贝叶斯讲义 先验分布与后验分布知识讲解
第1章先验分布与后验分布完整版本

最新课件
22
贝叶斯学派的基本观点:任一未知量 都可看作一个随
机变量,应该用一个概率分布去描述,这个分布称为先 验分布;在获得样本之后,总体分布、样本与先验分布
通过贝叶斯公式结合起来得到一个关于未知量 新的分 布—后验分布;任何关于 的统计推断都应该基于 的
后验分布进行。
因为任一未知量都有不确定性,而在表述不确 定性程度时,概率与概率分布是最好的语言。
最新课件
39
4.0 是未知的,它是按先验分布( )产生的。为把先 验信息综合进去,不能只考虑0,对的其它值发生 的可能性也要加以考虑,故要用( )进行综合。这 样一来,样本x=(x1 , …, xn)和参数 的联合分布为: h(x, ) = p(x )( ),
3.从贝叶斯观点看,样本 x=(x1, x2 , …, xn )的产
生分两步进行:首先从先验分布( )产生一个样本
0,然后从P (x |0)中产生一个样本x=(x1, x2 , …,
xn
)
。这时样本的联合条件密度函数为 n
p(x|0) p(xi |0)
i1
这个分布综合了总体信息和样本信息,常称为似然函数。
可见历史资料在统计推断最中新课应件 加以利用
21
贝叶斯统计与经典统计学的差别:是否利用先验信息。
贝叶斯统计在重视使用总体信息和样本信息的同时, 还注意先验信息的收集、挖掘和加工,使它数量化,形 成先验分布,参加到统计推断中来,以提高统计推断的 质量。
在使用样本信息上也是有差异的.贝叶斯学派重视已出现 的样本观察值,而对尚未发生的样本观察值不予考虑.
Byaes统计学派与经典统计学派虽然有很大区 别,但是它们各有优缺点,各有其适用的范围,作 为研究者一定要博采众长,以获得一种更适合解决 实际问题的方法。而且,在不少情况下,二者得出 的结论在形式上是相同的。
先验分布和后验分布的比较研究

先验分布和后验分布的比较研究一、引言在贝叶斯统计推断中,先验分布和后验分布是两个重要的概念,其作用在于帮助我们利用先验知识来更新推断结论。
先验分布指在考虑样本信息之前所假设的分布,而后验分布则指在考虑样本信息后得到的分布。
两种分布都是贝叶斯统计学中推断结论的关键。
本文将着重探讨先验分布与后验分布之间的比较研究,并详细介绍在不同情况下它们的意义、作用和优缺点。
二、正文1. 先验分布与后验分布的定义先验分布是指在推断结果之前,我们对假设的随机变量的概率分布所进行的假设,它通常是由主观或客观的先验经验所建立的,因此也被称为先验知识。
先验分布常常是一个简单的概率分布,而且往往是由一个或几个参数来描述的。
后验分布是指在考虑了样本信息后在先验分布上得到的分布,它通常是更贴近真实概率分布的一个更新版的概率分布。
在贝叶斯推断中,我们会把先验权重和样本信息反应在后验分布中。
2. 先验分布与后验分布的应用场景先验分布的选择并不像后验分布那么高要求,因为先验分布很大程度上是由我们个人主观判断决定的。
通常,我们会选择一个简单的分布作为先验,例如Beta分布、Gamma分布、正态分布等。
在贝叶斯分析过程中,先验分布起到了约束和规定后验分布的重要作用。
后验分布则是由先验分布及样本信息的考虑而得到的。
相当于我们把自己先前对随机变量的主观想法与样本数据作了一个结合,形成了一个更可信、更合理的可视化概率分布。
在经济预测、科学分析和金融产品等领域中,后验分布非常重要。
3. 先验分布与后验分布的比较就分布的形态来说,前者大多数情况下是平滑、单峰分布,甚至有些分布既可以是随机变量的概率分布,也可以是某些问题上的信息分布。
而后者则相对比较灵活,更适应于样本信息的变化。
在选择先验分布的过程中,需要根据具体任务的需求来确定,例如要求先验均值尽可能接近后验均值,需要选择一种适当的先验分布。
就作用而言,先验分布相当于清除了一些不太可能的情况,让后验分布更加稳定;而后验分布则是更加贴合实际情况的一种分布,更大程度上说明了与样本数据相关的知识。
先验分布与后验分布

(
x1,
, xn )
h(x1, , m(x1,
xn , )
, xn )
p(x1, , xn ) ( ) p(x1, , xn ) ( )d
这就是贝叶斯公式的密度函数形式,其中 ( x1, , xn )
称为θ的后验密度函数,或后验分布。而 :
m(x1, , xn ) p(x1, , xn ) ( )d
j
假如总体X也是离散的,则只须将p(x|θ)
换成P(X=x|θ)即可。
10
二、后验分布是三种信息的综合
前面的分析总结如下:人们根据先验信息对参数
θ已有一个认识,这个认识就是先验分布π(θ)。通
过试验,获得样本。从而对θ的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结果
就是后验分布 ( x1, , xn) 。后验分布是三种信息的 综合。获得后验分布使人们对θ的认识又前进一步,
P( 0.5/ x)
(n 2)
0.5
x
(1
)n
x
d
1.15 1042
( x 1)(n x 1) 0
故他断言男婴诞生的概率大于0.5。
13
注:1.伽玛分布与贝塔分布简介:
(s) xs1e xdx, s 0, (n 1) n! 0
B( p,q) 1 x p1(1 x)q1dx, p 0,q 0 0
26
例1.9 对例1.7中后验分布的均值和方差的解释。 分析:后验分布Be(α+x, β+n-x)的均值和方差可写为:
27
28
29
四、 常用的一些共轭先验分布
共轭先验分布选取的一般原则: 是由似然函数L(θ)=p(x|θ)中所含的因式所 决定的,即选与似然函数具有相同核的分布作 为先验分布。
贝叶斯法则,先验概率,后验概率,最大后验概率

贝叶斯法则,先验概率,后验概率,最大后验概率1.贝叶斯法则机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。
最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。
贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。
2.先验概率和后验概率用P(h)表示在没有训练数据前假设h拥有的初始概率。
P(h)被称为h 的先验概率。
先验概率反映了关于h是一正确假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。
类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h 成立时D的概率。
机器学习中,我们关心的是P(h|D),即给定D 时h 的成立的概率,称为h的后验概率。
3.贝叶斯公式贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法p(h|D)=P(D|H)*P(H)/P(D)P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。
4.极大后验假设学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP)确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下:h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H)最后一步,去掉了P(D),因为它是不依赖于h的常量。
5.极大似然假设在某些情况下,可假定H中每个假设有相同的先验概率,这样式子可以进一步简化,只需考虑P(D|h)来寻找极大可能假设。
h_ml = argmax p(D|h) h属于集合HP(D|h)常被称为给定h时数据D的似然度,而使P(D|h)最大的假设被称为极大似然假设。
贝叶斯估计 PPT

解 其似然函数为
n
n
n
q(x| )
xi(1)1xi i 1xii(1)n i 1xi
i 1
n x( 1 ) n n x g n ( t|) g 1 ,
其 中 g n ( t |) t( 1 ) n t , 选 取 f () 1 , 则
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 函数.
2、不同的先验分布,对应不同的贝叶斯估计
2、贝叶斯点估计的计算 平方损失下的贝叶斯估计
定理3.2 设 的先验分布为 ( )和损失函数为
L(,d)(d)2
则 的贝叶斯估计
为
d * (x ) E (|X x ) h (|x )d
其 中 h (|x ) 为 参 数 的 后 验 分 布 .
π (1 ) 0 .4 π (2 ) 0 .6
这两个概率是经理的主观判断(也就是先验概率), 为了得到更准确的信息,经理决定进行小规模的试验, 实验结果如下:
A:试制5个产品,全是正品,
由此可以得到条件分布:
p ( A |1 ) ( 0 . 9 ) 5 0 . 5 9 0 p ( A |2 ) ( 0 . 7 ) 5 0 . 1 6 8
t (1)n t
D f{1t (1)n td :n1 ,2,L,t0,1 ,2,L} 0
显然此共轭分布族为 分布的子族,因而,两点
分布的共轭先验分布族为 分布. 常见共轭先验分布
总体分布
参数
共轭先验分布
二项分布
成功概率p
分布 ( , )
泊松分布
均值
分布 ( )
指数分布
均值的倒数
分布 ( )
正态分布 (方差已知)
贝叶斯 先验概率 后验概率

贝叶斯先验概率后验概率
贝叶斯是一种统计学方法,用于根据先验信念和观测数据来推断参数的后验概率。
先验概率是在观测数据之前对参数进行估计的概率分布。
后验概率是在观测到数据后,通过贝叶斯定理得到的参数的概率分布。
贝叶斯定理描述了在已知先验概率的情况下,如何根据新的观测数据来更新概率分布。
贝叶斯定理可以表示为:
P(A|B) = P(B|A) * P(A) / P(B)
其中,P(A|B)表示观测数据B发生时,参数A的后验概率;
P(B|A)表示在参数A确定的情况下,观测数据B发生的概率;P(A)为参数A的先验概率;P(B)为观测数据B发生的概率。
通过不断观测数据,可以不断更新后验概率,进一步提高参数的估计准确性。
贝叶斯方法在机器学习和统计推断中有广泛应用。
(完整版)贝叶斯统计第二版茆诗松汤银才编著

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (2) 由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u e eeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯 先验分布

贝叶斯先验分布
贝叶斯先验分布(Bayesian prior distribution),是指在进行贝叶斯统计推断过程中,对未知参数的概率分布的初始假设。
简单来说,先验分布是对参数先前知识的一个概率分布的表达。
贝叶斯统计中的先验分布是与后验分布相关的。
先验分布是在获得新的证据之前确定参数的概率分布,而后验分布是仅仅基于新的信息来确定参数的概率分布。
先验分布是在进行实验之前就已经被确定的,因此可以被视为提供了默认的基准信息。
在实验产生数据的时候,新发现的数据会与先验分布结合,从而构建出一个更新的后验分布。
贝叶斯先验分布中常常包含一些超参数,这些超参数可以用来控制先验分布的形态和精度。
根据数据的实际情况和模型的选择,可以利用贝叶斯最优化方法来确定超参数的值,从而使得先验分布更好地反映出真实情况。
实际中,先验分布的选择和超参数的确定往往需要专家经验和领域知识的支持,因此具有一定的主观性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( Ai )P(B / Ai )
i 1
5
2.贝叶斯公式的密度函数形式: 在给出贝叶斯公式的密度函数形式之前,先介绍 以下贝叶斯学派的一些具体思想或者叫着基本假设 :
假设Ⅰ 随机变量X有一个密度函数p(x;θ),其中θ是一 个参数,不同的θ对应不同的密度函数,故从贝叶斯 观点看,p(x;θ)是在给定θ后的一个条件密度函数,因 此记为p(x│θ)更恰当一些。这个条件密度能提供我们 的有关的θ信息就是总体信息。
10
例1.4 设事件A的概率为 ,即 (A) 。为了估计 而作n次 独立观察,其中事件A出现次数为X,则有X服从二项分布b(n, )
即P(X x ) Cnx x (1 )nx, x 0,1, , n. 如何求出后验分布?
解题步骤:1.作贝叶斯假设。如果此时我们对事件A的发生
没有任何了解,对 的大小也没有任何信息。在这种情况下,
是样本的边际分布,或称样本 X1, , X n 的无条件分布, 它的积分区域就是参数θ的取值范围,随具体情况而定。
8
3.贝叶斯公式的离散形式:
当 是离散随机变量时,先验分布可用
先验分布列π(θi),这时后验分布也是离
散形式:
( i | x)
p(x | i ) ( i ) ,i 1,2, p(x | j ) ( j )
假设Ⅱ 当给定θ后,从总体p(x│θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。
6
假设Ⅲ 从贝叶斯观点来看,未知参数θ是一个随机变量。而描 述这个随机变量的分布可从先验信息中归纳出来,这个分布称 为先验分布,其密度函数用π(θ)表示。
(1) 先验分布 定义1 将总体中的未知参数θ∈Θ看成一取值于Θ的随机变量,它 有一概率分布,记为π(θ),称为参数θ的先验分布。
贝叶斯建议用区间(0,1)上的均匀分布作为θ的先验分布。 因为它在(0,1)上每一点都是机会均等的。因此:
( )
1, 0,
0 1
others
2.计算样本X与参数 的联合分布:
h(x, ) Cnx x (1 )nx , x 0,1, , n, 0 1
此式在定义域上与二项分布有区别。
11
3.计算X的边际密度为:
m(x)
1
h( x,Hale Waihona Puke )d0Cx n
( x
1)(n x (n 2)
1) ,
x
0,1,
,n
4.利用贝叶斯公式可得 的后验分布:
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)
即:X ~ Be(x 1, n x 1)
5.具体算例。拉普拉斯计算过这个概率,研究男婴的诞生比例
是否大于0.5?如抽了251527个男婴,女婴241945个。他选用U(0,
1)作为θ的先验分布,于是可得θ的后验分布Be(x+1,n-x+1), 其
中n=251527+241945=493472,x=251527。由此拉普拉斯计算
了“θ≤0.5”的后验概率:
P( 0.5/ x)
(n 2)
0.5
x
(1
)n
x
d
1.15 1042
( x 1)(n x 1) 0
故他断言男婴诞生的概率大于0.5。
12
注:1.伽玛分布与贝塔分布简介:
(s) xs1e xdx, s 0, (n 1) n! 0
MMaaddeebbyyccyyhh
第一章 先验分布与后验分布
经济学院统计系:陈耀辉
11
第一章 先验分布与后验分布
一、统计推断中可用的三种信息 二、贝叶斯公式 三、共轭先验分布 四、超参数及其确定 五、多参数模型 六、充分统计量
2
§1.1 统计推断中可用的三种信息
1.总体信息:总体分布或所属分布族提供给我们的 信息 2.样本信息:从总体抽取的样本提供给我们的信息 3.先验信息:在抽样之前有关统计推断的一些信息。
j
假如总体X也是离散的,则只须将p(x|θ)
换成P(X=x|θ)即可。
9
二、后验分布是三种信息的综合
前面的分析总结如下:人们根据先验信息对参数 θ已有一个认识,这个认识就是先验分布π(θ)。通 过试验,获得样本。从而对θ的先验分布进行调整, 调整的方法就是使用上面的贝叶斯公式,调整的结果 就是后验分布 ( x1, , xn) 。后验分布是三种信息的 综合。获得后验分布使人们对θ的认识又前进一步, 可看出,获得样本的的效果是把我们对θ的认识由π(θ) 调整到 ( x1, , xn) 。所以对θ的统计推断就应建立在 后验分布 ( x1, , xn ) 的基础上。
(
x1,
, xn )
h(x1, , m(x1,
xn , )
, xn )
p(x1, , xn ) ( ) p(x1, , xn ) ( )d
这就是贝叶斯公式的密度函数形式,其中 ( x1, , xn )
称为θ的后验密度函数,或后验分布。而 :
m(x1, , xn ) p(x1, , xn ) ( )d
3
§1.2 贝叶斯公式
贝叶斯统计学的基础是著名的贝叶斯公式,它是 英国学者贝叶斯(T.R.Bayes1702~1761)在 他死后二年发表的一篇论文《论有关机遇问题的 求解》中提出的。经过二百年的研究与应用,贝 叶斯的统计思想得到很大的发展,目前已形成一 个统计学派—贝叶斯学派。为了纪念他,英国历 史最悠久的统计杂志《Biometrika》在1958年 又全文刊登贝叶斯的这篇论文。
4
一、贝叶斯公式的三种形式
初等概率论中的贝叶斯公式是用事件的
概率形式给出的。可在贝叶斯统计学中应用
更多的是贝叶斯公式的密度函数形式。
1.贝叶斯公式的事件形式:
假定 A1, , Ak 是互不相容的事件,它
k
们之和
k
Ai包含事件B,即B
Ai,则有:
i 1
i 1
P( Ai / B)
P( Ai )P(B / Ai )
(2) 后验分布 在贝叶斯统计学中,把以上的三种信息归纳起来的最好
形式是在总体分布基础上获得的样本X1,…,Xn,和参数的 联合密度函数:
h(x1, , xn , ) p(x1, , xn ) ( )
7
在这个联合密度函数中。当样本 X1, , X n 给定之后,未知的 仅是参数θ了,我们关心的是样本给定后,θ的条件密度函数,依 据密度的计算公式,容易获得这个条件密度函数: