第五单元数学广角
六年级下册数学第五单元数学广角教案

第五单元数学广角——鸽巢问题一、单元教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。
和以往的义务教育教材相比,这部分内容是新增的内容。
本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。
这类问题依据的理论我们称之为“抽屉原理”。
“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。
“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。
但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。
因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
二、单元三维目标导向:1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物注意的教育。
(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
三、单元教学重难点重点:应用“鸽巢原理”解决实际问题。
引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
四、单元学情分析“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。
教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
人教版数学六年级下册第五单元数学广角-----鸽巢问题第一课《鸽巢问题》教学设计

本节课的核心素养目标主要有以下几点:
1.逻辑推理:通过探究鸽巢问题,让学生掌握一种解决实际问题的方法,培养学生的逻辑思维能力和解决实际问题的能力。
2.数据分析:让学生通过观察、分析鸽巢问题的数据,培养学生的数据分析能力,提高学生对数据的敏感度和处理数据的能力。
3.数学建模:引导学生通过实践活动,构建解决鸽巢问题的数学模型,培养学生的数学建模能力。
1.3实验法:在解决具体鸽巢问题时,教师可以引导学生通过实际操作和实验来验证解题思路,让学生通过实践活动体验和理解鸽巢问题的解决过程,提高学生的实践能力和问题解决能力。
2.教学手段
2.1多媒体设备:教师可以利用多媒体设备展示鸽巢问题的相关图片、动画和视频等,以直观和生动的方式呈现问题,激发学生的学习兴趣和想象力,帮助学生更好地理解和记忆鸽巢问题的概念和解题方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
教学资源拓展
1.拓展资源
-数学故事:可以介绍与鸽巢问题相关的历史故事或数学趣闻,如“韩信点兵”的故事,让学生了解鸽巢问题在历史上的应用和趣味性。
-数学游戏:设计与鸽巢问题相关的数学游戏,如“鸽子找家”游戏,让学生在游戏中锻炼思维能力和问题解决能力。
-相关论文和书籍:推荐学生阅读与鸽巢问题相关的数学论文和书籍,如《鸽巢问题及其应用》等,以加深对鸽巢问题的理解和研究。
第五单元 数学广角-2018-2019学年六年级下学期数学同步课件(人教版) (共19张PPT) 课件

十四、因为值得,所以等待;因为深爱 ,所以 追求; 直到拥 有,必 定珍惜 ;你若 不离, 我定不 弃。环 境影响 下,公 司面临 改革, 需要裁 员,高 学历出 身的她 赫然在 列。
彼时才发现,面临初出茅庐的年轻人 ,自己 的体力 和脑力 都已经 拼不过 ,几年 来累积 下来的 阅历和 经验没 有转化 成核心 竞争力 。
•
五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。
•
六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
•
七、最让人羡慕的,不是被很多人追, 而是遇 见一个 不管怎 样,都 不会放 弃你的 人;纵 然知道 活不会 这么轻 易,但 我希望 你在我 的未来 里,余 生都是 你。
•
二、抱歉啊,不能为你金戈铁马,也不 能许你 一世繁 华,不 过我能 给你一 个小家 ,里面 温了杯 暖茶。
•
三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。
•
四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。
•
三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。
•
四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。
•
五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。
•
六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只鸽子。为什么?
新人教版数学六年级下册第五单元《数学广角-鸽巢问题》教材解读

申明:只可使用,不可出售, 或者出租、出借、转让。
1
教 材 编 排 特 点
PART 02
课标解读
2
义务教育数学课程标准(2022年版)指出“综合与实 践是小学数学学习的重要领域。学生将在实际情境和真 实问题中,运用数学和其他学科的知识与方法,经历发 现问题、提出问题、分析问题、解决问题的过程,感悟 数学知识之间、数学与其他学科知识之间、数学与科学 技术和社会生活之间的联系,积累活动经验,感悟思想 方法,形成和发展模型意识、创新意识,提高解决实际 问题的能力,形成和发展核心素养。”
教材还以算式7÷3=2…1,引导学生更数学化 地理解假设法的核心思路,加深对思考过程的 理解。在此基础上,又进一步提出“如果有8 本书会怎样?10本书呢?”,让学生利用前 面的方法进行类推。最后,借助对算式的对北 分析,引导学生对这一类“抽屉问题”形成一 般性的理解。
教学建议
1.允许学生多样化地 解决问题。 2.要引导学生逐步从 直观走向抽象。 3.要引导学生建立模 型。 4.要关注学生对模型 的运用。
5
03 要有意识地培养学生的“模型思想”
“抽屉问题”的变式很多,应用更具灵活性。当我们面对一个具 体问题时,能否将这个具体问题和“抽屉问题”联系起来,能否找到 该问题中的具体情境和“抽屉问题”的一般化模型之间的内在关系, 能否找出该问题中什么是“待分的东西”,什么是“抽屉”,是影响 能否解决该间题的关键。教学时,要引导学生先判断某个问题是否属 于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏 在其背后的“抽屉问题”的一般化模型。这个过程,实际上是学生经 历将具体问题“数学化”的过程,是从复杂的现实素材中找出最本质 的数学模型的过程。这样的过程,可有效地发展学生的数学思维能力, 尤其是可增强学生对“模型思想”的体验,增强运用能力,需要引起 教师的重视。
人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计

年 级
六年级
单元名称
人教版六年级下册第五单元
《数学广角——鸽巢问题》
一、单元教学设计说明
教材分析
教材编排的“抽屉原理”涉及三种基本的形式:第一种,只要物体的数量比抽屉多,那么一定有一个抽屉放进了至少两个物体。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。第三种情况是把无限多个物体(如红球、蓝球各4个)放进有限多个抽屉(两种颜色),那么一定有一个抽屉放进了无限多个物体(至少2个同色的球)。
在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍可在学生学习过程中用直观的方式进行就事论事的探讨。在学习中,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。
(二)有意识地培养学生模型思想
抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。建议在活动思考过程中,引导渗透如何寻找隐藏在背后的抽屉问题的一般模型。
(三)要恰当把握教学要求
抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因此学习时,不必过于追求学生说理的严密性,只能结合具体问题把大致意思说出来就可以了,更允许学生借助实物操作等直观方式进行猜想验证。
三、单元整体教学思路
单元结构图及课时安排
课标要求
《义务教育数学课程标准(2022年版)》在“课程目标”的“第三学段”中提出:“尝试在真实的情境中发现和提出问题,探索运用基本的数量关系,以及几何直观、逻辑推理和其他学科的知识、方法分析和解决问题,形成模型意识和初步的应用意识、创新意识。”“对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的价值,体验并欣赏数学美”。
数学第五单元《数学广角》鸽巢问题PPT

练习题三
05
CHAPTER
总结与思考
鸽巢问题的重要性和意义
培养逻辑思维
鸽巢问题涉及逻辑推理和排列组合,通过解决这类问题,可以培养学生的逻辑思维和推理能力。
数学建模
鸽巢问题是一种典型的数学建模问题,通过解决这类问题,学生可以学习如何将实际问题转化为数学模型,提高数学应用能力。
数学文化的传承
代数法
03
CHAPTER
鸽巢问题的实际案例
总结词:等量分配
详细描述:有10个小朋友要分20个苹果,每个小朋友至少要分到一个苹果,问怎么分最合适?
分苹果的问题
总结词:位置限制
详细描述:有8把椅子摆成一排,现有3人随机就座,任何两人不相邻的坐法种数为多少?
安排座位的问题
总结词
有限资源分配
详细描述
详细描述
枚举法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立。
详细描述
反证法是一种常用的数学证明方法。在解决鸽巢问题时,我们可以先假设结论不成立,即假设至少有一个鸽巢没有鸽子或者有多于n个鸽子(n为鸽巢数量)。然后通过逻辑推理和计算,推导出矛盾,从而证明结论成立。这种方法可以避免枚举法的繁琐,适用于问题规模较大或者情况较为复杂的情况。
03
02
01
如何更好地理解和掌握鸽巢问题
鸽巢问题可以应用于资源分配问题,例如在有限的时间内分配任务给多个员工。
资源分配
在数据分析中,如果需要将数据分类或分组,鸽巢问题可以提供思路和方法。
数据分析
在城市交通规划中,鸽巢问题可以用于解决车辆路径规划、停车位分配等问题。
交通规划
鸽巢问题在实际生活中的应用
数学第五单元《数学广角》鸽巢问题
六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限第五单元数学广角――鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
第 1 页共 14 页六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学数学下册第五单元数学广角说教材李福小学徐和俊一、教学内容抽屉原理。
二、教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
三、具体编排1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。
为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。
2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。
”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。
仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。
“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。
教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。
逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。
四、教学建议1.应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。
教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。
通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2.应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。
但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。
教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3.要适当把握教学要求。
“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。
因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
第一课时抽屉问题(一)(A案)【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【学情分析】【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。
(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。
师:你能发现什么?生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。
(通过操作让学生充分体验感受)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考——组内交流——汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【点评】教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。
在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。
2.解决问题。
(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动—独立思考自主探究)(2)交流、说理活动。
师:谁能说说为什么?生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。
不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
生2:我们也是这样想的。
生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。
生4:可以用5÷4=1……1,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:5÷4=1……1)师:同位之间再说一说,对这种方法的理解。
师:现在谁能说说你对“总有一个鸽笼里至少飞进2只鸽子的理解”生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。
师:同学们都有这个发现吗?生众:发现了。
师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。
同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。
(二)教学例21.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本2个2本……余1本(总有一个抽屉里至有3本书)7本2个 3本……余1本(总有一个抽屉里至有4本书)9本2个4本……余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?生1:“总有一个抽屉里的至少有2本”只要用“商+ 1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。