p相等而 ΔeA> ΔeB,所以曲线A的压缩性 >曲线B的压缩性

土力学_柳厚祥_第五章土的压缩性与沉降计算

土力学_柳厚祥_第五章土的压缩性与沉降计算

第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。

2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。

沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。

对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。

试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。

由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。

试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。

(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。

土力学第五章土的抗剪强度

土力学第五章土的抗剪强度
第五章 土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基

▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验

第五章第四节饱和土土体渗透固结理论

第五章第四节饱和土土体渗透固结理论

Ut
Tv

Cv H2
t
例:某饱和粘土层厚10m,在大面积荷载P0=120kPa作用下, 已知e=1,a=0.3MPa-1,k=1.8cm/year,双面排水条件下求 (1)加荷一年时的沉降量;(2)沉降量达140mm所需的 时间。
解(:1)求t 1年时的沉降量
粘土层中的附加应力沿 深度是均布的, z p0 120kPa
解(:2)求沉降量达140mm所需时间
粘土层的最终固结沉降 量s 180 mm
固结度 U t

st s
140 180
0.78
查曲线(1)得Tv 0.53

t

Tv H 2 Cv

0.53 500 2 1.2 105
1.1年
(六)固结系数 的确定 (Coefficient of consolidation )
孔隙体积的变化=流出的水量
由于:
可得
渗流固结过程 的基本关系式
根据达西定律: 最后可得:
固结系数
Cv 反映了土的固结性质:孔压消散的快慢-固结速度; Cv 与渗透系数k成正比,与压缩系数a成反比; (cm2/s;m2/year)
求解方程:
u t

Cv
2u z2
(1)求解思路:
• 线性齐次抛物线型微分方程式,一般可用分离变量方法求解。 • 给出定解条件,求解渗流固结方程,就可以解出uz,t。
一、侧限压缩试验及其表示方法
一、e -σ′曲线 二、e - lgσ′曲线 三、原位压缩曲线及再压缩曲线
一维压缩性及其指标
地基的最终沉降量计算
一、一维渗流固结理论 二、固结度的计算 三、固结沉降随时间的变化关系 四、与固结有关的施工方法

高等土力学固结理论课件

高等土力学固结理论课件
高等土力学固结理论课件
目录
• 固结理论概述 • 土的固结特性 • 固结理论的基本方程 • 固结理论的实践应用 • 固结理论的最新研究进展 • 案例分析
01
固结理论概述
固结理论的定义
固结理论是研究土体在压力作用下固 结过程的学科,主要关注土体中孔隙 水压力的变化和消散过程。
固结理论是高等土力学的重要分支, 对于理解土体的力学行为和设计土工 建筑物具有重要意义。
环境工程
土壤改良、土地复垦、污 染土壤修复等领域的土体 固结问题。
02
土的固结特性
土的压缩性
土的压缩性是指土在压力作用下 体积减小的性质。
土的压缩性主要与土的孔隙比、 孔隙分布、孔隙大小等因素有关

土的压缩性是土体变形和固结过 程中的重要特性之一,对土体的
稳定性和变形有重要影响。
土的渗透性
土的渗透性是指水在土中流动 的能力,通常用渗透系数来表
示。
渗透系数的大小取决于土的 颗粒大小、形状、排列、孔
隙比等因素。
渗透性是土体中水分和气体流 动的基础,对土体的排水固结 、渗透稳定性等有重要影响。
土的固结过程
土的固结过程是指土体在压力作用下逐渐固 结和稳定的过程。
土的固结过程包括孔隙水排出、孔隙比减小 、土体密度增加等。
固结过程对土体的强度、变形和稳定性有重 要影响,是工程实践中需要考虑的重要因素 之一。
详细描述
在某高速公路建设中,由于地基 土层分布不均,导致高速公路在 通车后出现不均匀沉降,影响了
道路的正常使用。
解决方案
采用高等土力学固结理论对地基 进行加固处理,通过排水、固结 等措施,减小地基沉降,提高地
基稳定性。
工程实例二:某水库大坝的稳定性分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 压缩:当在活塞上作用外力后,活塞下 降,水就从孔口排出来,表示饱和土的 排水过程。
可编辑ppt
3
饱和土的渗透固结过程-1
• 主要讨论施加外荷后,随着时间的增加, 饱和土中孔隙水压力和有效应力的变化。
• 1)没有外荷载作用时,容器水位与侧压 管水位齐平;
• 2)加荷瞬时,时间为0,来不及排水,外

时间因素: T v
C vt H2
• 最远排水距离H:单面排水就是土层厚度,
双面排水就是土层厚度的一半。
可编辑ppt
11
固结度的基本概念
• 固结度:指在某一固结应力作用下,经过 一段时间后,土体发生固结或孔隙水压力 消散的程度。
• 固结度就是土中孔隙水压力向有效应力转 化过程的完成程度。
Uu0 ut 1ut
u0
u0
可编辑ppt
12
平均固结度
• 平均固结度:指地基在固结过程中,任一 时刻的沉降量与最终沉降量之比。
Ut
St S
• 变化:地基的固结度在0~100%之间变化, 随着固结过程的继续,固结度逐渐增大, 到渗透固结完成时,固结度达到100%,这 时,土层达到压缩稳定状态,其压缩量为 最终压缩量。
可编辑ppt
可编辑ppt

7
单向渗透固结基本假定
• 1)土是均匀、各向同性的饱和土;
• 2)土的压缩完全是由于孔隙体积减小的结 果,不计土颗粒和水的压缩变形;
• 3)土的压缩和排水只在铅直方向;
• 4)土的压缩速率取决于土中自由水的排出 速度,且孔隙水的排出符合达西定律;
• 5)整个固结过程中,渗透系数和压缩系数 保持不变;
根据附加应力分布情况,单面排水分为:
• 情况0:附加应力均匀分布,成矩形;
• 情况1:附加应力分布成三角形,三角形的 顶点在透水边上;
• 情况2:附加应力分布成三角形,三角形的 顶点在不透水边上;
• 情况3:附加应力分布成梯形,梯形短边在 透水边上;
• 情况4:附加应力分布成梯形,梯形短边在
不透水边上。
• 6)荷载一次施加。
可编辑ppt
8
单向渗透固结微分方程的建立
• 1)根据单向渗透固结的假定条件,在单面 排水土层中,任取一微分单元,分析任一 时段内,流进微分单元水量和流出微分单 元水量的变化;
• 2)根据达西定律和压缩定律,确定此刻微 微分单元体积的变化;
• 3)根据微分单元水量的变化等于微分单元 体积的变化,建立起孔隙水压力随时间和 土层深度的变化关系,即微分方程。
可编辑ppt
5
饱和土的有效应力原理
• 1)在饱和土的渗透固结过程中,存在着 孔隙水压力向有效应力的转化;
• 2)随着渗透固结过程的继续,饱和土中 的孔隙水压力逐渐减小,而有效应力逐 渐增大;
• 3)最后,孔隙水压力全部转化为有效应 力,孔隙水压力为0,有效应力达到最大, 但孔隙水压力和有效应力之和始终等于 外荷载。=+u
可编辑ppt
6
单向渗透固结的概念
• 单向渗透固结:指在土层中,只沿一个方向 的排水固结。它与土层的透水性和排水性有 关。
• 土层的透水性:分为透水层和不透水层。
透水层:指水能透过的土层;
不透水层:指水不能透过的土层。
• 土层的排水性:分为单面排水和双面排水。
单面排水:只沿土层的上面或下面的排水;
双面排水:能同时沿土层的上下面的排水。
可编辑ppt
15
情况0的固结度
• 情况0:指附加应力成矩形分布,将uz,t 代入固结度的表达式中,整理简化可得:
U t0182e42Tv
2
10.8e1 4Tv
• 可知,固结度只与时间因素有关。
可编辑ppt
16
排水相同厚度不同固结度
• 在压缩应力分布及排水条件相同的情况下, 两个土质相同而厚度不同的土层,要达到 相同的固结度,其时间因素应相等。
• 次固结:与土骨架蠕变性、矿物颗粒的 重新排列和自由变形以及土颗粒间薄膜 水的粘滞性有关的固结过程。
• 当土层受无限铅直均布荷载作用产生单 向压缩时,饱和土的变形速率主要由渗 透固结控制。
可编辑ppt
2
太沙基渗透固结模型
• 模型构成:太沙基渗透固结模型由三部 分组成:容器、弹簧、侧压管。
• 模拟:整个容器模拟饱和土,弹簧代表 土颗粒,容器中的水代表土体中的水, 容器上的带孔活塞表示土体中的连通孔 隙。
13
固结度的基本表达式
• 根据平均固结度的概念,结合土层压缩量 的计算,注意引起土层产生压缩的是有效
应力,可得到固结度与孔隙水压力、有效 应力以及总应力之间的关系:
Ut
St S
11aaveve11H0H0zz,tddzz1
H
uz,t d z
0 H
zdz
0
可编辑ppt
14
单面排水条件下的固结度
可编辑ppt
9
单向渗透固结微分方程
• 微分方程:反映土层中任一深度、任一 时刻孔隙水压力情况。
u t
Cv
2u z 2

固结系数:
Cv
k(1e1)
av
可编辑ppt
10
单向渗透固结微分方程的求解
• 方程解:考虑土层的初始条件和边界条件, 用分离变量法可得到单向渗透固结微分方程
的解为:
uz,t 4 zm 1m 1sin m 2H (z)em 24 2T v
饱和土的压缩过程
• 饱和土中,孔隙全被水充满,在外荷作 用下,试样排水,引起孔隙体积减小。 随时间增加,压缩量增大。
• 饱和土中水的排出速度,主要取决于土 的渗透性和土的厚度。
• 土层越厚、土的渗透性越小,水的排出 速度越小,化的时间越长。
可编辑ppt
1
渗透固结
• 主固结:指与土体中自由水的渗透速度 有关的饱和土的固结过程。
• 即达到同一固结度所花时间之比,等于两 土层最远排水距离之比。
Tv1 Tv2
Cvt1 Cvt2 H12 H 22
t1
H
2 1
t2
H
2 2
可编辑ppt
17
厚度相同排水不同固结度
• 在相同土层和相同压缩应力条件下,如 单面排水该为双面排水,达到相同固结
荷全部由水承担,土骨架不受力,这时有 效应力为0;
• 3)过一段时间,沿活塞孔口排出水,活
塞下降,弹簧受到压缩,这时产生了有效 应力,外荷载由水和弹簧承担;
可编辑ppt
4
饱和土的渗透固结过程-2
• 4)随着时间增加,容器中的水不断排出, 活塞继续下降,弹簧受力增大,即有效 应力增大。最后,水停止排出,弹簧内 的应力与外荷平衡,活塞不再下降。这 时外荷全部由土颗粒承担,有效应力达 到最大,孔隙水压力为0,表示饱和土的 渗透固结完成。
相关文档
最新文档