数学(心得)之数形结合思想在小学数学教学中的渗透
数形结合思想在小学数学教学中渗透的具体措施

数形结合思想在小学数学教学中渗透的具体措施一、以问题为引导,以实际为基础在小学数学教学中,教师可以通过设计一些实际生活中的问题,引导学生去探索、发现和解决问题。
通过菜市场上不同形状的蔬菜水果,引导学生学习分类,比较不同形状之间的关系,提高学生对形状的认知能力。
通过跳绳游戏,引导学生学习几何图形的边和角的概念,培养学生的几何思维。
通过实际测量日常生活用品的长度、面积和体积等,让学生真正理解数学知识的实际意义,提高学生的数学实践能力。
二、以图形为媒介,以实物为支持在小学数学教学中,教师可以通过图形来引导学生理解数学概念。
可以设计一些有趣的几何图形游戏,让学生通过拼图、剪纸等活动,感受不同形状之间的联系和变化。
以及通过建模、拼装等手工制作活动,让学生亲自动手实践,加强对数学概念的理解。
通过图形展示实际生活中的数学问题,如用纸板制作的立体图形展示,让学生直观感受数学在生活中的应用,激发学生的学习兴趣。
三、以体验为主,以游戏为辅在小学数学教学中,教师可以通过设计一些数学游戏和数学实验,让学生在游戏和实验中体验数学的乐趣。
可以设计一些有趣的数字游戏,如数独、数学迷宫等,让学生在游戏中体验解题的快乐。
通过一些简单的数学实验,如用一根线围成一个闭合图形,让学生体验“周长不变,面积可以变”的数学规律,从而增强学生的数学实践能力。
四、以情景为背景,以故事为引导在小学数学教学中,教师可以以情景为背景,以故事为引导,引导学生理解和掌握数学知识。
可以以小红帽遇到的困难为背景,设计一个求解问题的数学故事,让学生通过故事情境来理解和运用数学知识。
通过一些趣味性的数学故事,让学生在阅读故事中体验数学的乐趣,激发学生的学习兴趣和求知欲。
小学数学教学中如何渗透数形结合思想

教育新探小学数学教学中如何渗透数形结合思想■祝凯摘要:在小学数学教学中利用数形结合思想来为学生讲解数学知识更有助于培养学生的数学思维,使学生建立更完善的数学知识架构。
这样的教学形式贯穿在学生的整个小学阶段,教师利用数形结合来帮助学生理解数学知识的概念和含义,分析数学问题,解放学生的思维,促进学生探究能力的提高,使学生可以体验到获取数学知识的成就感,从而逐渐提高学生的数学能力。
所以本文在此基础上探讨了在小学数学教学中如何有效渗透数形结合教学思想,并提出了以下几点建议,以供参考。
关键词:小学数学;数形结合;教学策略在小学时期为学生开展数形结合教学模式更符合学生的形象思维特征,可以有效地帮助学生解决数学中所存在的问题,同时这也是提升学生能力,帮助学生拓展思维,实现学生逻辑发展的重要手段。
教师以数形结合的教学模式帮助学生快速找到数学问题中的关键点,增强学生对于数学语言的理解能力,实现学生数学空间思维的发展,将复杂的问题简单化,抽象的数学知识直观化,大大降低了学生数学学习的难度,从而为学生今后进行更高水平的数学学习打下坚实的基础。
所以在数学教学中,教师一定要把握数形结合的教学思想,将其渗透在教学活动的各个阶段,以提高学生对数形结合的运用能力,实现学生数学学习能力的发展。
一、以形示数,发展学生意识教师可以在课堂上以数形结合的形式将抽象的数学知识以更加直观的图形和图片等形式为学生展示,增强了数学知识鲜明的内涵特点,有助于学生理清数学学习的思路,也明白在数学各问题之间所存在的具体联系,使学生可以更加快速地掌握解决数学问题的具体方法。
对于小学时期的学生来讲,图形有着莫大的吸引力,可以使学生在教学过程中保持更为集中的注意力,同时可以有效地调动学生对数学学习的积极性,使学生迸发出无限的学习热情,有效活跃教学氛围。
学生利用数形结合思想来解决生活和学习中所存在的数学问题,可以发现其简便性,实现学生数形结合意识的养成。
在数学教学中,教师要结合教材目标和教学特点来为学生开展数形结合的教学模式,例如在平行四边形与梯形这部分的教学内容中,可能很多学生由于已经掌握基础的四边形知识,而对梯形和平行四边形是初次扩充,所以在探讨其特征时,教师可以引导学生联系以往教材内容来概括梯形以及平行四边形的定义。
浅谈数形结合思想在小学数学课堂教学中的渗透

浅谈数形结合思想在小学数学课堂教学中的渗透数形结合思想是指在数学教学中,通过数学概念和几何形状的相互关系,将抽象的数学概念和直观的几何形状相结合,用形象直观的几何图形来帮助学生理解和解决数学问题。
这种思想在小学数学课堂教学中具有广泛的应用。
下面将从几个方面来进行探讨。
数形结合思想可以帮助学生理解抽象的数学概念。
在小学数学课程中,有很多抽象的概念,比如数的大小比较、加、减、乘、除运算等等。
对于一些抽象概念,学生可能很难理解和掌握。
而通过数形结合思想,可以将这些抽象概念与具体的几何形状相联系,使学生能够直观地理解和感受。
在教学数的大小比较时,可以通过比较不同几何图形的面积或周长来比较大小,帮助学生理解数的大小关系。
数形结合思想可以激发学生的兴趣和探索欲望。
几何形状是具有直观性和形象性的,让学生在学习中可以看得见、摸得着,从而提高学习的兴趣。
通过观察、比较和推理几何形状,可以激发学生的好奇心,促使他们主动地探索和发现数学问题的规律和解决方法。
在教学面积和体积时,可以通过实际操作、观察和比较不同几何形状的面积或体积,让学生自己去发现计算面积和体积的规律和方法,从而提高他们的学习主动性和创造性。
数形结合思想可以帮助学生培养空间想象能力和几何直观思维。
数学是一门空间思维的科学,而几何是培养学生空间想象能力和几何直观思维的重要手段。
通过几何图形的观察和比较,可以培养学生的几何直观思维,使他们能够把握图形的形状、位置和关系,进而解决与几何图形有关的问题。
在教学平面图形的属性时,可以通过观察不同几何形状的边数和角数的关系,让学生自己去发现并总结平面图形的性质和分类方法,从而培养他们的空间想象能力和几何直观思维。
数形结合思想可以帮助学生综合运用数学知识解决实际问题。
数学是一门综合性的学科,它不仅具有抽象性和逻辑性,还与现实生活密切相关。
通过将数学概念与几何形状相结合,可以帮助学生将数学知识运用到实际问题中去,培养他们的实际应用能力和解决问题的能力。
“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用“数形结合”是指将数学理论与几何形状相结合,通过几何形状来帮助孩子理解数学概念和解决数学问题的一种教学方法。
这种思维方式的应用可以帮助小学生更好地理解抽象的数学内容,增强他们对数学的兴趣和学习动力。
下面我将从三个方面具体介绍“数形结合”思想在小学数学教学中的应用。
在教学过程中,教师可以通过使用具体的几何形状来让学生直观地感受和理解数学概念。
以学习平面图形为例,通过展示不同形状的图形,让学生观察并找出相同的特征,如边数、角度等,从而形成对各种图形的分类和认知。
教师还可以让学生自己动手拼凑出不同的图形,锻炼他们的观察力和动手能力。
通过与数学知识的结合,学生能够更加深入地理解和记忆数学概念,提高学习效果。
“数形结合”思想还可以帮助学生解决数学问题。
在解决实际问题时,教师可以通过引导学生将问题转化为几何形状,并与相关的数学知识相结合进行解答。
解决“一个正方形花坛的边长是5米,求其面积和周长”这个问题时,可以引导学生通过画图将问题转化为计算正方形面积和周长的问题。
通过将问题形象化,学生可以更容易地理解问题的本质,并应用所学的数学知识进行解答。
“数形结合”思想还可以在学生探索和发现的过程中发挥作用。
教师可以设计一些探究性的问题,让学生通过观察、实践和思考来发现问题的规律和解决方法。
通过观察几何形状的特征,学生可以发现数学概念之间的联系和性质,培养他们的发现和解决问题的能力。
教师还可以引导学生通过对几何形状的操作和变换来探索数学知识,如旋转、平移、翻转等。
通过这种探索和发现的方法,学生可以更加深入地理解和掌握数学知识,并培养他们的创造力和创新思维。
“数形结合”思想在小学数学教学中的应用

138"数形结合"思想在小学数学教学中的应用★ 高丽丽小学数学是学生刚接触应试教育下数学科目的第一个阶段,因此小学数学的学习效果好坏可以直接影响到小学生今后的数学学习生涯。
实验证明,“数形结合”的数学思想有助于帮助小学生更好的理解数学知识点,因此在小学数学的教学中,教师应当努力渗透“数形结合”的教育思想,提升小学生的数学思维及数学能力,以此来响应新课标下对于小学数学教学标准的新要求。
一、“数形结合”数学思想的重要作用及意义“数形结合”数学思想的主要含义就是在数学中将“数”与“形”相结合,以此来解决基本的数学问题。
将其应用于小学教学中,对于提升小学生的数学综合能力有着显著的效果。
1、加深小学生的数学概念记忆小学生生动活泼、头脑灵活,但对于数学这门课程还没有形成高效的学习方法,因此教师需要在教学中加深其对于数学基本概念的印象。
但是在小学数学概念的教学中,大多数学概念比较抽象,无法让小学生直观的理解其含义;而传统的、教师口述的教学方法就算令小学生记住了此类概念,也不会使学生学会灵活应用[1]。
因此,小学数学教师在讲解数学概念时应当应用“数形结合”的教学方式,其可以有效帮助小学生加深对数学概念内容的理解;通过将数学概念用画图的形式表现出来,还可以提高学生在数学题目中应用数学概念的能力。
2、帮助小学生发现数学规律在小学数学的教材课本上,其主要注重对于数学知识点的融会贯通,但是一些隐藏在这些数学知识点背后的数学规律还是需要教师引领学生去自行挖掘。
在这个过程中,数学教师可以采用数形结合的方法来教学,其不仅可以使抽象的数学内容具体化、形象化。
还可以帮助学生找出数学知识点之间的规律,以此来帮助学生构建数学知识框架,提升数学学习能力。
并且,“数形结合”的数学方法有趣味性,其也可以激发小学生学习数学的兴趣,以此来提高其数学学习的积极性。
3、有助于简化数学解题方法在数学学习中培养“数形结合”的数学思维,还可以提高小学生的数学解题能力。
数形结合思想在小学数学教学中的渗透与应用

数形结合思想在小学数学教学中的渗透与应用【摘要】数形结合思想是一种将数学和几何形态相结合的教学方法,旨在帮助学生更加深入地理解数学概念和形态特征。
本文从引言部分对数形结合思想的背景介绍和研究意义展开,接着介绍了数形结合思想的基本概念、在小学数学教学中的意义和具体应用,以及与课程教学的融合关系。
结尾部分给出了数形结合思想在小学数学教学中的实际案例,并总结了数形结合思想对小学数学教学的启示,展望了未来数形结合思想在小学数学教学的发展方向。
通过本文的探讨,可以更好地了解和应用数形结合思想,提高小学生的数学学习效果。
【关键词】数形结合思想、小学数学教学、渗透、应用、基本概念、意义、具体应用、融合、实际案例、启示、发展。
1. 引言1.1 背景介绍数学教育是小学教育中非常重要的一部分,而数学教育的质量直接关系到学生的数学素养和学习兴趣。
传统的数学教学往往以抽象的符号和概念为主,缺乏直观的图形和实物的支撑,导致学生对数学的理解和应用能力有所欠缺。
在小学数学教学中引入数形结合思想成为一种必然趋势。
数形结合思想的提出源于数学教育改革的需求。
通过将数字与图形结合起来,可以帮助学生更直观地理解抽象的数学概念,从而提高他们的数学思维能力和解决问题的能力。
数形结合思想的引入不仅可以促进学生的学习兴趣,还可以培养他们的观察、分析和推理能力,使数学教学更生动有趣。
在小学数学教学中渗透和应用数形结合思想已经成为一种教育改革的重要举措。
通过结合数字和图形,可以使数学教学更加具体、形象,有助于激发学生学习数学的兴趣和潜力。
数形结合思想的渗透和应用对推动小学数学教学的改革和提高教学效果具有重要意义。
1.2 研究意义数形结合思想在小学数学教学中的渗透与应用是当前教育领域的热点之一,在小学数学教学中的应用具有重要的意义。
数形结合思想可以帮助学生更好地理解抽象的数学概念,通过将抽象的数学概念与具体的图形形象结合起来,有助于激发学生的学习兴趣,提高学习积极性。
数形结合思想在小学数学教学中渗透的具体措施

数形结合思想在小学数学教学中渗透的具体措施数形结合思想是一种将数学与几何图形相结合的教学方法,通过让学生通过观察、感知和思考图形,从而深入理解和掌握数学概念和性质。
在小学数学教学中,可以通过以下具体措施来渗透数形结合思想:1. 灵活运用几何图形进行计数:在数学教学中,可以使用各种几何图形来帮助学生进行计数。
在教授数的读写和数的大小比较时,可以使用图形进行实际操作,让学生观察并记录图形中的数量,从而加深对数的概念的理解。
2. 利用几何图形解决运算问题:对于一些基本的运算问题,可以通过将问题转化为几何图形的形式,让学生从几何的角度去解决问题。
在教授加减法时,可以让学生使用图形来模拟加减运算,观察并思考图形的变化规律,从而培养学生的抽象思维能力。
3. 引导学生观察几何图形的性质:在教授几何图形的性质时,可以通过引导学生观察和分析图形的特征,让他们通过自己的思考和发现来探索几何图形的性质。
在教授三角形的性质时,可以通过让学生观察和分析不同种类的三角形,发现它们的特点和规律,并引导学生总结出三角形的性质。
5. 利用几何图形进行数学推理:在进行数学推理时,可以通过利用几何图形来帮助学生思考和证明数学结论。
在证明数的性质时,可以建立相应的几何模型,并利用几何图形的性质来推导证明。
6. 进行几何图形的构造活动:在进行几何图形的构造活动时,可以通过引导学生观察、感知和思考图形的属性和变化,从而让学生在实践中掌握几何图形的基本性质和构造方法。
在教授平行线和垂直线时,可以通过让学生使用直尺和圆规进行实际操作,来感受和体验平行线和垂直线的构造特点。
通过以上具体措施,数形结合思想能够在小学数学教学中得到很好的渗透,帮助学生更好地理解和掌握数学知识,并培养学生的观察、思考和解决问题的能力。
数形结合思想在小学数学教材中的渗透(2021年小学数学北师大版)

数形结合思想在小学数学教材中的渗透问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。
不管是数学概念的建立、数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的渗透和建立。
著名数学家华罗庚说过:“数缺形时少自觉,形缺数时难入微,数形结合百般好,隔断分家万事难。
”数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。
所以,下面我主要针对数形结合这一数学思想方法,分析它在小学数学教材中是如何进行递进式渗透式编排的?以便更好地把握数学思想方法的渗透点和渗透方法,以及渗透时机。
在小学数学教学过程中,学生数学思想方法形成是一个循序渐进的过程,在学习初期学生对于思想方法认识还处于感性方面,需要经过多次、反复的体验,才能升华到理性层面。
通过梳理整套教材,从中不难发现:教材编排的特点是从注重具体形象思维逐步过渡到注重抽象思维,很多数学思想方法也是螺旋上升、逐步深入的。
纵观整个小学数学教材,从一年级到六年级,无不充分体现数与形的有机结合,帮助学生从直观到抽象,逐步建立起整个数学知识体系,培养学生的思维能力。
那么,在小学数学北师大版这套教材中,教材主要编排了一些实物图、计数器、小棒、直尺图、数轴、各种图形、点子图、方格图、线段图等一些素材,一步步潜移默化地培养学生的数形结合思想方法。
在一年级上册中,学生刚学习数学知识时,教材首先就是通过数与物(形)的对应关系,初步建立起数的基本概念,认识数,学习数的加减法;例如在学习10以内的数时,教材从与学生现实生活密切相关的实物入手,让学生将具体实物的个数与相应的数字连线,涂涂色,使学生在头脑中对数字形成表象,知道任何具有相同数量事物的个数都可以用同一个数字来表示。
之后,教材还通过具体的物(形)帮助学生建立起初步的比较长短、多少、高矮等较为抽象的数学概念。
同样,三年级下册,在学生对整数有了丰富的认知后,小数的认识是对数域的一次扩展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学论文之数形结合思想在小学数学教学中的渗透
摘要:数学思想方法对研究和应用数学具有指导意义,学生一旦掌握将会终身受益。
数形结合思想是一种在小学数学教学中常用数学思想,本文联系自己的数学教学实践,从理解算理过程中渗透数形结合思想,教学新知中渗透数形结合思想,数学练习题中挖掘数形结合思想三方面浅谈了数形结合思想在小学数学教学中的渗透。
关键词:思想方法数形结合渗透日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生)从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等)全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。
随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。
只有这样,才能使学生真正感受到数学的价值和力量。
小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
数形结合思想是一种重要的数学思想。
数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相利用来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。
著名数
学家华罗庚说过“数缺形时少直观、形少数时难入微”。
有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。
那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、在理解算理过程中渗透数形结合思想。
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。
但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。
我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。
”根据教学内容的不同,引导学生理解算理的策略也是不同的,笔者认为数形结合是帮助学生理解算理的一种很好的方式。
(一)“分数乘分数”教学片段课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几?在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。
第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。
后进生受到启发后修改自己的图形,更好地理解1/5×1/4这个
算式所表示的意义。
第三,全班点评,请一些画得好的同学去展示、交流。
也请一些画得不对的同学谈谈自己的问题以及注意事项。
这样让学生亲身经历、体验“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。
如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。
(二)“有余数除法”教学片段课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。
生:9÷4师:结合图我们能说出这题除法算式的商吗?生:2,可是两个搭完以后还有1根小棒多出来。
师反馈板书:9÷4=2……1,讲解算理。
师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒?……通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。
这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。
学生学得很轻松,理解得也比较透彻。
二、在教学新知中渗透数形结合思想。
在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。
基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。
(一)“植树问题”教学片段模拟植树,得出线上
植树的三种情况。
师:“”代表一段路,用“ / ”代表一棵树,画“ / ”就表示种了一棵树。
请在这段路上种上四棵树,想想、做做,你能有几种种法?学生操作,独立完成后,在小组里交流说说你是怎么种的?师反馈,实物投影学生摆的情况。
师根据学生的反馈相应地把三种情况都贴于黑板:①/___/___/___/
两端都种②/___/___/___/___ 或___/___/___/___/
一端栽种③___/___/___/___/___
两端都不种师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。
以上片段教师利用线段图帮助学生学习。
让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
(二)连除应用题教学片段课一始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。
学生们经过思考交流,呈现了精彩的答案。
30÷2÷3,学生画了右
图:先平均分成2份,再将获得一份平均分成3份。
30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。
30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。
以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。
因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。
通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。
三、在数学练习题中挖掘数形结合思想。
运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。
它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。
(一)三角形面积计算练习民医院包扎用的三角巾是底和高各为9分米的等腰三角形。
现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块?有些学生列出了算式:72×18÷(9×9÷2),但有些学生根据题意画出了示意图, 列出72÷9×(18÷9)×2、72×18÷(9×9)×2和72÷9×2×(18÷9)等几种算式。
在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生
的解题思路,由不会解答到用多种方法解答,学生变聪明了。
(二)百分数分数应用题练习参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。
问后来又加入男生多少人?先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人)。
从这题不难看出:“数”、“形”互译的过程。
既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。
由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。
总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。
最关键一点,能使抽象枯燥的数学知识,形象化具体化,使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。
参考文献:(1)《数学思想方法与小学数学教学》夏俊生主编河海大学出版社 1998年12月(2)《数学课程标准》(实验稿)北京师范大学出版社 2001年7月(3)《教学论》田慧生李如密著河北教育出版社 1999年1月暨阳街道大侣小学葛琼钗。