运放关键参数及选型原则.pdf

合集下载

运放关键参数及选型原则

运放关键参数及选型原则

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

运放选型参数

运放选型参数

运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。

作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。

本文将详细介绍运放选型参数,并以实际案例进行说明。

首先,我们来了解一下运放的增益带宽积。

增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。

在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。

输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。

输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。

这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。

共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。

在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。

输出电流和电压是运放输出性能的重要参数。

输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。

在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。

电源电压范围和功耗是运放的两个重要电气参数。

电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。

在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。

下面通过一个实际应用案例来说明如何进行运放选型。

某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。

根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。

接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。

增益可以是固定的,也可以是可调的。

增益决定了输出信号相对于输入信号的放大程度。

2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。

带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。

3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。

输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。

4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。

输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。

5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。

输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。

6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。

输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。

7.输出电流:输出电流是指运放输出端提供的最大电流。

输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。

8.输出电压:输出电压是指运放输出端能够提供的最大电压。

输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。

二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。

例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。

2.选择性能指标:根据应用需求选择合适的性能指标。

不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。

3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。

产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。

(完整版)运放关键参数及选型原则

(完整版)运放关键参数及选型原则

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

如何选择适合的运放

如何选择适合的运放

如何选择适合的运放在电子设备中,运放(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于信号放大、滤波、波形整形等电路中。

正确选择适合的运放对于电路性能的稳定与提高至关重要。

本文将介绍如何选择适合的运放。

一、了解运放的基本参数运放有许多基本参数需要了解,以下是几个重要的参数:1. 增益带宽积(Gain Bandwidth Product,GBW):表示运放的增益与频率的乘积,通常以MHz为单位。

选择运放时,应根据电路所需的最大增益和工作频率来确定适合的GBW值。

2. 输入失调电压(Input Offset Voltage,Vos):表示在两个输入端之间存在的微小电压差,会对输出结果产生影响。

通常以mV为单位,应尽量选择Vos较小的运放。

3. 输入失调电流(Input Offset Current,Ios):表示运放两个输入端之间的电流差异,也会对输出结果产生影响。

通常以nA为单位,应尽量选择Ios较小的运放。

4. 输入偏置电流(Input Bias Current,Ib):表示运放两个输入端的总电流,同样会对输出结果产生影响。

通常以nA为单位,应选择Ib较小的运放。

二、考虑电源电压范围运放通常需要工作在一定的电源电压范围内,过高或过低的电源电压都会影响运放的性能。

因此,在选择运放时,要根据实际应用的电源电压范围来确定适合的运放。

三、确定功耗要求功耗是选择运放时需要考虑的一个重要指标,如果对设备的功耗要求较高,应选择低功耗的运放。

四、选择合适的封装类型运放有多种封装类型,如DIP、SOP、SSOP等。

选择封装类型时,应根据实际使用环境和电路布局来确定合适的封装类型。

五、参考应用案例和厂商手册了解同类产品的应用案例和厂商手册中的参数说明是选择适合运放的有效方法。

可以参考厂商手册中的参数表,并与实际应用需求进行对比和分析。

选择适合的运放是一项重要而复杂的任务,需要结合实际需求和对运放性能的了解。

高精度运算放大器的关键参数

高精度运算放大器的关键参数

高精度运算放大器的关键参数
高精度运算放大器是一种常见的电路器件,用于信号放大和运算。

其性能的好坏,直接影响到整个电路系统的准确度和稳定性。

以下是高精度运算放大器的关键参数:
1. 偏置电流:指放大器输入端到输出端的传输电流,一般为几
纳安至几微安。

偏置电流越小,放大器的输入阻抗越高,对信号源的影响也越小,但同时放大器的幅度增益也会降低。

2. 输入偏置电流:指放大器输入端的两个输入基极之间的电流
差异,一般为几十纳安至几百纳安。

输入偏置电流越小,放大器的输入电阻就越大,对信号源影响也就越小。

3. 偏置电压:指放大器输入端到输出端的传输电压,一般为几
毫伏至几十毫伏。

偏置电压越小,放大器的输入阻抗越高,对信号源的影响也越小,但同时放大器的幅度增益也会降低。

4. 输入偏置电压:指放大器输入端两个输入基极之间的电压差异,一般为几微伏至几十微伏。

输入偏置电压越小,放大器的输入电阻就越大,对信号源的影响也就越小。

5. 噪声:指放大器输出端的杂乱信号,一般为几微伏至几毫伏。

噪声越小,放大器的信号处理能力就越好。

6. 运放增益带宽积:指运放的幅度增益与频率的乘积,一般为
几十兆赫兹至几百兆赫兹。

增益带宽积越大,运放的放大能力就越强。

以上是高精度运算放大器的关键参数,这些参数对于电路系统的性能和稳定性都有着重要的影响。

因此,在选择和使用高精度运算放
大器时,需要仔细考虑这些参数,并根据实际需求选择合适的器件。

运算放大器的参数、选型与应用

运算放大器的参数、选型与应用唐桃波长江大学国家级电工电子实验教学示范中心创新基地长江大学石油仪器研究室1•1930年TI的前身Geophysical service inc.成立,主要研发地震仪与石油探测仪。

•1950年Geophysical service inc.上市同时改名为TI。

•1956年Burr-Brown Research公司成立。

•1958年7月TI公司的Jack Kilby发明了集成电路(integrated circuit)简称IC。

•1963年Fairchild公司的Bob widlar发明了世界上第一片世界公认的单片集成电路运放μA702但是不是很成功。

•1965年1月MATT LORBER和RAY STATA创建了ADI公司。

•1965年11月Fairchild公司的Bob widlar发明了μA709大获成功,但是μA709不稳定,易烧坏,易锁闭。

•1967年Bob widlar离开Fairchild加入NSC(National Semiconductor后并入TI),同年发表了LM101,后来陆续开发了LM301,LM307,LM308,LM318,LM309等运放。

•1969年Fairchild公司的Dave Fullagar发表了发明了世界上第一款内置30pF相位补偿电容的运放μA741一直应用至今,现在还是各大高校模电实验的首选运放。

2•1975年PMI公司的George Erdi发表了世界上第一款精密运放OP07(后逐渐发展出OP27 OP37 OP177及OP27的JFET版本OPA627,OP37的JFET版本OPA637).由于OP07太过经典,各大公司都推出了自己的相关产品。

•1972年NSC公司的Russell and Frederiksen引入新技术设计出LM324.•1975年RCA公司发布了CMOS运放CA3130.•1976年NSC公司发布了JFET运放LF356.•1978年TI发布了TL06X TL07X TL08X系列低价格JFET运放。

运算放大器的主要参数


02
输出参数
输出阻抗
总结词
输出阻抗是运算放大器的一个重要参数,它决定了放大器输出信号的损失程度。
详细描述
输出阻抗定义为运算放大器输出端的电阻抗,它反映了放大器对输出信号的阻碍作用。输出阻抗越大 ,信号在输出端的损失越大,信号保真度越低。因此,在选择运算放大器时,应尽量选择具有较低输 出阻抗的型号,以减小信号损失。
03
直流参数
直流增益
总结词
直流增益是运算放大器的重要参数,表示放大器对直流信号的放大能力。
详细描述
直流增益是指在直流条件下,输出电压与输入电压的比值,通常用分贝或倍数表 示。它是衡量运算放大器放大能力的重要指标,一般要求具有较高的增益值。
输入失调电压
总结词
输入失调电压是运算放大器的静态参数,表 示输入端在没有输入信号时,由于内部晶体 管的不对称性所产生的电压差。
详细描述
电源电流是衡量运算放大器功耗的重要参数,它反映了 运算放大器在正常工作状态下对电源的负载能力。较小 的电源电流意味着较低的功耗和发热,有助于提高运算 放大器的可靠性。在选择运算放大器时,应考虑其电源 电流与系统电源的负载能力相匹配。
功耗
总结词
功耗是运算放大器在工作过程中消耗的能量,通常以瓦特(W)为单位表示。
运算放大器的主要参数
目录
• 输入参数 • 输出参数 • 直流参数 • 交流参数 • 电源参数
01
输入参数
输入偏置电流
总结词
输入偏置电流是运算放大器在无输入信号时,输入端的直流 电流。
详细描述
输入偏置电流表示运算放大器在静态时,输入端的直流电流 大小。它反映了运算放大器输入级的直流状态。输入偏置电 流的大小会影响运算放大器的精度和线性度,因此在实际应 用中需要对其进行精确控制。

运算放大器的应用和选型



理想运算放大器有下列两个重要特性:
(1) 理想运算放大器的输出为有限电压时,两个输入端之间的电压 差为0—“虚短” 注:对于实际的运放,在闭环工作时“虚短”才成立。 (2) 理想运放两个输入端的电流为 0。 分析运放电路的输出-输入关系时,利用上述两个特性。
EC
一、运放参数
主要参数 -最大额定值(极限参数)
输入缓冲+宽带压控增益放大+宽带功率驱动
理论分析

第一个问题,要求输入阻抗>1M 欧姆

输入缓冲:选择FET型输入的高速放大器

TI的电压反馈型FET高速放大器

理论分析 第二个问题,要求大带宽且高压摆率。

带宽增益积:


题目中要求放大器最大电压增益AV=60dB,即Gain=1000。 放大器的通频带0~10MHz,所以本放大器的带宽增益积为 GBP = 1000 * 10M = 10G 单个放大器是很难达到10G的GBP,所以我们考虑多级放大器 级联。 题目中要求放大器输出信号:10VRMS,负载为50 欧姆 输入信号:正弦波,10MHz SR=|dV/dt|max=Vppω=3517 V/μs 当信号幅度较大时,压摆率常常比带宽更占据主导地位,通常 来说,电压反馈放大器的压摆率一般在500V/uS 以下,对于电 流反馈放大器拥有的数千V/us 的压摆率。

功率级的 20dB放大 器部分: 选择±18V 供电的电 流反馈放 大器 THS3001HV 来实现大 电压的高 速信号输 出。
理论分析

第三个问题:实现增益步进可调

程控增益放大器
带宽和压摆率远远不够10MHz放大如此多倍的要求。 压控增益放大器

运算放大器的参数选择

运算放大器的参数选择运算放大器的参数指标1. 开环电压增益Avd开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz 的交流输入信号的放大倍数,即输出电压与输入差模电压之比。

它一般为104~106,因此它在电路分析时可以认为无穷大。

2. 闭环增益A F闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。

反相比例放大器,其增益为A F =-RI RF3. 共模增益Avc 和共模抑制比当两个输入端同时加上频率小于200Hz 的电压信号Vic 时,在理想情况下,其输出电压应为零。

但由于实际上内部电路失配而输出电压不为零。

此时输出电压和输入电压之比成为共模增益Avc 。

共模抑制比Kcmr=Avd 运算放大器的差模增益,通常以对数关系表示:Kcmr=20log AvcAvd 共模增益运算放大器的差模增益共模抑制比一般在80~120Db 范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。

这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

4. 输入失调电压在常温(25℃)下当输入电压为零时,其输出电压不为零。

此时将其折算到输入端的电压称为输入失调电压。

它一般为±(0.2~15)mV 。

这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。

5. 输入偏置电流在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即I IB =21( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。

6. 输入失调电流I IO输入失调电流可表示为I IO =︱I IB --I IB+∣在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限
参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数
主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:
直流指标
运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温
漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入
电压、最大差模输入电压。

NE5532的直流指标如下:
输入失调电压Vos
输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压
一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对
于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT
输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化
的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运
放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios
输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或
规定值)时,流入两输入端电流的平均值。

偏置电流bias current就是第一级放大器输入
晶体管的基极直流电流。

这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

偏置电流值也限制了输入电阻和反馈电阻数值不可以过大, 使其在电阻上的压降与运
算电压可比而影响了运算精度。

或者不能提供足够的偏置电流, 使放大器不能稳定的工作在
线性范围。

如果设计要求一定要用大数值的反馈电阻和输入电阻, 可以考虑用 J-FET 输入的运放。

同样是电压控制的还有 MOSFET 器件, 可以提供更小的输入漏电流。

在设计高精度直流放大放大器或选用具有较大输入偏置电流的运放时,必须使运放两端直流通道电阻相等,这样子才能平衡输入偏置电流。

Input offset current(失调电流)是运放两输入端的偏置电流差,是由于输入差分
对管的不对称性所致,是使输出电压为零(或规定值)时,流入两输入端电流之差。

由于目
前多数运放的输入级都存在有不同形式的偏置电流补偿,故偏置电流的量级大为降低,以至于相对失调电流来说显得不那么重要。

再加上失调电压的影响,所以通常就不会单独考虑偏
置电流的问题,这也就是一般不加偏置电流补偿电阻的原因。

失调电流与偏置电流的的区别
从上图可以看出,输入的内部是三极管或者mos管,要想三极管工作在线性放大区域,
必须提供合适的偏置电压和电流。

但由于两个管子不可能完全一样,所以两个基极电流的差(Ib1-Ib2),就是输入失调电流。

而两个管子的基极电流的平均值((Ib1+Ib2)/2),就是输入偏置电流。

输入失调电流的温度漂移(简称输入失调电流温漂)ΔIos/ΔT
最大共模输入电压Vcm
最大共模输入电压定义为,当运放工作于线性区时,在运放的共模抑制比特性显著变坏
时的共模输入电压。

一般定义为当共模抑制比下降6dB 是所对应的共模输入电压作为最大
共模输入电压。

最大共模输入电压限制了输入信号中的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注意这个问题。

共模抑制比CMRR
共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增益的比值。

共模抑制比是一个极为重要的指标,它能够抑制差模输入中的共模干扰信号。

由于共模抑制比很大,
大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。

一般运放的共模抑制比在80~120dB之间。

共模抑制比定义为当运算放大器工作于线性区时,运算放大器的差模增益与共模增益之
比值。

共模抑制比是一个极为重要的指标,它表示了差模输入时抑制共模干扰信号能力,是衡量了运算放大器对输入信号共模信号的隔离能力。

共模信号是信号线对地的电压,差模信号是信号线之间的电压。

放大电路是一个双口网络,每个端口有两个端子。

当两个输入端子的输入信号分别为U1和U2时,两信号的差值称为差模信号,而两信号的算术平均值称为共模信号。

抑制共模信号的作用
任何信号都可以分解为共模信号和差模信号。

共模信号是作用在差分放大器或仪表放大
器两个输入端的相同信号,通常是由于线路传导和空间磁场干扰产生的,不携带有效信息,
是不希望出现的信号。

主要表现为:
1)单线传输时,地电位差异引起的共模信号,会叠加在信号上形成共模干扰,造成原
始信号失真;
2)双线传输时,有效信号是差模信号,共模信号是无效信号。

如果共模信号被放大很。

相关文档
最新文档